Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
|
|
- Ἡρώδης Θεοδωρίδης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς
2 Image Filtering ADICV Kostas Marias TEI Crete
3 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα το συγκρίνουμε με το έτοιμο ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ που υπάρχει στη matlab. Τέλος θα συγκρίνουμε τα δυο φίλτρα και θα βρούμε πόσο αποκλίνουν υπολογίζοντας το σφάλμα ανα pixel μεταξύ του δικού μας φλιτρου και της matlab. 3
4 Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης (x,y) f(x,y)=f(2,2)=11 Νέα τιμή g(x,y)=t[f(x,y)] = = 47/9 =
5 Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης Νέα τιμή = = 47/9 =
6 Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης Νέα τιμή = = 60/9 =
7 Παράδειγμα Επεξεργασίας Εικόνας με χωρικά φίλτρα Αρχική εικόνα: Εικόνα φιλτραρισμένη με 3x3 φίλτρο ομαλοποίησης Στην επόμενη διαφάνεια θα δούμε την επίδραση (ομαλοποίηση) του 3x3 φίλτρου αυτού σε μια εικόνα. 7
8 ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) Η λειτουργία του φίλτρου μέσης τιμής συνίσταται με την αντικατάσταση της φωτεινότητας σε κάθε εικονοστοιχείο με τη μέση φωτεινότητα σε μια γειτονιά του. Είναι Χαμηλοπερατά (lowpass) φίλτρα μιας και αντικαθιστούμε τη τιμή του pixel με τη μέση τιμή της γειτονιάς του οπότε και μειώνουμε βαθμιαία απότομες αλλαγές στην ένταση των pixels. Ενώ μειώνουμε των τυχαίο θόρυβο όμως χάνουμε συνήθως ευκρίνεια στις ακμές τις εικόνας (edge blurring θόλωμα ακμών). 8
9 ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) Η γειτονιά Ν είναι συνήθως καθορισμένη για κάθε επεξεργασία και συνήθως αντιστοιχεί σε τετράγωνες μάσκες. Έτσι για ακτίνα ίση με ένα έχουμε ουσιαστικά μια γειτονιά διαστάσεων 3 3. Ένα 3 3 φίλτρο μέσης τιμής μπορεί πρακτικά να υλοποιηθεί με μια μάσκα της μορφής: ή
10 Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο παρουσιάζεται στο σχήμα: y Εικόνα f w(- 1, - 1) w(- 1, 0) w(- 1, 1) x w(0, - 1) w(0,0) w(0, 1) w( 1, - 1) w(1, 0) w( 1, 1) (x - 1, y - 1) (x - 1, y) (x - 1, y + 1) (x, y - 1) (x,y) (x, y + 1) Συντελεστές του φίλτρου (x + 1, y - 1) (x + 1, y) (x + 1, y + 1) Pixels εικόνας f που θα φιλτραριστούν 10
11 Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο δίνεται από τη σχέση: f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1) w(- 1, - 1) w(- 1, 0) w(- 1, 1) f(x, y - 1) f(x,y) f(x, y + 1) w(0, - 1) w(0,0) w(0, 1) f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1) w( 1, - 1) w(1, 0) w( 1, 1) 11
12 Φιλτράρισμα στο Χωρικό πεδίο Η αρχή γραμμικού φιλτραρίσματος στο χώρο δίνεται από τη σχέση συσχέτισης: f(x - 1, y - 1) f(x - 1, y) f(x - 1, y + 1) w(- 1, - 1) w(- 1, 0) w(- 1, 1) f(x, y - 1) f(x,y) f(x, y + 1) w(0, - 1) w(0,0) w(0, 1) f(x + 1, y - 1) f(x + 1, y) f(x + 1, y + 1) w( 1, - 1) w(1, 0) w( 1, 1) g(x, y) = w(-1, -1) f(x - 1, y - 1)+ w(-1, 0) f(x - 1, y) + w(-1, 1)f(x - 1, y+1) + w(0, -1) f(x, y - 1) + w(0, 0) f(x, y) + w(0, 1) f(x, y+1) + w(1,-1) f(x+1, y - 1) + w(1, 0) f(x+1, y) + w(1, 1) f(x +1, y+1) 12
13 Matlab ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ παράδειγμα με Matlab Εφαρμογή φίλτρου mean 3x3 αφού η αρχική εικόνα επιμολυνθεί θόρυβο Gauss. Χρησιμοποιούμε στη Matlab τη συνάρτηση imfilter(i,h) όπου I και h είναι πολυδιάστατοι πίνακες της εικόνας εισόδου και του φίλτρου. Το 3X3 φίλτρο μέσης τιμής δεν ανταποκρίνεται όσο καλά όσο το 5x5 το οποίο απομακρύνει καλύτερα τον θόρυβο με κόστος όμως το περαιτέρω θόλωμα της εικόνας. E. Jebamalar Leavline, D. Asir Antony Gnana Singh, On Teaching Digital Image Processing with MATLAB, American Journal of Signal Processing, Vol. 4 No. 1, 2014, pp doi: /j.ajsp % Teaching gaussian noise removal using a simple 3X3 %average filter clc;clear all; close all; Im = imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = ones(3,3) / 9;h2 = ones(5,5) / 25; I1 = imfilter(i,h1);i2 = imfilter(i,h2); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 average filter'); subplot(2,2,4);imshow(i2,[ ]); title('filtered Image with 5X5 average filter'); 13
14 Matlab ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ παράδειγμα με Matlab % Teaching gaussian noise removal using a simple 3X3 %average filter clc;clear all; close all; Im = imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = ones(3,3) / 9; I1 = imfilter(i,h1); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 average filter'); subplot(2,2,4);imshow(im-i1,[ ]); title( Diafora anamesa se arxikh kai filtrarismenh'); 14
15 Matlab Φιλτράρισμα στο Χωρικό πεδίο Matlab Θα φτιάξουμε κώδικα matlab για να φίλτρο μέσης τιμής 3x3 : w=zeros(3,3); w(-1, -1) =; w(-1, 0)=; w(-1, 1)=; w(0, -1) =; w(0, 0)=; w(0, 1) =; w(1,-1)=; w(1, 0)=; w(1, 1) =; f = imread('cameraman.tif'); [m,n]=size(f); g=zeros(m,n); for x=1:m for y=1:n end End g(x, y) = w(-1, -1) f(x - 1, y - 1)+ w(-1, 0) f(x - 1, y) + w(-1, 1)f(x - 1, y+1) + w(0, -1) f(x, y - 1) + w(0, 0) f(x, y) + w(0, 1) f(x, y+1) + w(1,-1) f(x+1, y - 1) + w(1, 0) f(x+1, y) + w(1, 1) f(x +1, y+1) Ο ΚΩΔΙΚΑΣ ΑΥΤΟΣ ΕΊΝΑΙ ΛΑΘΟΣ!!!!!!!!!!!!!!!!!! Γιατι όμως???? 15
16 Matlab Φιλτράρισμα στο Χωρικό πεδίο Matlab Για να φτιάξουμε ένα πρόγραμμα Matlab πρέπει να μεταφέρουμε τις θεωρητικές συντεταγμένες της μάσκας 3x3 σε indexing ου είναι αποδεκτό από τη matlab (δηλ. από (1,1) έως (3,3)): w(- 1, - 1) w(- 1, 0) w(- 1, 1) w(1,1) w(1,2) w(1,3) w(0, - 1) w(0,0) w(0, 1) w(2,1) w(2,2) w(2,3) w( 1, - 1) w(1, 0) w( 1, 1) w( 3, 1) w(3,2) w( 3,3) 16
17 Matlab Φιλτράρισμα στο Χωρικό πεδίο κώδικα matlab για να φίλτρο μέσης τιμής 3x3 : w=zeros(3,3); w(:,:)=; f = imread('cameraman.tif'); [m,n]=size(f); g=uint8(zeros(m,n)); for x=2:m-1 for y=2:n-1 g(x,y)=w(1,1) *f(x-1, y-1)+ w(1,2)* f(x-1, y)+w(1,3)*f(x-1,y+1)+w(2,1)*f(x, y-1) + w(2,2)*f(x, y) + w(2,3)*f(x, y+1)+w(3,1)*f(x+1, y-1) + w(3,2)*f(x+1, y) + w(3,3)*f(x+1, y+1); end end % Η εικόνα g είναι τώρα η φιλτραρισμένη εικόνα f με φίλτρο 3x3 μέσης τιμής figure, imshow(g,[]) 17
18 Matlab Building a basic filtering code f = imread('cameraman.tif'); w=()*ones(3,3); g=zeros(size(f)); for x=2:size(f,1)-1 for y=2:size(f,2)-1 g(x,y)=w(1,1) *f(x-1, y-1)+ w(1,2)* f(x-1, y)+w(1,3)*f(x-1,y+1)+w(2,1)*f(x, y-1) + w(2,2)*f(x, y) + w(2,3)*f(x, y+1)+w(3,1)*f(x+1, y-1) + w(3,2)*f(x+1, y) + w(3,3)*f(x+1, y+1); end end subplot(1,2,1), imshow(f), title('original image') subplot(1,2,2), imshow(uint8(g)), title('filtered image') 18
19 19
20 Matlab Σύγκριση των 2 φίλτρων subplot(2,2,1);imshow(f,[]), title('original Image'); subplot(2,2,2);imshow(i,[]), title('image with Gaussian noise '); subplot(2,2,3);imshow(i1,[]), title('image filtered with Matlab s mean filter '); subplot(2,2,4);imshow(g,[]), title('filtered Image with our method'); figure, imshow(i1-g,[]), title('difference Image between the two methods'); sum(sum(i1-g))/(m*n) 20
21 ΦΙΛΤΡΑ GAUSS (Θόλωση Gauss) Είναι φίλτρα θόλωσης εικόνας που χρησιμοποιούν τη συνάρτηση Gauss (η οποία εκφράζει την κανονική κατανομή στη στατιστική)για να υπολογίσει τους συντελεστές του φίλτρου για τον μετασχηματισμό κάθε pixel: G x, y = 1 x 2 +y 2 2πσ 2 e 2σ 2 Όπου x,y είναι οι αποστάσεις από την αρχή των αξόνων και σ είναι η τυπική απόκλιση (standard deviation) της κατανομής Gauss. Στις 2 διαστάσεις η εξίσωση αυτή δίνε μια επιφάνεια της οποία τα περιγράμματα είναι ομόκεντροι κύκλοι με Γκαουσιανη κατανομή από το κεντρικό σημείο. 21
22 ΦΙΛΤΡΑ GAUSS (Θόλωση Gauss) Μια προσέγγιση στο σχεδιασμό φίλτρων Gauss είναι να υπολογίσουμε τα βάρη της μάσκας απευθείας από την ασυνεχή κατανομή Gauss: G i, j = 1 2πσ 2 e i 2 +j 2 2σ 2 Προαιρετικά μπορούμε να χρησιμοποιήσουμε μια είναι σταθερά κανονικοποίησης c: G(i, j) c G i, j = 1 i 2 +j 2 2πσ 2 e 2σ 2 22
23 Matlab ΦΙΛΤΡΑ GAUSS στη Matlab Η εντολή h = fspecial('gaussian', hsize, sigma) Δίνει ένα περιφερειακά συμμετρικό φίλτρο Gauss (lowpass filter) μεγέθους hsize και τυπικής απόκλισης sigma (θετικός). Το hsize μπορεί να έιναι ένα διάνυσμα που να καθορίζει τον αριθμό γραμμών/στηλών στο h, η μπορεί να είναι βαθμωτη τιμή οπότε το h θα είναι τετράγωνος πίνακας. Η προεπιλεγμένη τιμή για το hsize είναι [3 3]και για το sigma
24 Matlab ΦΙΛΤΡΑ GAUSS στη Matlab h=fspecial('gaussian', [ ],2); figure, imshow(h,[]) figure, imagesc(h,[]) h=fspecial('gaussian', [ ],7); figure, imagesc(h), colormap jet figure, surf(h), shading interp, colormap jet 24
25 Build 2 Gaussian masks a)5x5και σ=1.5, b)μια7x7και σ=1.5 and filter Image I. What happens? % Teaching gaussiannoise removal using a simple 3X3 Gaussian filter clc;clearall; close all; Im= imread('cameraman.tif');i = imnoise(im,'gaussian'); h1 = fspecial('gaussian'); h2 = fspecial('gaussian', [3 3],1.5); I1 = imfilter(i,h1); I2 = imfilter(i,h2); subplot(2,2,1);imshow(im,[ ]);title('original Image'); subplot(2,2,2);imshow(i,[ ]);title('image with Gaussian noise'); subplot(2,2,3);imshow(i1,[ ]); title('filtered Image with 3X3 Gaussian filter σ=0.5'); subplot(2,2,4);imshow(i2,[ ]); title('filtered Image with 3X3 Gaussian filter σ=1.5'); 25
26 Matlab ΦΙΛΤΡΑ GAUSS στη Matlab 26
27 Matlab ΦΙΛΤΡΑ GAUSS στη Matlab 27
Εργαστήριο ADICV2 Labs 2-6
Εργαστήριο ADICV2 Labs 2-6 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab
Διαβάστε περισσότεραΕργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017
Εργαστήριο ADICV3 Image filtering, Point Processing and Histogram Equalisation Κώστας Μαριάς 20/3/2017 Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε
Διαβάστε περισσότεραΕργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017
Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Διαβάστε περισσότεραΕργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017
Εργαστήριο ADICV Fourier transform, frequency domain filtering and image restoration Κώστας Μαριάς 3/4/2017 Fourier Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΩΝ ΔΙΑΚΡΙΤΟΣ
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 6 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραΜάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4b 24/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εφαρμογές 2 Περιοδικός Θόρυβος
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5-6 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας Point processing All/Erasmus students:
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 7 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Advanced filtering for image restoration using Fourier Transform
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 2η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής
ΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ ΕΡΓΑΣΙΑ 1 ΣΠΟΥΔΑΣΤΕΣ: ΥΠΕΥΘΗΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΒΛΑΧΑΚΗΣ ΜΙΧΑΛΗΣ(Α.Μ:ΜΗ81) ΓΛΑΜΠΕΔΑΚΗΣ
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 3 27/3/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας (point processing), μετασχηματισμοί
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Διάλεξη 5 Κώστας Μαριάς kmarias@staff.teicrete.gr 24/4/2017 1 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew N. Papamarkos,
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διαβάστε περισσότεραΕνότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται
Διαβάστε περισσότεραΕργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη
Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραΚεφάλαιο 8 Φίλτρα. 8.1 Γενικά. Κωνσταντίνος Γ. Περάκης
Κεφάλαιο 8 Φίλτρα Κωνσταντίνος Γ. Περάκης Σύνοψη Στην αρχή του κεφαλαίου εκτίθενται αναλυτικά η δομή των φίλτρων, ο τρόπος προσπέλασης της ψηφιακής εικόνας από τα φίλτρα, και η μαθηματική πράξη της συνέλιξης
Διαβάστε περισσότεραΠαρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Διαβάστε περισσότεραReferences. Chapter 10 The Hough and Distance Transforms
References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision. Image Registration and Transformation
Advances in Digital Imaging and Computer Vision Image Registration and Transformation Γεωμετρικοί Μετασχηματισμοί Εικόνας και Ευθυγράμμιση Image Transformation and Registration Κώστας Μαριάς Αναπληρωτής
Διαβάστε περισσότεραΔιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής» ΜΑΘΗΜΑ Μηχανική Όραση ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Assignment 2 ΣΠΟΥΔΑΣΤΕΣ Λεμωνιά Κατερίνα Πορφυράκης Μανώλης
Διαβάστε περισσότεραDIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση
Διαβάστε περισσότεραΜη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50
Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος
Διαβάστε περισσότεραΠρογραμματισμός Υπολογιστών με C++
Προγραμματισμός Υπολογιστών με C++ 3 η Εργασία Ακαδημαϊκό Έτος 206-7 Ημερομηνία Παράδοσης Εργασίας: 5 Ιανουαρίου 207. Εκφώνηση Να χρησιμοποιηθεί ο κώδικας που αναπτύξατε στις 2 προηγούμενες εργασίες για
Διαβάστε περισσότεραΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ
Ψηφιακή Επεξεργασία Εικόνας-ΚΕΦ. -- ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΤΑΣΕΩΣ Η επεξεργασία εικόνας µέσω του ιστογράµµατος ουσιαστικά αποτελεί µία βασική επεξεργασία εικόνας που ανήκει
Διαβάστε περισσότερα7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή
7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας
Διαβάστε περισσότεραΚεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73
Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Σχήμα 6.61 Μορφή της συνάρτησης για διάφορες τιμές του a. (α) (β) Σήμα 6.6 Παράδειγμα εφαρμογής: (α) Αρχική εικόνα. (β) Τελική εικόνα για a 0.0. 6.74 N. ΠΑΠΑΜΑΡΚΟΣ:
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 3/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εικόνας 2 Περιεχόμενα Διάλεξης Μετασχηματισμός
Διαβάστε περισσότερα6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Διαβάστε περισσότεραΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ
ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Διαβάστε περισσότεραΚατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότεραΝοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53
Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Διαβάστε περισσότεραΕνότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Διαβάστε περισσότεραΒελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας
ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται
Διαβάστε περισσότεραf x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 3: Αποκατάσταση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Διαβάστε περισσότεραΕ Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η
Ε Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η Επεξεργασία Σήματος VIDEO σε Πραγματικό Χρόνο 1. Εισαγωγή Σκοπός της άσκησης αυτής είναι η υλοποίηση-επίδειξη αλγορίθμων επεξεργασίας σημάτων video σε πραγματικό χρόνο
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Διαβάστε περισσότεραΝοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57
Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)
-- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION) 4. Εισαγωγικά Ακµή ή περίγραµµα (edge) σε µια εικόνα Χ ij ορίζεται ως το σύνολο των σηµείων στη θέση i,j της εικόνας, όπου παρατηρείται µία σηµαντική αλλαγή της έντασης
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46
Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού
Διαβάστε περισσότεραΚεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)
-- ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) 3. Εισαγωγή Η βελτίωση εικόνας είναι συνήθως διαδικασία φιλτραρίσµατος δηλ. συνέλιξης µε συγκεκριµµένη διδιάσταση µάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση
Διαβάστε περισσότερα27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
Διαβάστε περισσότεραΜια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )
Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==
Διαβάστε περισσότεραΜια εισαγωγή στο φίλτρο Kalman
1 Μια εισαγωγή στο φίλτρο Kalman Το 1960, R.E. Kalman δημόσιευσε το διάσημο έγγραφό του περιγράφοντας μια επαναλαμβανόμενη λύση στο γραμμικό πρόβλημα φιλτραρίσματος διακριτών δεδομένων. Από εκείνη τη στιγμή,
Διαβάστε περισσότεραΠ Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σήματος
Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Διαβάστε περισσότεραΜέθοδοι Αναπαράστασης Περιγραµµάτων
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιγραµµάτων Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότεραΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ
ΑΣΚΗΣΗ 2 ΒΑΣΙΚΑ ΚΑΙ ΣΥΝΘΕΤΑ ΣΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ - ΕΙΚΟΝΑΣ Αντικείμενο: Κατανόηση και αναπαράσταση των βασικών σημάτων δύο διαστάσεων και απεικόνισης αυτών σε εικόνα. Δημιουργία και επεξεργασία των διαφόρων
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης
Διαβάστε περισσότεραΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΑπειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη
Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x
Διαβάστε περισσότεραADVANCES IN DIGITAL AND COMPUTER VISION
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΙΑ 2 ADVANCES IN DIGITAL AND COMPUTER VISION ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ (Α.Μ.: ΜΗ77) ΠΑΠΑΔΟΠΟΥΛΟΣ
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση
Διαβάστε περισσότεραΑσκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Διαβάστε περισσότεραΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού
Διαβάστε περισσότεραΗ μέθοδος PCA -Ανάλυση Κύριων Συνιστωσών
Η μέθοδος PCA -Ανάλυση Κύριων Συνιστωσών Γιώργος Παπαδουράκης Κώστας Μαριάς Technological Educational Institute Of Crete Department Of Applied Informatics and Multimedia Intelligent Systems Laboratory
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Διαβάστε περισσότεραΜέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων
Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος
Διαβάστε περισσότεραΕπεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08
Επεξεργασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #08 1 Επεξεργασία εικόνας Βασικό ανάγνωσµα: Η ενότητα 12.4 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία εικόνας Μ. ρακόπουλος
Διαβάστε περισσότεραKalman Filter Γιατί ο όρος φίλτρο;
Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:
Διαβάστε περισσότεραΑνακατασκευή εικόνας από προβολές
Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους
Διαβάστε περισσότερα1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
Διαβάστε περισσότεραΑποκατάσταση Εικόνας
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Αποκατάσταση Εικόνας Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Ορισµός & Παραδείγµατα
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
Διαβάστε περισσότερα1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.
Διαβάστε περισσότεραΕισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011
Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Διαβάστε περισσότεραΡαδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Διαβάστε περισσότεραΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ (ΓΙΑ ΤΗΝ ΑΝΑ ΕΙΞΗ ΟΥΣΙΩ ΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΙΚΟΝΑΣ) ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ
ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΕΙΚΟΝΑΣ (ΓΙΑ ΤΗΝ ΑΝΑ ΕΙΞΗ ΟΥΣΙΩ ΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΕΙΚΟΝΑΣ) Τµήµα από το µάθηµα ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΒΙΒΛΙΟΓΡΑΦΙΑ Η καλύτερη προσέγγιση της ύλης του µαθήµατος 1.R.C.
Διαβάστε περισσότεραΠοιότητα Ακτινοδιαγνωστικής Εικόνας
Ποιότητα Ακτινοδιαγνωστικής Εικόνας Γ. Παναγιωτάκης Ε. Κωσταρίδου Εργαστήριο Ιατρικής Φυσικής Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό υπόβαθρο της ιατρικής απεικόνισης µε ακτίνες
Διαβάστε περισσότεραΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό
Διαβάστε περισσότεραΗ ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21
ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις
Διαβάστε περισσότερα(f(x)+g(x)) =f (x)+g (x), x R
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.
Διαβάστε περισσότερα