ΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής
|
|
- Χαρικλώ Βασιλικός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΖΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ ΕΡΓΑΣΙΑ 1 ΣΠΟΥΔΑΣΤΕΣ: ΥΠΕΥΘΗΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΒΛΑΧΑΚΗΣ ΜΙΧΑΛΗΣ(Α.Μ:ΜΗ81) ΓΛΑΜΠΕΔΑΚΗΣ ΑΛΕΞΑΝΔΡΟΣ(Α.Μ:MH82) ΜΑΚΡΗΣ ΑΛΕΞΑΝΔΡΟΣ 21
2 EXERCISE 1 Ζητούμενο της άσκησης είναι να χρησιμοποιηθεί την συνάρτηση της imfilter της Matlb και να παρουσιαστούν κάποια παραδείγματα φιλτραρίσματος για 3-4 εικόνες.για κάθε παράδειγμα να γίνει αναφορά του φίλτρου που χρησιμοποιήθηκε,και να εξηγηθεί ο σκοπός του. Για κάθε τύπο φίλτρου να χρήσιμο-ποιηθούν διαφορετικές παράμετροι και να σχολιαστεί ο τρόπος με τον οποίο επηρεάζουν αυτές οι παράμετροι το αποτέλεσμα. Για την δημιουργία πυρήνα φίλτρου να χρησιμοποιηθούν η fspecial η να δημιουργηθεί η κατάλληλη μήτρα. Στο παρακάτω παράδειγμα δημιουργώ ένα φίλτρο κερνελ.στη συνέχεια με την συνάρτηση imfilter φιλτράρω την εικόνα με τον κερνελ.h εικόνα που θα πάρω θα έχει τονισμένες τις λεπτομέρειες(sharpening filter). a=imread('woman.tif'); %%sharpening filter imshow(a);title('original image'); kernel=zeros(9); kernel(5,5)=10; kernel1=1/9*ones(9); kernel=kernel-kernel1; A=imfilter(a,kernel); figure(); imshow (A);title('Sharpening filter'); 22
3 Στο επόμενο παράδειγμα θα χρησημοποιηθεί το φίλτρο blurred..καταρχας θα χρησημοποιήσω ετοιμο κερνελ με την βοήθεια της fspecial( disk, 10).Έπειτα θα χρησημοποιηθεί η συνάρτηση imfilter με την επιλογη replicate. I = imread('woman.tif'); imshow(i); title('original Image'); H = fspecial('disk',10); blurred = imfilter(i,h,'replicate'); figure(); imshow(blurred); title('blurred Image'); 23
4 Εάν τωρα αλλάξουμε τον kernel και αντί για disk χρησημοποιήσουμε τον fspecial( motion,20,45) η εικονα που θα μας επιστρέψει η συνάρτηση imfilter(i,h, replicate ) θα είναι θολή και κουνημένη. I = imread('woman.tif'); imshow(i); H = fspecial('motion',20,45); MotionBlur = imfilter(i,h,'replicate'); figure(); imshow(motionblur); title('motion Blurred Image'); 24
5 Στην παρακατω επεξεργασία θα τοποθετησουμε salt and pepper θορυβο στην εικονα. Im = imread('woman.tif'); imshow(im); figure(); imsp=imnoise(i,'salt & pepper',0.02); imshow(imsp); title('salt & pepper Image'); 25
6 Στην εικόνα που ακολουθεί θα δημιουργησουμε ένα gaussian kernell για να καθαρησουμε την εικονα από τον θορυβο salt & pepper. h=fspecial('gaussian',[18 18],2.5); Imgaus=imfilter(imsp,h); figure;imshow(imgaus); title('clean salt&pepper noise with Gaussian'); Παρατηρουμε ότι εξαφανιζεται ο θορυβος από την εικονα μας αλλα χανουμε και αρκετες πληροφοριες.,γιαυτο τον λιγο θα προσπαθησουμε να χρησημοποιήσουμε το median filter. 26
7 Tο median filter εάν εντοπισει στο κεντρο του κερνελ τιμη πολύ διαφορετικη από τις γειτονικες, την αντικαταστει με μια μεση γειτονικη τιμη.γιαυτο τον λογο είναι ιδανικο για salt and pepper noise. imsp= rgb2gray(imsp); imedian = medfilt2(imsp); figure; imshow(imedian); title('clean salt&pepper noise with median filter '); Αντίθετα από το gausian filter βλέπουμε ότι το medin filter αφαιρεί τον salt and pepper θορυβο και κραταει ολες τις πληροφορίες τις εικόνας με αποτέλεσμα να παιρνουμε πολύ καλή ποιότητα εικόνας. 27
8 Εντοπισμός ακμών με την χρήση του φιλτρου sobel για τον άξονα Υ και για τον αξονα Χ. Im = imread('woman.tif'); h=fspecial('sobel'); Imsobx=imfilter(Im,h); Imsoby=imfilter(Im,h'); figure; imshow(imsobx); title('sobel X'); figure(); imshow(imsoby); title('sobel Y'); 28
9 EXERCISE 2 Ο σκοπός αυτής της άσκησης είναι να ανιχνεύσει ακμές με δεδομένο προσανατολισμό.για το σκοπό αυτό θα δημιουργηθεί μια συνάρτηση [ E ] = oriented_edges( I, thr, a, da ) που θα λαμβάνει σαν είσοδο μια double εικόνα (I),μια οριακή τιμή (thr),μια κατεύθυνση (a),μια μια γωνία (da).η έξοδος της function πρέπει να είναι δυαδική εικόνα(binary image) (E) όπου τα εικονοστοιχεία που πληρούν τις ακόλουθες απαιτήσεις πρέπει να έχουν την τιμή 1: Η βαθμίδα ;έντασης των εικονοστοιχείων να είναι μεγαλύτερη από thr Η κατεύθυνση κλίσης (σε rad) να βρίσκεται μέσα στο διάστημα (a-da,a+da) Για τον υπολογισμό κλίσης χρησιμοποιήστε το imfilter με κατάλληλο φίλτρο (π.χ. Sobel). Εφαρμόστε τη λειτουργία χρησιμοποιώντας διαφορετικές τιμές για τις παραμέτρους (thr,a, da) στις εικόνες της επιλογής σας (π.χ. <shapes.tiff>). Kαι παρουσιάστε τα αποτελέσματα μαζί με σχόλια για τον τρόπο με τον οποίο οι παράμετροι επηρεάζουν την έξοδο. Στην συνάρτηση δημιουργήθηκε το φίλτρο sobel με το οποίο υπολογίσαμε την μερική παράγωγο ως προς την χ διεύθυνση και την μερική παράγωγο ως προς την Y διεύθηνση, το μετρο του Gradient και την διεύθυνση (a=γωνία της ακμής),και ένα διάστημα da.η συνάρτηση ελέγχει την εικόνα για πιθανών ακμές με διεύθυνση ιση με (a-da,a+da).και επιστρέφει μια εικόνα στην οποία περιεχονται οι εντοπισμένες ακμές. 29
10 function [ E ] = oriented_edges( I, thr, a, da ) sobelx=[1 2 1;0 0 0; ]; sobely=sobelx'; I_edgex=imfilter(I,sobelx); I_edgey=imfilter(I,sobely); metro=sqrt((i_edgex.^2)+(i_edgey.^2)); gwnia=atan(i_edgey./i_edgex); a=deg2rad(a); da=deg2rad(da); [x y]=size(i); E=zeros(x,y); for i=1:x for j=1:y if metro(i,j)>thr &gwnia(i,j)>(a-da)& gwnia(i,j)<(a+da) E(i,j)=1; end end end end 210
11 211
12 EXERCISE 3 Ο σκοπός αυτής της άσκησης είναι να ανιχνεύσει ζάρια με ένα γνωστό μέγεθος και προσανατολισμό σε μια εικόνα. Η μέθοδος θα πρέπει επίσης να είναι σε θέση να αναγνωρίσει τον αριθμό σε κάθε ζάρι που ανιχνεύθηκε. Η υπόθεση είναι ότι τα ζάρια στην εικόνα είναι σχεδόν παράλληλα με τους άξονες εικόνας (π.χ. <dice_01.tiff>. Για την αναγνώριση είστε ελεύθεροι για να χρησιμοποιήσετε τεχνικές ανίχνευσης γωνιών και άκρων, για παράδειγμα μπορείτε να χρησιμοποιήσετε ενσωματωμένες συναρτήσεις της Matlab. Η Edge detection θα είναι χρήσιμη για την εύρεση του περιγράμματος κάθε ζαριού, ενώ ανίχνευση γωνίας στην κατάλληλη κλίμακα θα παράσχει τον αριθμό του. Οπτικοποιήστε τα αποτελέσματα προσθέτοντας στην αρχική εικόνα τα κέντρα των ζαριών που ανιχνεύθηκαν και ο αριθμός τους. Για τις αρχικές δοκιμές του συστήματος χρησιμοποιήστε την απλούστερη εικόνα που παρέχεται: <dice_01.tiff>. Μόλις επαληθευτεί η απόδοση του συστήματος με αυτήν την εικόνα, συνεχίστε τις δοκιμές σας με το το υπόλοιπο των παρεχόμενων εικόνων ή άλλων εικόνων της επιλογής σας που περιέχουν ζάρια και σχολιάστε τα αποτελέσματα. Για κάθε πείραμα παρέχετε και σχολιάζετε τις τιμές παραμέτρων που χρησιμοποιήσατε για την ανίχνευση των ζαριών. Αυτό σύστημά σας αποτύχει να προσπαθήσει να εξηγήσει γιατί. Το πρόγραμμα πρέπει να είναι σωστά δομημένο χρησιμοποιώντας λειτουργίες για κάθε υποπρόβλημα. close; clc; Im=imread('dice_01.tiff'); Im=Im(:,:,1); %dimiourgia filtrou gia tin euresi pithanwn kentrwn twn zariwn s=56; w=2; %metatropi apo rgb se grayscale E=edge(Im); E=double(E); %dimiourgia filtrou gia tin euresi pithanwn kentrwn twn zariwn H=zeros(s); H(1:w,:)=1;H(:,1:w)=1; H(s-w+1:s,:)=1;H(:,s-w+1:s)=1; figure; imshow(im); C=imfilter(E,H); C=C>160; %entopismos kentrwn twn zariwn figure;imshow(c); 212
13 r=regionprops(c); centroids=cat(1,r.centroid); plot(centroids(:,1),centroids(:,2),'g*'); %%dimiourgia filtrou gaussian G=fspecial('gaussian',[9 1],2.5); %%entopismws gwniwn me tin synartisi corner c=corner(im,'harris','filtercoefficients',g); figure;imshow(im); plithos_zariwn=size(centroids,1); plithos_corners=size(c,1); k=zeros(plithos_zariwn,2); for i =1:plithos_zariwn for j=1:plithos_corners if abs(c(j,1)-centroids(i,1)<25)&& abs(c(j,2)-centroids(i,2)<23) k(i)=k(i)+1; co(i,1)= end end k 213
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών. «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και. Ρομποτικής» Assignment 2
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Παραγωγής, Αυτοματισμού και Ρομποτικής» ΜΑΘΗΜΑ Μηχανική Όραση ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Assignment 2 ΣΠΟΥΔΑΣΤΕΣ Λεμωνιά Κατερίνα Πορφυράκης Μανώλης
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 2η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 2η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραADVANCES IN DIGITAL AND COMPUTER VISION
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΙΑ 2 ADVANCES IN DIGITAL AND COMPUTER VISION ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ (Α.Μ.: ΜΗ77) ΠΑΠΑΔΟΠΟΥΛΟΣ
Διαβάστε περισσότεραΜάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 3η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ 01 ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 3η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραΕργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017
Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε
Διαβάστε περισσότεραΕργαστήριο ADICV2. Image filtering. Κώστας Μαριάς
Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ Assignment 2 ΟΜΑΔΑ 2 Δημήτρης Βοσκάκης (mth76@edu.teicrete.gr) Νικόλαος Βαρδάκης (mth75@edu.teicrete.gr) ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ Κ.Αλέξανδρος Μακρής Page1 Contents Exercise 1... 3 Θεωρητική
Διαβάστε περισσότεραΕργαστήριο ADICV2 Labs 2-6
Εργαστήριο ADICV2 Labs 2-6 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 3: Αποκατάσταση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕργαστήριο ADICV3. Image filtering, Point Processing and Histogram Equalisation. Κώστας Μαριάς 20/3/2017
Εργαστήριο ADICV3 Image filtering, Point Processing and Histogram Equalisation Κώστας Μαριάς 20/3/2017 Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab Σκοπός εργαστηρίου Θα φτιάξουμε
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 2: Βελτιστοποίηση Εικόνας.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 2: Βελτιστοποίηση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότερα6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*
Διαβάστε περισσότεραReferences. Chapter 10 The Hough and Distance Transforms
References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Διαβάστε περισσότεραΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΕργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη
Επεξεργασία Εικόνας Εργασία επεξεργασίας εικόνων, που αναπαριστούν τομή εγκεφάλου και τομή αδένα προστάτη Μπαρμπούτης Παναγιώτης Α) ΦΙΛΤΡΑ ΟΞΥΝΣΗΣ Αρχικά θα μελετήσουμε την εικόνα από το MRI αρχείο της
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4b 24/4/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Μετασχηματισμός Fourier Εφαρμογές 2 Περιοδικός Θόρυβος
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΟΡΑΣΗ. 1η ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΜΗΧΑΝΙΚΗ ΟΡΑΣΗ 1η ΕΡΓΑΣΙΑ ΣΠΟΥΔΑΣΤΕΣ:
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Διαβάστε περισσότεραΝοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53
Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή
Διαβάστε περισσότεραΕργαστήριο ADICV. Fourier transform, frequency domain filtering and image restoration. Κώστας Μαριάς 3/4/2017
Εργαστήριο ADICV Fourier transform, frequency domain filtering and image restoration Κώστας Μαριάς 3/4/2017 Fourier Filtering ADICV Kostas Marias TEI Crete 2017 2 Basic Matlab ΠΑΡΑΔΕΙΓΜΑΤΑ ΦΙΛΤΡΩΝ ΔΙΑΚΡΙΤΟΣ
Διαβάστε περισσότεραΕ Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η
Ε Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η Επεξεργασία Σήματος VIDEO σε Πραγματικό Χρόνο 1. Εισαγωγή Σκοπός της άσκησης αυτής είναι η υλοποίηση-επίδειξη αλγορίθμων επεξεργασίας σημάτων video σε πραγματικό χρόνο
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Διάλεξη 5 Κώστας Μαριάς kmarias@staff.teicrete.gr 24/4/2017 1 Αναφορές An Introduction to Digital Image Processing with Matlab, Alasdair McAndrew N. Papamarkos,
Διαβάστε περισσότεραΜια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )
Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==
Διαβάστε περισσότεραMatlab command: corner
Matlab command: corner http://www.mathworks.com/help/images/ref/corner.html Μια εισαγωγή-outube: http://www.outube.com/watch?v=vkwdzwerfc4 Οκτώβριος 013 Σ. Φωτόπουλος ΨΕΕ Harris Corner detector ΔΠΜΣ ΗΕΠ
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ 01 10/02/2017 Unknown Assignment 3 ΟΜΑΔΑ 2 Δημήτρης Βοσκάκης (mth76@edu.teicrete.gr) Νικόλαος Βαρδάκης (mth75@edu.teicrete.gr) ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ Κ.Αλέξανδρος Μακρής Page1 Contents
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΜΕ ΧΡΗΣΗ MATLAB ΑΘΑΝΑΣΙΑ ΚΟΛΟΒΟΥ (Ε.Τ.Ε.Π.) 2012 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ο σκοπός αυτού
Διαβάστε περισσότεραΕνδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΜέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων
Μέθοδοι Τμηματοποίησης Ψηφιακής Εικόνας με Εφαρμογή στην Ανάλυση Βιοϊατρικών Εικόνων Μαρία Δ. Πελώνη Μαρία Α. Τσεμεντζή Α.Τ.Ε.Ι. Καβάλας Διαχείριση Πληροφοριών Επιβλέπων: Δρ. Γκούμας Στέφανος Επίκουρος
Διαβάστε περισσότεραΌριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:
Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί
Διαβάστε περισσότεραΒελτίωση - Φιλτράρισμα εικόνας
Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 3 27/3/2017 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας (point processing), μετασχηματισμοί
Διαβάστε περισσότεραΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
Διαβάστε περισσότερα7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας
7.5 Ενδιάμεσο επίπεδο επεξεργασίας εικόνας 7.5.1 Εισαγωγή Kάθε σύστημα επεξεργασίας εικόνας έχει ένα συγκεκριμένο σκοπό λειτουργίας. Παραδείγματος χάριν, διαφορετικές απαιτήσεις θα έχει μια βιομηχανία
Διαβάστε περισσότεραΠαρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 5-6 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Σημειακή Επεξεργασία Εικόνας Point processing All/Erasmus students:
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότερα. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.
Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)
Διαβάστε περισσότερα27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
Διαβάστε περισσότεραΕπεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08
Επεξεργασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #08 1 Επεξεργασία εικόνας Βασικό ανάγνωσµα: Η ενότητα 12.4 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία εικόνας Μ. ρακόπουλος
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό
Διαβάστε περισσότεραx = r cos φ y = r sin φ
Αυτόνομοι Πράκτορες ΠΛΗ 513 Αναφορά Εργασίας Κίνηση Τερματοφύλακα Στο RoboCup Καρανδεινός Εκτωρ Α.Μ 2010030020 Περίληψη Το Robocup είναι ένας παγκόσμιος ετήσιος διαγωνισμός ρομποτικής στον οποίο προγραμματίζονται
Διαβάστε περισσότεραΕιδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Διαβάστε περισσότεραΕργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Διαβάστε περισσότερα«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ»
«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ» ΣΧΟΛΗ: ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ (ΣΑΤΜ) Ε.Μ.Π. ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΑΡΓΙΑΛΑΣ ΔΗΜΗΤΡΗΣ ΤΙΤΛΟΣ ΥΠΟΕΡΓΟΥ: ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΤΕΧΝΙΚΩΝ
Διαβάστε περισσότεραADVANCES IN DIGITAL AND COMPUTER VISION
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΔΠΜΣ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ 01 10/02/2017 Unknown ΕΡΓΑΣΙΑ 3 ADVANCES IN DIGITAL AND COMPUTER VISION ΣΠΟΥΔΑΣΤΕΣ: ΓΕΡΜΕΝΗΣ ΕΥΑΓΓΕΛΟΣ
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΒΑΣΙΚΟΙ ΧΕΙΡΙΣΜΟΙ ΕΙΚΟΝΑΣ Αντικείμενο: Εισαγωγή στις βασικές αρχές της ψηφιακής επεξεργασίας εικόνας χρησιμοποιώντας το MATLAB και το πακέτο Επεξεργασίας Εικόνας. Περιγραφή και αναπαράσταση
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΝοέμβριος 2013 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/57
Νοέμβριος 3 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /57 Ακμή ή περίγραμμα (edge) σε μια εικόνα Χ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική
Διαβάστε περισσότεραΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΟΛΥΜΕΣΑ ΜΑΘΗΜΑ 1 ο ΕΙΣΗΓΗΤΗΣ: Χ.ΣΤΡΟΥΘΟΠΟΥΛΟΣ
ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΟΛΥΜΕΣΑ ΜΑΘΗΜΑ 1 ο ΕΙΣΗΓΗΤΗΣ: Χ.ΣΤΡΟΥΘΟΠΟΥΛΟΣ Τι είναι Ψηφιακή εικονα; Η ψηφιακή εικόνα είναι ένα πεπερασμένο σύνολο περιοχών όπου κάθε περιοχή είναι χρωματισμένη με χρώμα που
Διαβάστε περισσότεραTO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Διαβάστε περισσότερα5 ο Εργαστήριο Δομές Επανάληψης (συνέχεια)
5 ο Εργαστήριο Δομές Επανάληψης (συνέχεια) Κύκλος 270 ο 3*(π/2) rad (3*HALF_PI) 180 ο π rad (PI) 0 ο 0 rad 360 ο 2π rad (TWO_PI) hyp x opp adj 90 ο π/2 rad (HALF_PI) sin(x) = opp / hyp cos(x) = adj/hyp
Διαβάστε περισσότεραDIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00
Διαβάστε περισσότεραNao becomes a painter
Αυτόνομοι Πράκτορες Nao becomes a painter Ομάδα εργασίας: ΚΑΤΣΑΝΙ ΜΕΡΙΕΜΕ 2011030035 Περιγραφή Στόχος της εργασίας εξαμήνου ήταν ο προγραμματισμός της συμπεριφοράς στο Aldebaran NAO ανθρωποειδές ρομπότ,
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...
Διαβάστε περισσότεραD. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
Διαβάστε περισσότεραΒιοϊατρική τεχνολογία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 3: Επεξεργασία σημείων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη ψηφιακή ανάλυση εικόνας
Διαβάστε περισσότεραΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 2 η Σειρά Ασκήσεων Άσκηση 1: Ζητείται όπως δώσετε τέσσερις εντολές
Διαβάστε περισσότεραDIP_01 Εισαγωγήστην ψηφιακήεικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγήστην ψηφιακήεικόνα ΤΕΙ Κρήτης Ψηφιακήεικόνα Ψηφιακή εικόνα = αναλογική εικόνα µετά από δειγµατοληψία στο χώρο (x και y διευθύνσεις) Αναπαριστάνεται από έναν ή περισσότερους 2 πίνακες Μπορεί
Διαβάστε περισσότεραΠαιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
Διαβάστε περισσότεραΥλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ Υλοποίηση Αλγόριθμου Ανίχνευσης Ακμών σε προγραμματιζόμενη ψηφίδα Xilinx ΔΙΠΛΩΜΑΤΙΚΗ
Διαβάστε περισσότεραΠΑΝΕΠΙΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 1 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κατασκευή εφαρμογής ανίχνευσης κινούμενων αντικειμένων ή αντικειμένων που εναποτέθηκαν με χρήση όρασης
Διαβάστε περισσότεραΤΗΛ412 Ανάλυση & Σχεδίαση (Σύνθεση) Τηλεπικοινωνιακών Διατάξεων. Διάλεξη 4. Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 2016
ΤΗΛ41 Ανάλυση & Σχεδίαση (Σύνθεση Τηλεπικοινωνιακών Διατάξεων Διάλεξη 4 Άγγελος Μπλέτσας ΗΜΜΥ Πολυτεχνείου Κρήτης, Φθινόπωρο 016 1 Διάλεξη 4 Βασικές Έννοιες (συνέχεια από Διαλέξεις, 3 Βασικές έννοιες:
Διαβάστε περισσότεραSpring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena
CS 4758/6758: Robot Learning Spring 2010: Lecture 3. Slides coutesy: Prof Noah Snavely, Yung-Yu Chung, Frédo Durand, Alexei Efros, William Freeman, Svetlana Lazebnik, Srinivasa Narasimhan, Steve Seitz,
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ? Εύρεση εφαπτόμενης της γνωστό σημείο (, ( )) με την βοήθεια του ορισμού: Εάν το σημείο αλλαγής τύπου η σημείο μηδενισμού της ύπαρξης ποσότητας, εξετάζω αν η είναι παραγωγισιμη
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΑΝΑΠΤΥΞΗ ΕΞΕΛΙΓΜΕΝΩΝ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΗΝ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Διαβάστε περισσότεραΕΦΑΡΜΟΓΗ ΕΠΑΥΞΗΜΕΝΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΓΙΑ ΔΙΑΔΡΑΣΤΙΚΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΜΟΝΤΕΛΩΝ CAD
ΕΦΑΡΜΟΓΗ ΕΠΑΥΞΗΜΕΝΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΓΙΑ ΔΙΑΔΡΑΣΤΙΚΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΜΟΝΤΕΛΩΝ CAD Δρ. Αικατερίνη Μανιά Δρ. Βασίλειος Σαμολαδάς Δρ. Αριστομένης Αντωνιάδης Άγγελος Μαρινάκης
Διαβάστε περισσότεραΣχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Σχεδιασμός και κατασκευή εφαρμογής ταξινόμησης αντικειμένων σε γραμμή μεταφοράς προϊόντων με χρήση όρασης μηχανής Λοΐζου
Διαβάστε περισσότεραΕπεξεργασία Έγχρωµων Εικόνων
ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Επεξεργασία Έγχρωµων Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Εισαγωγή - Βασικά
Διαβάστε περισσότεραΑνάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab
ΑΣΚΗΣΗ 8 Ανάλυση και επεξεργασία εικόνων DICOM με τη χρήση Matlab 1. Περιγραφή του προτύπου DICOM Η ψηφιακή επεξεργασία ιατρικής εικόνας ξεκίνησε παράλληλα με την ανάπτυξη ενός προτύπου για τη μεταφορά
Διαβάστε περισσότεραΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Πεδί α
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Βάση δεδομένων είναι συσχετισμένα μεταξύ τους δεδομένα, οργανωμένα σε μορφή πίνακα. Οι γραμμές του πίνακα αποτελούν τις εγγραφές και περιλαμβάνουν τις πληροφορίες για μια οντότητα. Οι
Διαβάστε περισσότεραΚεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73
Κεφάλαιο 6: Βελτιστοποίηση εικόνας 6.73 Σχήμα 6.61 Μορφή της συνάρτησης για διάφορες τιμές του a. (α) (β) Σήμα 6.6 Παράδειγμα εφαρμογής: (α) Αρχική εικόνα. (β) Τελική εικόνα για a 0.0. 6.74 N. ΠΑΠΑΜΑΡΚΟΣ:
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότεραD. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. Εισαγωγικά: SIFT~Harris Harris Detector: Δεν είναι ανεξάρτητος της κλίμακας
Διαβάστε περισσότεραΔΕΥΤΕΡΟΓΕΝΝΕΣ ΠΡΩΤΟΓΕΝΝΕΣ-ΔΕΥΤΕΡΟΓΕΝΝΕΣ ΠΕΔΙΟ ΠΡΩΤΟΓΕΝΝΕΣ ΠΕΔΙΟ. θ Hp ΔΕΚΤΗΣ ΠΟΜΠΟΣ ΣΥΝΙΣΤΑΜΕΝΟ ΠΕΔΙΟ ΠΕΔΙΟ ΣΥΝΙΣΤΑΜΕΝΟ ΠΕΔΙΟ
ΠΡΩΤΟΓΕΝΝΕΣ-ΔΕΥΤΕΡΟΓΕΝΝΕΣ ΠΕΔΙΟ ΠΟΜΠΟΣ ΔΕΚΤΗΣ ΣΥΝΙΣΤΑΜΕΝΟ ΠΕΔΙΟ ΑΓΩΓΟΣ Υ HT=HS+HP ΔΕΥΤΕΡΟΓΕΝΝΕΣ ΠΕΔΙΟ θ Hp Χ ΣΥΝΙΣΤΑΜΕΝΟ ΠΕΔΙΟ ΠΡΩΤΟΓΕΝΝΕΣ ΠΕΔΙΟ ΕΛΛΕΙΨΗ ΠΟΛΩΣΗΣ ΠΟΜΠΟΣ ΔΕΚΤΗΣ ΣΥΝΙΣΤΑΜΕΝΟ ΠΕΔΙΟ ΑΓΩΓΟΣ Y
Διαβάστε περισσότεραMatlab command: corner
Matlab command: corner http://www.mathworks.com/help/images/ref/corner.html Μια εισαγωγή-youtube: http://www.youtube.com/watch?v=vkwdzwerfc4 Τι είναι σημεία keypoints ενδιαφέροντος Σημεία που μπορούν να
Διαβάστε περισσότεραAdvances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab 6 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 1 Βασικές έννοιες Μετασχηματισμού Fourier Basic Concepts of Fourier
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΣΩΜΑΤΩΜΕΝΟΥ ΣΥΣΤΗΜΑΤΟΣ ΒΑΣΙΣΜΕΝΟΥ ΣΕ ΑΝΑΔΙΑΤΑΣΣΟΜΕΝΗ ΛΟΓΙΚΗ, ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΤΗΣ ΚΟΡΗΣ ΜΑΤΙΟΥ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΣΩΜΑΤΩΜΕΝΟΥ ΣΥΣΤΗΜΑΤΟΣ ΒΑΣΙΣΜΕΝΟΥ ΣΕ ΑΝΑΔΙΑΤΑΣΣΟΜΕΝΗ ΛΟΓΙΚΗ, ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΤΗΣ ΚΟΡΗΣ ΜΑΤΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ
Διαβάστε περισσότεραΒιοϊατρική τεχνολογία
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 2: Επεξεργασία Εικόνας Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Διαβάστε περισσότεραΗμερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις
Διαβάστε περισσότερα