EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES"

Transcript

1 Scieiae Mahemaicae Jaoicae Olie, Vol. 9, 3), EXISTENCE AND BOUNDEDNESS OF gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS ON CAMPANATO SPACES KÔZÔ YABUTA Received Decembe 3, Absac. Le gf), Sf), gλ f) be he Lilewood-Paley g fucio, Lusi aea fucio, ad Lilewood-Paley gλ fucio of f, esecively. I 99 Che Jiecheg ad Wag Silei showed ha if, fo a BMO fucio f, oe of he above fucios is fiie fo a sigle oi i R, he i is fiie a.e. o R, ad BMO boudedess holds. Recely, Su Yogzhog exeded his esul o he case of Camaao saces i.e. Moey saces, BMO, ad Lischiz saces). We imove his gλ esul fuhe. His assumio is λ>3/. We show his is elaxed o λ>max, /) / α<), λ> α</), ad λ>α/ / α<). We also ea geealized Macikiewicz fucios µ ρ f), µ ρ S f) ad µ,ρ λ f).. Iocio I his oe we su he exisece ad boudedess oey of squae fucio oeaos, such as Lilewood-Paley s gλ -fucio ad Macikiewicz fucios, o Camaao saces. Fis, we ecall he defiiio of Lilewood-Paley s fucios geealized oes) i he -dimesioal Euclidea sace R. Defiiio. A coiuous fucio ψ o R is called a LP fucio, if hee exis osiive cosas C, C, δ, η ad γ such ha i) ψ L R ) ad R ψx) dx =; ii) ψx) C x ) δ ; iii) ψx h) ψx) C h γ x ) η fo h x /. Fom ii) ad iii) i follows iii ) R ψx h) ψx) dx h γ fo h R. I fac, we have ψx h) ψx) dx R x h ψx h) ψx) dx x < h ψx h) ψx) ) dx h γ x ) η dx C mi h, x ) δ dx) h γ. R R Fo a LP fucio we defie Lilewood-Paley s g ad Lusi s aea fucios as follows. Hee ad heeafe, f x) deoes fx/). ψ fx) ) gf)x) = d, ) d Sf)x) = ψ fy), Γx) Mahemaics Subjec Classificaio. 4B5. Key wods ad hases. Lilewood-Paley fucios, Macikiewicz fucio, aea fucio, Camaao sace, Moey sace, Lischiz sace, BMO.

2 6 Kôzô YABUTA whee Γx) ={, y) R ; x y <}. gλf)x) = R x y ) λ ψ fy) d whee λ>. L boudedess of hese oeaos ae kow like as he classical Lilewood- Paley s g-fucios. Tha is, g ad S ae L bouded fo <<, ad gλ is L bouded fo << if λ>max, ) see fo examle Tochisky [, ]). Hee ad heeafe, he lee C deoes a cosa deedig o mai aamees ad may vay a each occuece. Sei s geealizaio of he Macikiewicz fucio is as follows [8]: Le Ωx) bea fucio o R which saisfies he followig wo codiios: i) Ωx) is homogeeous of degee ad coiuous o he ui shee S, ad saisfies fo some <β Ωx ) Ωy ) C x y β, x,y S. ii) Ωx ) dσx ) =, whee dσ is he suface Lebesgue measue o S. S Defie µf)x) by ψ fx) ) µf)x) = d, whee ψx) = Ωx) x χ { x }. I hei wok o Macikiewicz iegal, A. Tochisky ad S. Wag [3] ioced he Macikiewicz fucios µ S f) ad µ λ f) coesodig o he S fucio ad g λ fucio. O he ohe had, i he coecio of µf) a aameized Macikiewicz fucio µ ρ f) was cosideed by L. Hömade [3]. I coesods o he case ψx) = Ωx) x ρ χ { x }. Thus, we have cosideed i [5] aameized µ ρ S f) ad µ,ρ λ f), whee ψx) = Ωx) x ρ χ { x }, fo ρ C wih Re ρ>. L boudedess fo hese oeaos ae well discussed i [7, 5], ad will be used i his ae. We ecall also he defiiio of Camaao saces [5]. Defiiio. Fo < ad / α, he Camaao sace E α, is defied by he se of fucios fo which / f E α, = su su fx) f x R B B α/ B dx) <, B B whee B moves ove all balls ceeed a x, ad f B is he aveage of f ove B,/ B ) B f) d. I is kow ha fo < α, E α, = Li α : he Baach sace of Lischiz coiuous fucios of exoe α, ad he oms ae equivale. If α =, E α, coicides wih BMO: he sace of fucios of bouded mea oscillaio. Ad if α <, E α, is equivale o he Moey sace L,α. I is also easily checked ha f α, C su B if a C B α/ B B fx) a dx ) / / α ), ad hece hese oms ae equivale. We oe ha balls ca be elaced by cubes wih sides aallel o he coodiae axes ad he oms ae equivale. I [7, 4] we have deced he boudedess fom he exisece of Macikiewicz fucios o a se of osiive measue. Recely, Su Yogzhog [] gives he followig esuls, exedig he BMO esuls by Wag ad Che [8]. )

3 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 6 Theoem. Le << ad / α<mi,δ,γ,η). If f E α, ad gf)x ) is fiie fo a oi x R, he gf)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha gf) E α, f E α,. Theoem. Le << ad / α<max mi,δ), miδ, γ, η)). If f E α, ad Sf)x ) is fiie fo a oi x R, he Sf)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha Sf) E α, f E α,. He shows he above esuls i he case ψx), x ) ψx) C x ) δ =, η = ad γ = ), bu i is easily see ha his esuls hold i he above cases. He also gives he coesodig esul fo g λ fucio. I his ae, we fuhe imove his esul o g λ as follows. Theoem 3. Le <<, / α<mi,δ) ad λ>λ, whee λ = max, /) / α<), λ = α</), ad λ =α/ / α<mi,δ,γ,η). If f E α, ad gλ f)x ) is fiie fo a oi x R, he gλ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha gλ f) E α, f E α,. Su s assumio is λ>3 see also Wag ad Che [8] i he case α = ). Ou esul also imoves he auho s oe i [4], he assumio was λ> i he case α<. As fo Macikiewicz fucios, we ca imove ou esuls i [5] as follows. Theoem 4. Le σ>, << ad / α<β. The, if f E α, ad µ ρ f)x ) is fiie fo a oi x R, he µ ρ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ ρ f) E α, f E α,. Theoem 5. Le σ>, max, σ ) <<, ad / α<max, miβ,σ)). The, if f E α, ad µ ρ S f)x ) is fiie fo a oi x R, he µ ρ S f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ ρ S f)x) E α, f E α,. Theoem 6. Le σ>, max, σ ) <<, λ>λ, ad / α<max, miβ,σ)). The, if f E α, ad µ,ρ λ f)x ) is fiie fo a oi x R, he µ,ρ λ f)x) < a.e. o R, ad hee is a cosa C ideede of f, such ha µ,ρ λ f) E α, f E α,, whee λ = max, /) / α<), λ = α</), ad λ =α/ / α<). To ove he above heoems we use he followig wo key lemmas. Lemma. Le <. Ifδ> ad / α<mi,δ/), he hee exiss C> such ha fo ay ball B = Bx, ) ad ay f E α, R fy) f B y x ) δ α δ f E α,. This ca be oved easily by modifyig he oof of Lemma.3 i []. )

4 6 Kôzô YABUTA Lemma. Le α, β >. Suose ϕx) x ) α) ad ψx) x ) β). The, ϕ ψ x) C 3 x ) miα,β)) Poof. Sice ϕ ψ x) =ϕ ψ) x), we may assume =. Noe ha if y x x /, he y x /. So, we have ϕy)ψx y) y ) α) ψx y) Ad, y x x / y x x / y x x / x /) α) R ψx y) ψ x /) α). ϕy)ψx y) Hece, we obai he coclusio. y x x / ϕy) x y ) β) x /) β) R ϕy) ϕ x /) β). Fially i his secio, we meio some examles of LP fucios. Le P, x) =c x ) ad Qx) = P, x) =. The, Qx) is a LP fucio saisfyig he codiios i Defiiio wih δ =,η =,γ =. Le Rx) =Qx) cos x. The, Rx) isa LP fucio saisfyig he codiios i Defiiio wih δ =,η =,γ =.. Poof of Theoem 3 fo gλ -fucios Le ψx) be a LP fucio. Followig he ocee of he oof by Su, we use fis he followig: Lemma 3. Le λ>, < ad / α<. The hee exiss C> such ha fo ay ball B = Bx,), ay x B ad ay f E α, g λ, f )x)g λ,, f )x) α f E α,, whee f x) =fx) f 4B )χ 4B ad gλ, f )x) := ψ x u y)f y) ) ) λ d, R R gλ,, f )x) := ψ x u y)f y) ) λ d 8 R Poof. Sice ψ is bouded, we have ) gλ, f ψ )x) R R f y) ) ) λ d ψ fy) f 4B ) λ d 4B R α d f E α, ) ) ) α f E α,.

5 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 63 Now fo x B, y 4B ad 8, we have x u y x x x y 3 8, ad hece ψ x u y)f y) ) λ d 8 R ) fy) f 4B 8 4B x u y ) δ ) λ d δ ) fy) f 4B 8 4B δ ) λ d ) δλ d δ λ fy) f 4B 8 4B δλ δ λ α f E α, α f E α,. Nex usig Lemmas ad, we have Lemma 4. Le < ad / α<mi,δ). The hee exiss C> such ha fo ay ball B = Bx,), ay x B ad ay f E α, g λ, f 3)x) α f E α,, ovided λ> i he case α =ad λ>max, ) i he case α<, ad g λ,, f 3)x) α f E α,, ovided λ> i he case α<, whee f 3 x) =fx) f 4B )χ 4B) c, gλ,f 3 )x) := ψ x u y)f 3 y) R R gλ,,f 3 )x) := ψ x u y)f 3 y) 8 R ) ) λ d, ad ) λ d Poof. i) The case, λ> ad α<miδ, λ )/. By he Hölde iequaliy q = ) ad he Mikowski iequaliy / ), g λ,f 3 )x) ψ q ψ q ). ψ x u y) f 3 y) ) ) λ d R R ψ x u y) ) ) λ d f3 R R y) By Lemma we have ψ x u y) ) λ d R x y δ) δ) mi,λ) mi,λ) d x y ). ) mi δ),λ) d δ) mi,λ). δ) mi x y,λ)

6 64 Kôzô YABUTA We have used hee λ>.fo x x <ad x y > 4, we have x y 3 4 x y 4 x y ). Hece, by Lemma R gλ,f miδ, λ) fy) f 4B ) 3 )x) x y ) miδ, λ) miδ, λ) )/ α miδ, λ) )/ f E α, α f E α,. We have hee used α<miδ, λ )/. ii) The case <<, λ> ad α<. The coclusio i his case follows fom i) fo = ad he fac f E α, f E α, fo. iii) The case α =. I his case, i is kow ha E α, om is equivale o he usual BMO om fo evey <. Hece he coclusio follows fom i) fo =. iv) The case <α<. I his case, i is kow ha E α, om is equivale o he usual Lischiz om Li α fo evey <. So, fo y x > 4 we have fy) f 4B y x α 4) α ) f Liα y x α f Liα. Hece gλ,,f 3 )x) = ψ x u y)fy) f 4B ) 8 4B) c y x α ) f Liα y x >4 x u y ) δ y x α ) f Liα 4< y x < x u y ) δ < 8 < 8 y x y x α f Liα x u y ) δ ) ) λ d ) ) λ d ) λ d ) ) λ d. Fo, x B, y/ 4B, we have x y u x y x x x y x y, ad hece So, 4B) c I := y x α x u y ) δ α δ R y x >4 y x >4 C y x α y x /) δ δ y >4 y x α ) x u y ) δ ) λ δ d = C α δ y δ α = C δ α δ. ) λ d R ) λ δ d = C α δ δ = C α. Fo 8, x B ad y x we have x u y x y x x 4 y x, ad hece as above y x α ) I 3 := < 8 y x x u y ) δ ) λ d α.

7 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 65 Now ake b> so ha <b<λ )/. The y x α ) I := < 8 4< y x < x u y ) δ α ) < 8 4< y x < x u y ) b α < 8 4< y x < b x u y b = C α λ b dv d λ v b < 8 ) λ d ) λ d ) ) λ d v < = C α λ b λ b = C α. Thus, we have gλ,,f 3 )x) I I I 3 ) f Liα α f Liα B α f E α,. ) Lemma 5. Le < ad / α<mi,δ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig gλ, f 3)x ) <, i holds gλ, f 3)x) < fo ay x B ad gλ, f 3)x) gλ, f 3)x ) C α f E α, fo ay x B, ovided λ>max, ) i he case α<, λ>i he case α<, ad λ> α i he case α<miδ, γ, η), whee f 3x) =fx) f 4B )χ 4B) c. Poof. By seig v = x u we ge gλ, f 3 )x) = ψ v y)f 3 y) v x ) ) λ d. R R Hece, if we ca show I := ψ v y)f 3 y) v x ) λ v x ) ) λ d R R α f E α, fo x B, he we have by Mikowski s iequaliy gλ, f 3)x) I gλ, f 3)x ) α f E α, gλ, f 3)x ) < fo x B, ad gλ, f 3 )x) gλ, f 3 )x ) C α f E α, fo x B. So, we will esimae I. By he mea value heoem we have v x ) λ v x ) λ = x l x l ) x v ) λx θx x ) ) dθ x l l= x θx x ) v ) λ dθ

8 66 Kôzô YABUTA Hece I ψ v y)f 3 y) x θx x ) v ) ) λ dvddθ. R R i) The case, λ> ad α<miδ/, λ )). By Hölde s iequaliy / /q = ) we have ) ) ψ v y)f 3 y) q ψ v y) ψ v y) f 3 y) R R R ) = C ψ v y) f 3 y). R Hece by Mikowski s iequaliy I C ψ v y) x θx x ) v ) ) ) λ dvddθ f3 R R y). By Lemma we ge ψ v y) x θx x ) v ) λ dv R v y ) δ) x θx x ) v ) λ dv R x θx x ) y ) mi δ),λ). Fo y x > 4 ad x x <we have x θx x ) y y x x x > 3 4 y x. So, seig η = mi δ),λ ), we ge I y x ) ) ) η d fy) f4b. y x >4 Sice y x ) η d y x η y x η d d y x η = η y x y x η we have by usig Lemma [ I fy) f 4B y x η y x >4 ) y x, ) η fy) f 4B ) ] y x >4 y x [ α η )/ η α )/] f E α, α f E α,. we have used hee α</ ad α< η i.e. α< λ ) ad α< δ ). ii) The case <<, λ> ad α<. The coclusio i his case follows fom i) fo = ad he fac f E α, f E α, fo. iii) The case α =. I his case, i is kow ha E α, om is equivale o he usual BMO om fo evey <. Hece he coclusio follows fom i) fo =.

9 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 67 iv) The case <α< ad λ>. I his case, Eα, om is equivale o he usual Lischiz om Li α fo evey <. Hece, i he case <α< δ, he coclusio follows fom i) fo =. So, we ea he case <δ<. Puig u = x θx x ) v we ge I R R R ψ x θx x ) u y)f 3 y) ) λ ddθ R ) fy) f 4B 4B) c x u yθx x) ) δ ) λ ddθ y x α ) f Liα 4B) c x u yθx x) ) δ ) λ ddθ ) ) ). Fo, x B, y/ 4B, we have x y u θx x ) x y x x x y x y, ad hece akig δ > wih α <δ < mi, δ) we have 4B)c y x α x y uθx x) ) δ y x >4 δ y x α δ = C δ y x >4 y x α x y y >4 ) δ y α δ = C δ α δ. So, 4B) c y x α x y uθx x) δ α δ d ) λ α δ δ d ) ) δ ) λ d α δ δ d α δ δ α. Fo he iegal o >we oceed as follows fy) f 4B 4B) c x u yθx x) ) δ fy) fx u θx x )) fx u θx x )) fx u) 4B) c x u yθx x) ) δ 4B) c x u yθx x) ) δ fx u) f 4B 4B) c x u yθx x) ) δ

10 68 Kôzô YABUTA x u y θx x ) α f Liα 4B) c x u yθx x) ) δ C 4B) c x u yθx x) x u y θx x ) α f Liα R x u yθx x ) ) δ α f Liα x u yθx x ) R R 4B) c x x α f Li α x u yθx x) ) δ fx u) f 4B R α ) δ x u yθx x ) ) δ ) δ fx u) f 4B y α y ) δ Cα f Liα y ) fx u) f 4B R Now we ge α d > ) λ R Similaly we ge α d > ) λ α R Ad by chage of vaiable = s ad usig Lemma = ) we have fx u) f 4B d ) λ > > > δ ). R y ) δ ) λ α d α. fx u) f 4B d ) λ fx u) f 4B R ) λ d α. ds ) λs s fu) f 4B u x ) α f E α,. Alogehe, we have I α f Liα α f E α,. v) The case α<miδ, γ, η) ad λ> α. Sice by Mikowski s iequaliy we ge gλ, f 3)x) gλ, f 3)x ) ) ψ x u y) ψ x u y) f 3 y) ) ) λ d R R f Liα, ad sice f 3 y) = fy) f 4B χ 4B) c y x α f Liα, i suffices o show ) J := ψ x u y) ψ x u y) y x α R y 4B) c ) ) λ d f Liα α f E α,.

11 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 69 Fo ad y x > 4, we have x u y y x 3 4 y x 3 3 x x. So, fo we have by he assumio iii) fo ψ ad usig α<η ψ x u y) ψ x u y) y x α y 4B) c y 4B) c x x ) γ y x α ) γ R v α ) η v ) η dv α γ α γ. y x Fo >ad y x > 4 we have x u y y x 3 4 y x > 3 3 x x. So, like as above, we have fo > ψ x u y) ψ x u y) y x α γ α γ. y x >4 Ad fo he iegaio o 4 < y x 4, we have, usig he oey iii ) of ψ ψ x u y) ψ x u y) y x α 4< y x 4 α ψ x u y) ψ x u y) 4< y x 4 R α ψ x u y) ψ x u y) α x x ) γ γ γ α. Thus we have γ α γ γ α γ α γ γ ) ) d J ) λ > ) λ f Liα R γ α γ α γ γ ) ) d ) λ > ) λ f Liα γ d R R ) λ αγ α ) d ) λ α γ α f Liα We have used hee α<γad λ α > i.e. λ> α. γ α γ ) f Liα α f E α,. Lemma 6. Le λ>, < ad <α<mi,δ). The hee exiss C>such ha fo ay ball B = Bx,) ad ay f E α, saisfyig gλ,, f 3)x ) <, i holds gλ,, f 3)x) < fo ay x B ad gλ,, f 3)x) gλ,, f 3)x ) C α f E α, fo ay x B, whee f 3 x) =fx) f 4B )χ 4B) c ad gλ,, f 3)x) := ψ x u y)f 3 y) ) ) λ d. >8 R Poof. By seig v = x u we see gλ,, f 3 )x) = ψ v y)f 3 y) v x >8 R v x ) ) λ dvd.

12 7 Kôzô YABUTA Hece, fo x B we have gλ,, f 3 )x) v x >8 ψ v y)f 3 y) R ψ v y)f 3 y) R v x 9 v x ) ) λ dvd v x ) λ dvd ). We see by Lemma 4 is vaia elaced 8 by 9) ha he secod em i he igh-had side of he above iequaliy is bouded by C α f E α,. Hece, we have gλ,, f 3 )x) α f E α, gλ,, f 3 )x ) ψ v y)f 3 y) v x ) λ v x ) ) λ dvd v x >8 R = C α f E α, gλ,, f 3 )x )I, say. By he mea value heoem we ge I ψ v y)f 3 y) R x x v x θx x ) ) ) λ dvd dθ y x α ) f Li α v x >8 4B) c v y ) δ v x >8 v x θx x ) ) λ dvd ) dθ. We ake b> so ha b <λ. The oig α<δad v y y x x v y x fo y x v x, we have y x 4 y x α v y ) δ 4 y x < v x v y <3 v x y x α v y ) b v x α b v y b C y x v x y x v x y x α v y δ y x δ α ) δ b v x αb C δ v x α δ

13 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 7 Hece oig b <λ ad α<δwe have I v x αb λ b v x λ v x >8 λ b d >8 v x α δ ) v x λ λδ dvd f Liα λ α b λδ d >8 ) λ αδ f Liα λ b λαb λδ λα δ ) f Liα α f E α,. Thus, we have g λ,, f 3)x) g λ,, f 3)x )C α f E α, fo ay x B. Revesig he oles of g λ,, f 3)x ) ad g λ,, f 3)x), we have ad hece we have g λ,, f 3 )x ) g λ,, f 3 )x)c α f E α, fo ay x B, g λ,, f 3 )x) g λ,, f 3 )x ) C α f E α, fo ay x B, Poof of Theoem 3. We follow he idea by Kuz [4]. Le >ad B = Bx,). Se f = f 4B, f =f f 4B )χ 4B ad f 3 =f f 4B )χ 4B) c. The, f = f f f 3 ad gλ f )=. i) The case <α<. By assumio, gλ f)x ) <. So, we have gλ, f)x ) gλ,, f)x ) gλ f)x ) <. Usig Lemma 3 we have gλ, f 3)x )gλ,, f 3)x ) gλ, f)x )gλ,, f)x )gλ, f )x )gλ,, f )x ) <. Hece by Lemmas 4, 5 ad 6 we have fo x B gλf 3 )x) gλ,,f 3 )x)gλ,, f 3 )x)gλ, f 3 )x) 3C α f E α, gλ,, f 3)x )gλ, f 3)x ) <, ad gλ f 3)x) gλ f 3)x ) gλ,, f 3)x) gλ,, f 3)x ) gλ,, f 3)x) gλ,, f 3)x ) gλ, f 3 )x) gλ, f 3 )x ) 4C α f E α,. Usig L -boudedess of gλ we have g λ f ) L f L, ad fom his i follows ha gλ f )x) < fo almos all x B. Thus, we have gλ f)x) g λ f )x)gλ f 3)x) < fo almos all x B. Sice is abiay, we see ha gλ f)x) < fo almos all x R. Le E = {x R ; gλ f)x) < }. We have oly o show ha fo ay ball B = Bx,) wih cee x E, ) gλf)x) gλf)) B dx B α f E α,. B

14 7 Kôzô YABUTA Se f = f f f 3 as above. Noig gλ f ) = gλ, f ) = gλ, f) =, ad usig gλ f ) L f L B α f E α, ad he above iequaliy fo gλ f 3), we have B B gλ f)x) g λ f)) B dx gλ B f)x) g λ f 3)x ) dx B = gλ B f f 3 )x) gλ f 3)x)gλ f 3)x) gλ f 3)x ) dx B gλ B f )x) dx gλ B B f 3)x) gλ f 3)x ) dx B ) f x) dx C α f E α, α f E α,. B 4B ii) The case α. I his case, he oof is simle ha he case i). We have oly o use gλ, ad g λ,, Lemmas 3, 4 ad 5. So, we leave he deailed oof o he eade. This comlees he oof of Theoem Poofs of Theoems 4, 5 ad 6 We oceed as i he oof of Theoem 3. Fo a ball B = Bx,) ad a fucio f we se always f = f 4B, f =fy) f 4B )χ 4B ad f 3 =fy) f 4B )χ 4B) c. Lemma 7. Le Ω L S ), Ωx) dσx) =, S α<, ad ρ = σ iτ σ >,τ R). The, if f E α, ad µ ρ f)x ) < fo some x R, hee exiss C> such ha fo ay ball B = Bx,) µ ρ f )x ) µ ρ f)x ) Ω α f E α,). Poof. By assumio we have Ωy x ) ρ fy) ) d y x y x ρ µ ρ f)x ) <. Hece, fo some we ge Ωy x ) ρ fy) y x y x ρ µρ f)x ). Sice, i he above iegal, he iegaio domai is coaied i y x 4, we see, usig he cacellaio oey of Ω, ha he above iegal is equal o Ωy x ) y x y x ρ fy) f 4B)χ 4B. Hece Ωy x ) y x y x ρ fy) f 4B)χ 4B σ µ ρ f)x ). Thus fo >we have Ωy x ) y x y x ρ f y) Ωy x ) y x y x ρ f y) Ω fy) f 4B < y x <mi,4) y x σ σ µ ρ f)x )C Ω σα f E α,.

15 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 73 Theefoe we have µ ρ f )x )= ρ y x σ µ ρ f)x ) Ω α f E α,) Ωy x ) y x ρ f y) d d σ ) ) µ ρ f)x ) Ω α f E α,). As fo µ ρ S, f ) ad µ,ρ λ, f ) we have Lemma 8. Le Ω L S ), ρ = σ iτ σ >,τ R), max, σ ) <<, ad α<. The, fo ay f Eα,, ay ball B = Bx,) ad ay x R µ ρ S, f )x) = Ωu y)f y) u x ρ y u u y ρ ) d α f E α,. Lemma 9. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>. Suose α ad saisfiy a) max, σ ) << ad α< o b) < ad α<. The, fo ay f E α,, ay ball B = Bx,) ad ay x R ) µ,ρ λ, f )x) = Ωu y)f y) R ρ y u u y ρ ) λ d α u x f E α,. Sice we ca ove Lemmas 8 ad 9 i simila ways, we oly ove Lemma 9. R Poof. i) The case <σ<ad max, σ ) <<. Fis we see easily Ωu y)f y) < y u u y ρ Ω σ fy) f 4B ασ f E α,. y x 4 Hece Ωu y)f y) R ρ < y u u y ρ u x ) ) λ d ασ u x ) ) λ d f E σ α, So, we eed oly o show I := Sice > R σ ρ, we have σ) y u ασ Ωu y)f y) u y ρ σ d σ u x ) ) = σ σ) So, we ake = mi,) ad choose a eal umbe a so ha =, σ) >a> σ). ) f E α, α f E α,. ) ) λ d α f E α,. ) >. σ

16 74 Kôzô YABUTA The, oig < σ) a) <we have by Hölde s iequaliy Ωu y)f y) y u u y ρ ) ) f y) Ω y u u y σ) a) y u u y σ)a σ) a) y u f y) u y σ)a ). Hece by Mikowski s iequaliy ) ad by usig a σ) <we ge ) λ I σ) a) u x ) ) d f y) ) 4B y u u y σ)a σ ) σ) a) σ)a ii) The case σ. I his case we see easily µ,ρ λ, f )x) R R fy) f 4B 4B ) d σ σ) α f E α, σ α f E α,. ) σ σ Ω f y) y u u x u x ) ) λ d ) ) ) λ d fy) f 4B 4B α f E α, α f E α,. iii) The case α =. I his case E α, = BMO < ), ad he oms ae equivale. So, ake = i he above i) ad ii). iv) The case <α<. I his case E α, = Li α < ), ad he oms ae equivale. So, ake = i he above i) ad ii). As fo µ,ρ λ f ), we eed Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>, < ad α<. The, fo ay f Eα,, ay ball B = Bx,) ad ay x B µ,ρ λ,, f )x) = u x >8 ρ y u Ωu y)f y) u y ρ u x ) ) λ d =. Poof. Fo y x 4, y u ad x x, we have u x u y y x x x 6, ad hece he iegaio u-domai of he above iegal is emy. Nex we ivesigae µ ρ f 3 ), µ ρ S f 3) ad µ,ρ λ f 3). Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), < ad α<. The, fo ay f E α,, fo ay ball B = Bx,) ad ay x B µ ρ f 3)x) = Ωx y)f 3 y) ρ x y ρ ) d =, y x

17 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 75 ad µ ρ S, f 3)x) = u x ρ y u Ωu y)f 3 y) u y ρ ) d =. Poof. Fo x x ad x y, we have x y, ad hece he iegaio domai wih esec o y has o iesecio wih he suo of f 3 i he exessio of µ ρ f 3). So, we have µ ρ f 3) = fo x B. Fo x x, u x ad u y, we have x y x x x u u y 3, ad hece he iegaio domai wih esec o y has o iesecio wih he suo of f 3 i he exessio of µ ρ S, f 3). So, we have µ ρ S, f 3) = fo x B. Lemma. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>. Suose α, λ ad saisfiy a) max, σ ) <<, λ>max, ) ad α< o b) <, λ> α ad α<. The, fo ay f Eα,, fo ay ball B = Bx,) ad ay x B ) µ,ρ λ, f 3)x) = Ωu y)f 3 y) R ρ y u u y ρ ) λ d α u x f E α,. Poof. i) The case <σ<ad max, σ ) <<. Take ad a as i he oof of Lemma. The, by Hölde s iequaliy we have Ωu y)f 3 y) y u u y ρ ) ) f 3 y) Ω y u u y σ) a) y u u y σ)a ) σ) a) f 3 y). y u u y σ)a Hece usig Mikowski s iequaliy ) ad he oig u x y x y u x x > 4 y x ) fo u y, y x > 4 ad x x, we have µ,ρ λ, f 3)x) R y u ) f 3 y) u y σ)a u x ) ) λ σ) a) σ d ) χ y u ) 4B R u y σ)a u x ) f3 λ y) ) χ y u f 3 y) 4B R u y σ)a y x ) λ ) fy) f 4B 4B y x ) σ)a λ λ ) λ σ) σ α d λ ) f E α, We have used hee λ >, α< λ ) ad Lemma. ) σ) a) σ d ) ) λ σ) a) σ d σ) a) σ d ) λ ) α λ f E α, α f E α,.

18 76 Kôzô YABUTA ii) The case σ. I his case, we ake = mi,) ad a =. The he easoig i he se i) sill woks. iii) The case α =. I his case E α, = BMO < ), ad he oms ae equivale. So, ake = i he above i) ad ii). iv) The case <α<. I his case E α, = Li α < ), ad he oms ae equivale. So, akig = = i he above i) ad ii) ad oig λ> α imlies α< λ ), we have he desied iequaliy. Lemma 3. Le Ω L S ), ρ = σ iτ σ >,τ R), λ>, < ad <α<. The, fo ay f E α,, fo ay ball B = Bx,) ad ay x B µ,ρ λ,, f 3)x) α f E α,, whee µ,ρ λ,, f 3)x) = u x 8 ad f 3 x) =fx) f 4B )χ 4B) c. ρ y u Ωu y)f 3 y) u y ρ u x ) ) λ d, Poof. I his case E α, = Li α < ), ad he oms ae equivale. So, fo y 4B) c we have f 3 y) = fy) f 4B fy) fx ) fx ) f 4B f Liα y x α α ) f Liα y x α. Fo x x, u y ad u x 8, we have y x y u u x x x, ad fo x x, u y ad x 4B) c we have u x y x u y x x > y x >. Hece we have µ,ρ λ,, f 3)x) Ω < u x 8 < u x 8 σ σ y u 4< y x y u α u y y x α u y σ σ α λ λ d λ λ d ) f Liα ) ) λ d f Liα ) f Liα α λ λ ) f Liα α f E α,. Now we eae hee moe lemmas. Lemma 4. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), <<, ad / α<β. The hee exiss C>such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ ρ f 3 )x ) <, i holds µ ρ f 3 )x) < fo ay x B ad µ ρ f 3 )x) µ ρ f 3 )x ) C α f E α, fo ay x B, whee f 3 x) =fx) f 4B )χ 4B) c. Lemma 5. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), max, σ ) < <, ad / α</ o / α<miβ,σ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ ρ S, f 3)x ) <, i holds µ ρ S, f 3)x) < fo ay x B ad µ ρ S, f 3)x) µ ρ S, f 3)x ) C α f E α, fo ay x B,

19 gλ -FUNCTION AND MARCINKIEWICZ FUNCTIONS 77 whee f 3 x) =fx) f 4B )χ 4B) c. Lemma 6. Le Ω Li β S )<β ), ρ = σ iτ σ >,τ R), max, σ ) < <, ad / α</ o / α<miβ,σ). The hee exiss C > such ha fo ay ball B = Bx,) ad ay f E α, saisfyig µ,ρ λ, f 3)x ) <, i holds µ,ρ λ, f 3)x) < fo ay x B ad µ,ρ λ, f 3)x) µ,ρ λ, f 3)x ) C α f E α, fo ay x B, ovided λ> i he case α<, λ> α i he case α< ad λ>max, ) i he case α<, whee f 3x) =fx) f 4B )χ 4B) c. We ca ove he above hee lemmas modifyig he oofs i he cube seig see, Ha [], Qiu [6], Yabua [4] ad Sakamoo ad Yabua [5]. We give hee a way o use he cube seig diecly i he case of Lemma 6. Le Q be a cube wih cee x ad side legh, Q be he cube wih cee x ad side legh 6. Le B be he ball wih cee x ad adius. Le f 3 x) =fx) f 4B )χ 4B) c ad f 4 x) =fx) f Q )χ Q ) c. The we have Lemma 7. Le Ω L S ) ad Ωx) dσx) =.Leρ = σ iτ σ >,τ R), S <, ad / α<. Le x, B, Q, Q, f 3 ad f 4 be as above. The, hee exiss C> such ha fo ay x B R ρ y u Ωu y) f 3 y) f 4 y) ) u y ρ u x ) ) λ d α f E α,. Poof. Le I be he lef had side of he above iequaliy i he saeme of Lemma 7. The by he assumio S Ωx) dσx) = we see ha I = Ωu y) fy) f Q ) χq χ 4B) c) R ρ y u u y ρ ) λ d u x Ω fy) f Q R σ ) ) λ d y u u y σ u x 4< y x <8 fy) f Q R σ ) ) λ d y u u y σ u x 4< y x <8 C fy) f Q σ ) ) λ d u y σ u x R y u 4< y x <8 =: I I. I α f E α, ca be oved i a way quie simila o he oof of Lemma, ad I α f E α, ca be oved i a way quie simila o he oof of Lemma 9. Usig his lemma, we ca use he coesodig esul o Lemma 6 i he cube seig. We oe hee ha i Sakamoo ad Yabua [7,. 37 4], hey eally oved µ,ρ λ, f 3)x) µ,ρ λ, f 3)x ) C α f E α, i he case α< ad λ> α. Poofs of Theoems 4, 5 ad 6. Usig Lemmas 7 6 ad L boudedess esuls i [7], we ca ove hese heoems i he same way as i he oof of Theoem 3, ad so we leave he deailed oofs o he eade. )

20 78 Kôzô YABUTA Refeeces [] E. B. Fabes, R. L. Johso ad U. Nei, Saces of hamoic fucios eeseable by Poisso iegals of fucios i BMO ad L,λ, Idiaa Uiv. Mah. J., 5 976), [] Ha Yog sheg, O some oeies of s-fucio ad Macikiewicz iegals, Aca Sci. Nau. Uiv. Pekiesis, 5 987), 34. [3] L. Hömade, Taslaio ivaia oeaos, Aca Mah., 4 96), [4] D. S. Kuz, Lilewood-Paley oeaos o BMO, Poc. Ame. Mah. Soc., ), [5] J. Peee, O he heoy of L,λ saces, J. Fuc. Aal., 4 969), [6] Qiu Sigag, Boudedess of Lilewood-Paley oeaos ad Macikiewicz iegal o E α,, J. Mah. Res. Exosiio, 99), 4 5. [7] M. Sakamoo ad K. Yabua, Boudedess of Macikiewicz fucios, Sudia Mah., ), 3 4 [8] E. M. Sei, O he fucios of Lilewood-Paley, Lusi, ad Macikiewicz, Tas. Ame. Mah. Soc., ), [9] E. M. Sei, Sigula iegals ad diffeeiabiliy oeies of fucios, Piceo Uiv. Pess, Piceo, N.J., 97. [] E. M. Sei ad G. Weiss, Iocio o Fouie Aalysis o Euclidea Saces, Piceo Uiv. Pess, Piceo, N.J., 97. [] Su Yogzhog, O he exisece ad boudedess of squae fucio oeaos o Camaao saces, ei. [] A. Tochisky, Real-Vaiable Mehods i Hamoic Aalysis, Academic Pess, Sa Diego, Calif., 986. [3] A. Tochisky ad Shili Wag, A oe o he Macikiewicz iegal, Colloq. Mah., 6/6 99), [4] K. Yabua, Boudedess of Lilewood-Paley oeaos, Mah. Jaoica, ), [5] K. Yabua, Some emaks o Macikiewicz fucios, Kwasei Gakui Uiv. Na. Sci. Rev., 6 ), 9 5. [6] Wag Shili, Boudedess of he Lilewood-Paley g-fucio o Li α R )<α<), Illiois J. Mah., ), [7] Wag Silei, Some oeies of he Lilewood-Paley g-fucio, Coem. Mah., 4 985), 9. [8] Wag Silei ad Che Jiecheg, Some oes o squae fucio oeao, Aals of Mahemaics Chiese), Seies A, 99), School of Sciece ad Techology, Kwasei Gakui Uivesiy Gakue - Sada, Hyogo , JAPAN yabua@kwasei.ac.j

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear Advaces i Pure Mahemaics 8 8 - hp://wwwscirporg/oural/apm ISSN Olie: 6-384 ISSN Pri: 6-368 The Esimaes of he Upper Bouds of Hausdorff Dimesios for he Global Aracor for a Class of Noliear Coupled Kirchhoff-Type

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds Chi. A. Mah. 36B(, 05, 57 66 DOI: 0.007/s40-04-0876- Chiese Aals of Mahemaics, Series B c The Ediorial Office of CAM ad Spriger-Verlag Berli Heidelberg 05 Gradie Esimaes for a Noliear Parabolic Equaio

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

8. The Normalized Least-Squares Estimator with Exponential Forgetting

8. The Normalized Least-Squares Estimator with Exponential Forgetting Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains

Random Attractors for Stochastic Reaction-Diffusion Equations with Distribution Derivatives on Unbounded Domains Alied Maheaics 5 6 79-87 Published Olie Seeber 5 i SciRes h://wwwscirorg/oural/a h://dxdoiorg/436/a5659 Rado Aracors for Sochasic Reacio-Diffusio Equaios wih Disribuio Derivaives o Ubouded Doais Eshag

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

A Note on Saigo s Fractional Integral Inequalities

A Note on Saigo s Fractional Integral Inequalities Turkish Joural of Aalysis ad Number Theory, 214, Vol 2, No 3, 65-69 Available olie a hp://pubssciepubcom/ja/2/3/2 Sciece ad Educaio Publishig DOI:112691/ja-2-3-2 A Noe o Saigo s Fracioal Iegral Iequaliies

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Chapter 15 Identifying Failure & Repair Distributions

Chapter 15 Identifying Failure & Repair Distributions Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα