Non-informative prior distributions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Non-informative prior distributions"

Transcript

1 Non-informative prior distributions ANGELIKA VAN DER LINDE University of Bremen March Introduction 2. Standard non-informative priors 3. Reference priors (univariate parameters) 4. Discussion 1

2 Preliminaries random vector Y generates data y single observations correspond to Y n R q Y = (Y 1,..., Y N ) T, sample size N model M i : p i (y θ) and prior p i (θ), θ Θ R s i θ varies with M i but subscripts most often omitted s i = 1 : θ univariate s i > 1 : θ multivariate special case iid data: model M i : p i (y θ) and prior p i (θ), θ Θ R s i with p i (y θ) = n p i (y n θ) 2

3 1. Introduction 1.1 Existence of prior distributions de Finetti s representation theorem Y 1, Y 2,... Y N real valued, exchangeable w.r.t. P ( i.e permutations of finite subsets have the same distribution) = there is a measure Q on set of distribution functions F such that N P (Y 1 y 1,..., Y N y N ) = F (y n )dq(f ) F n=1 1.2 Bayesian inference update of prior density by Bayes theorem p(θ y) = posterior p(y θ)p(θ) p(y) p(y θ) p(θ) likelihood prior 3

4 1.3 Specification of priors subjective prior knowledge informative prior ignorance non-informative objective neutral prior non-informative priors do not exist (cp. Bernardo, 1996) needed: non-subjective priors inducing dominance of data in the posterior may depend on sampling model and quantity of interest priors may be improper (yielding proper posteriors) improper priors are merely a technical device, not interpretable in terms of probability/beliefs yardstick for sensivity analyses 4

5 2. Conventional objective priors 2.1 Uniform/flat priors θ univariate (i) uniform priors definition Θ = {θ 1,..., θ L } : p(θ) = 1/L Θ R continuous p(θ) 1 interpretation equal weights to all parameters principle of insufficient reason properties / problems appropriate for finite Θ if Θ not compact, posterior p(θ y) may be improper (useless) lack of invariance w.r.t. 1 : 1 transformations may induce inadmissable estimators of θ (ii) limits of flat (proper) priors e.g. conjugate priors like information from former experiment with sample size m consider m 0 do not solve problems 5

6 example sampling prior Y B(θ, N), p(y θ) = ( N y ) θ y (1 θ) N y, θ (0, 1) ϑ Beta(α, β), p(θ) θ α 1 (1 θ) β 1, α, β > 0, m = α + β posterior ϑ y Beta(α + y, β + N y) (i) proper prior p(θ) 1 ϑ Beta(1, 1) p(θ y) proper (ii) lack of invariance, improper posterior φ = logit θ = log θ 1 θ R+ p(φ) 1 p(θ) = p(logit θ) dlogit θ = θ 1 (1 θ) 1 dθ ϑ Beta(0, 0) improper ϑ y Beta(y, N y) improper if y {0, N} (iii) limit m = α + β 0 α, β 0 improper posterior α,β>0 (ii) 6

7 θ multivariate example (Stein s paradox) sampling Y n N(θ, I q ), iid Y sufficient, Y N(θ, N 1 I q ) prior posterior p(θ) 1, θ R q yields bad estimate of φ = θ 2 (if q large and N small) E(φ y) = y 2 + q N φ = y 2 q N best estimate 7

8 2.2 Jeffreys prior θ univariate definition p J (θ) [ p(y θ) d2 log p(y θ) dθ 2 dy] 1/2 = [ E y θ ( d2 log p(y θ) dθ 2 )] 1/2 = : J(θ) 1/2 interpretation root of expected Fisher information KL(p(y θ), p(y θ + θ)) 1 2 J(θ)( θ)2 favouring θ with large J(θ) enhancing discriminatory potential of p(y θ) minimizing influence of prior example (continued) p J (θ) θ 1/2 (1 θ) 1/2 ϑ Beta(1/2, 1/2) 8

9 properties / problems Jeffreys priors may be improper invariance w.r.t. 1 : 1 transformations φ = g(θ) J(φ) = J(θ) dg 1 dφ 2 p J (φ) = p J (g 1 (θ)) dg 1 dφ 9

10 special cases location parameters P loc = {p(y θ) = p 0 (y θ) θ Θ} translation invariant, i.e. Y = Y θ and p(y) P loc p(y ) = p 0 (y (θ θ )) P loc Jeffreys prior translation invariant, i.e. p J (θ) 1 p J (θ) = p J (θ θ ) example: Y N(µ, σ 2 0), p J (µ) 1 scale parameters scale invariant, i.e. P scale = {p(y θ) = 1 θ p 0( y ) θ > 0} θ Y = Y θ and p(y) P scale p(y ) = p 0 (y ) Jeffreys prior p J (θ) 1 θ scale invariant, i.e. p J (θ) = 1 c p J( θ c ), c > 0 example: Y N(θ 0, σ 2 ), p J (σ) σ 1 10

11 invariance w.r.t. sufficiency if t(y) = t sufficient for θ sampling prior posterior p(y θ) p(t θ) p J,y (θ) p J,t (θ) p(θ y) = p(θ t) violation of likelihood principle For inferences or decisions about θ having observed y, all relevant information is contained in the likelihood function. Proportional likelihood functions contain the same information about θ. expectation w.r.t. y (in J(θ)) problematic but: lack of knowledge relative to that provided by the experiment changes with the experiment 11

12 example flipping a coin in a series of trials yielding 9 heads and 3 tails (i) Y = number of heads, number of trials N = 12 predetermined Y B(θ, 12) p J (θ) θ 1/2 (1 θ) 1/2 (proper) (ii) coin flipped until 3 tails were observed, N random N NegBin(1 θ, 3) p J (θ) θ 1 (1 θ) 1/2 (improper) likelihood in both set-ups θ 9 (1 θ) 3 12

13 θ multivariate definition expected Fisher information matrix J(θ) = (( E y θ 2 log p(y θ) θ i θ j )) Jeffreys prior p J (θ) det(j(θ)) 1/2 example Y N(µ, σ 2 ), θ = (µ, σ) p J (θ) 1/σ 2 if prior independence assumed p J (θ) 1/σ 13

14 problem marginalization paradoxes: marginal of the joint posterior posterior based on marginal (sampling) example Y N(( µ 1 µ 2 ), ( σ1 2 ρσ 1 σ 2 ρσ 1 σ 2 σ2 2 )) θ = (µ 1, µ 2, σ 1, σ 2, ρ) Jeffreys prior p J,y (θ) (1 ρ 2 ) 3 2 σ 2 1 σ2 2 r empirical correlation coeffcient with R q(r ρ) depending only on ρ but Jeffreys prior p J,r (ρ) (1 ρ 2 ) 1. p J,y (ρ y) p J,r (ρ r) for p J,y (ρ y) = p J,r (ρ r) p(θ) (1 ρ 2 ) 1 σ 2 1 σ 2 2 p J,y (θ). 14

15 3. Reference priors θ univariate 3.1 Idea and definition idea information about θ is given in prior p(θ) experiment e maximize minimize effect of data prior on posterior p(θ y) amount of information about θ that experiment e is expected to provide I(e, p(θ)) = E y [KL(p(θ y), p(θ))] = p(y) p(θ y) log p(θ y) p(θ) dθdy direct maximization w.r.t. p(θ) gives unappealing results (discrete support) 15

16 asymptotic approach: consider k independent repititions of experiment yielding I(e(k), p(θ)) maximize the missing information about θ (H(ϑ) = H(ϑ Z) + I(Z, ϑ)) I(e( ), p(θ)) := lim k I(e(k), p(θ)) problem possibly I(e( ), p(θ)) = solution find and take the limit π k (θ) = arg max I(e(k), p(θ)) π k (θ) k π(θ) 16

17 definition Let π k (θ) = arg max I(e(k), p(θ)) and π k (θ y) the corresponding posterior density. The reference posterior density π(θ y) is defined to be the intrinsic limit of π k (θ y), i.e. KL(π k (θ y), π(θ y)) k 0. A reference prior function π(θ) is any positive function generating the reference posterior density, i.e. π(θ y) p(y θ)π(θ). 17

18 3.2 Explicit form k independent repititions of the experiment e yield z k = (y (1),...y (k) ), y (l) = (y (l) 1,..., y (l) N ) re-expression of I(e(k), p(θ)) I(e(k), p(θ)) = where f k (θ) = exp( p(θ) log f k(θ) dθ (1) p(θ) p(z k θ) log p(θ z k )dz k ) maximization w.r.t. p(θ) given f k (θ) yields π k (θ) f k (θ) but f k (θ) implicitly depends on p(θ) through p(θ y) asymptotic approximation p (θ y) yields fk (θ) and π k(θ) f k (θ) pragmatic (algorithmic) determination of reference prior π(θ) π(θ) lim k f k (θ) f k (θ 0) division by f k (θ 0) eliminates constants intrinsic limit only checked if problems become apparent 18

19 proof of (1) I(e(k), p(θ)) = = = p(z k ) p(θ) p(θ) p(θ z k ) log p(θ z k) p(θ) dθdz k p(z k θ) log p(θ z k) p(θ) dz kdθ p(z k θ) log p(θ z k )dz k dθ p(θ) p(z k θ) log p(θ)dz k dθ = p(θ) log exp p(z k θ) log p(θ z k )dz k dθ }{{} f k (θ) p(θ) p(z k θ) log p(θ)dz k dθ = p(θ) log f k (θ)dθ p(θ) log p(θ)dθ = p(θ) log f k(θ) p(θ) dθ = KL(p(θ), f k (θ)) 19

20 3.3 Special case: Θ finite Θ = {θ 1,..., θ L }. and lim p(θ i z k ) = 1 if θ i true k 0 if θ i not true I(e(k), p(θ)) = E zk H(ϑ z k ) + H(ϑ) H(ϑ). k hence i.e. π k(θ) maximum entropy prior on Θ π(θ) uniform on Θ 20

21 3.4 Special case: Θ continuous starting point π k(θ) f k (θ) = exp E zk θ[log p (θ z k )] with sufficient estimate θ k : replace z k by θ k f k (θ) exp E θk θ [log p (θ θ k )] with consistent estimate θ k : θk θ k f k (θ) k p (θ θ k ) θk =θ often θ k mle with asymptotically Normal posterior distribution ϑ z k N( θ k, (kj( θ k )) 1 ) p (θ z k ) = 1 2πk 1/2 J( θ k ) exp( 1 1/2 2 ( θ θ k (kj( θ k )) 1/2 )2 ) and p (θ θ k ) θk =θ = 1 2π k 1/2 J( θ k ) 1/2 θk =θ hence (under regularity conditions) the reference prior is Jeffreys prior π(θ) lim k f k (θ) f k (θ 0) J(θ)1/2 21

22 3.5 Restricted reference priors restrictions E θ (g i (θ)) = β i with Lagrange multipliers λ i π r (θ) π(θ) exp( i λ i g i (θ)) 22

23 3.6 Examples (i) Θ = {θ 1,..., θ L }, no restriction, π(θ) 1/L Θ = {θ 1,..., θ 4 }, restriction p(θ 1 ) = 2p(θ 2 ), π r (θ) = {0.324, 0.162, 0.257, 0.257} (ii) Y θ B(θ, N), π(θ) = Beta(1/2, 1/2) memo: Beta(1, 1) = uniform for θ Beta(0, 0) = uniform for logit θ 23

24 (iii) (a) no restriction Y θ N(θ, σ 2 0), π(θ) 1 (b) no restriction Y σ N(0, σ 2 ), π(σ) 1/σ (π(σ 2 ) 1/σ 2 ) (c) with restrictions Y θ N(θ, σ 2 ) g 1 (θ) = θ E(ϑ) = m 0 g 2 (θ) = (θ µ 0 ) 2 var(ϑ) = τ 2 0 π r (θ) 1 exp(λ 1 θ + λ 2 (θ µ 0 ) 2 ) = N(m 0, τ 2 0 ) 24

25 4. Discussion principled: priors should represent subjective knowledge violation of likelihood principle model dependence crucial involved asymptotic definition versus default/automated procedure by and large heuristic, formal elaboration still under work general criterion for derivation of default priors claim: represent lack of prior knowledge about the quantity of interest relative to that provided by the data matching frequentist coverage probabilities quantity of interest - parameter θ - future observation ỹ reference priors for prediction (Kuboki, 1988; work in progress by Sweeting/Datta/Ghosh) 25

26 References [1] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis (2nd ed.). Springer: New York. (Chapter 3.3) [2] Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. Wiley: New York. (Chapter 5). [3] Bernardo, J.M. (1997). Noninformative Priors Do Not Exist: A Discussion J. Statist. Pl. Inf. 65, (with discussion). [4] Bernardo, J.M. (1998). Bayesian Reference Analysis. A Postgraduate Tutorial Course. Available from: bernardo [5] Bernardo, J.M. and Berger, J.O. (1992). On the Development of Reference Priors. In: Bernardo et al. (Eds.). Bayesian Statistics 4. Oxford University Press: London, [6] Kass, R.E. and Wasserman, L. (1996). The Selection of Prior Distributions by Formal Rules. J. Amer. Statist. Ass. 91, [7] Kuboki, H. (1998). Reference Priors for Prediction. J. Statist. Pl. Inf. 69, [8] Robert, C.P. (1994). The Bayesian Choice. Springer: New York. (Chapter 3.4). 26

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

lecture 10: the em algorithm (contd)

lecture 10: the em algorithm (contd) lecture 10: the em algorithm (contd) STAT 545: Intro. to Computational Statistics Vinayak Rao Purdue University September 24, 2018 Exponential family models Consider a space X. E.g. R, R d or N. ϕ(x) =

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell 20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Applying Markov Decision Processes to Role-playing Game

Applying Markov Decision Processes to Role-playing Game 1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Objective Priors for the Bivariate Normal Model with Multivariate Generalizations 1

Objective Priors for the Bivariate Normal Model with Multivariate Generalizations 1 Objective Priors for the Bivariate Normal Model with Multivariate Generalizations James O. Berger Duke University, Durham, NC 7708, USA e-mail: berger@stat.duke.edu and Dongchu Sun University of Missouri-Columbia,

Διαβάστε περισσότερα

Exercise 2: The form of the generalized likelihood ratio

Exercise 2: The form of the generalized likelihood ratio Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Exponential Families

Exponential Families Exponential Families Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA Surprisingly many of the distributions we use in statistics for random variables taking value in

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course. Anirban DasGupta Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Topic Modeling with Latent Dirichlet Allocation

Topic Modeling with Latent Dirichlet Allocation Topic Modeling with Latent Dirichlet Allocation Vineet Mehta University of Massachusetts - Lowell Vineet Mehta (UML) Topic Modeling 1 / 34 Contents 1 Introduction 2 Preliminaries 3 Modeling Text with Latent

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa

Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa Monte Carlo Methods for Econometric Inference I Institute on Computational Economics July 19, 2006 John Geweke, University of Iowa Monte Carlo Methods for Econometric Inference I 1 Institute on Computational

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

On Independent Reference Priors

On Independent Reference Priors On Independent Reference Priors Mi Hyun Lee Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Διαβάστε περισσότερα

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

These derivations are not part of the official forthcoming version of Vasilaky and Leonard Target Input Model with Learning, Derivations Kathryn N Vasilaky These derivations are not part of the official forthcoming version of Vasilaky and Leonard 06 in Economic Development and Cultural Change.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

On the general understanding of the empirical Bayes method

On the general understanding of the empirical Bayes method On the general understanding of the empirical Bayes method Judith Rousseau 1, Botond Szabó 2 1 Paris Dauphin, Paris, France 2 Budapest University of Technology and Economics, Budapest, Hungary ERCIM 2014,

Διαβάστε περισσότερα

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα