ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ"

Transcript

1 ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

2 Αιτίες δημιουργίας και ανάπτυξης των Μαθηματικών Η επίλυση προβλημάτων

3 Γιατί διδάσκουμε Μαθηματικά στα σχολεία Για να είναι σε θέση ο σημερινός μαθητής και αυριανός πολίτης να κατανοήσει τι συμβαίνει γύρω του να κατανοήσει τον Φυσικό κόσμο να αναπτύξει μαθηματική σκέψη

4 Διδακτικοί στόχοι Ο μαθητής να κατανοεί έννοιες, μαθηματικές διαδικασίες και αρχές. Ο μαθητής να εκτελεί διαδικασίες με κατανόηση, ακρίβεια και ταχύτητα. Ο μαθητής να είναι ικανός να λύνει προβλήματα.

5 Διδακτικοί στόχοι Ο μαθητής να κατανοεί τη λογική δομή μιας απόδειξης. Ο μαθητής να αναπτύσσει θετική στάση για τα μαθηματικά, να του προκαλείται το ενδιαφέρον και η περιέργεια και να αναπτύσσει πρωτοβουλίες. Ο μαθητής να αναπτύσσει αποδοτικούς τρόπους μάθησης και επικοινωνίας στα μαθηματικά, καθώς και συνήθειες μελέτης και αναζήτησης της γνώσης για αυτόνομη πρόοδο.

6 ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

7 Η μάθηση στα Μαθηματικά πρέπει να είναι εννοιολογική. Η μάθηση στα Μαθηματικά ακολουθεί αναπτυξιακή διαδικασία.

8 Η οργάνωση του αναλυτικού προγράμματος πρέπει να είναι σπειροειδής. Ο δάσκαλος πρέπει: να λαμβάνει υπόψη του τις προαπαιτούμενες γνώσεις κάθε έννοιας που πρόκειται να διδάξει να γνωρίζει τις αδυναμίες των μαθητών του να γνωρίζει να την ύλη όχι μόνο της τάξης του αλλά και των προηγούμενων και επομένων τάξεων

9 Τα κίνητρα των μαθητών επηρεάζουν τη μαθησιακή διαδικασία. Οι μαθητές πρέπει να γνωρίζουν τι αναμένεται να μάθουν. Οι μαθητές πρέπει να έχουν την ευκαιρία για ενεργητική συμμετοχή. Η χρήση ποικιλίας εποπτικών μέσων συμβάλλει στη μάθηση.

10 Η διδασκαλία πρέπει να βοηθάει τους μαθητές να διατηρήσουν στη μνήμη τους τις βασικές έννοιες. Η διδασκαλία των μαθηματικών πρέπει να αποβλέπει στην εννοιολογική κατανόηση. Κατά τη διάρκεια εισαγωγής μιας νέας έννοιας πρέπει να γίνεται σύντομη επανάληψη των προαπαιτούμενων γνώσεων. Η συχνή και διαφορετική χρήση βασικών μαθηματικών εννοιών οδηγεί στην ανάπτυξη ανώτερης μαθηματικής σκέψης.

11 ΓΝΩΣΤΙΚΑ ΕΜΠΟΔΙΑ

12 Τύποι γνωστικών εμποδίων Γενετικά και ψυχολογικά που είναι αποτέλεσμα της προσωπικότητας του μαθητή. Διδακτικά εμπόδια που είναι αποτέλεσμα του τρόπου διδασκαλίας του καθηγητή. Επιστημολογικά εμπόδια που οφείλονται στην ίδια τη φύση των μαθηματικών εννοιών.

13 Επιστημολογικά εμπόδια Επιστημολογικό εμπόδιο εμφανίζεται όταν μια γνώση που λειτουργεί καλά για μια ορισμένη περιοχή δραστηριότητας και επομένως έχει εδραιωθεί, αποτυγχάνει να λειτουργήσει ικανοποιητικά σ ένα άλλο πλαίσιο και οδηγεί σε αντιφάσεις.

14 Χαρακτηριστικά επιστημολογικών εμποδίων Αποτελούν αναπόφευκτα και ουσιαστικά συστατικά της αποκτώμενης γνώσης Βρίσκονται, τουλάχιστον εν μέρει, στην ιστορική ανάπτυξη της έννοιας.

15 Ο ΡΟΛΟΣ ΤΩΝ ΟΡΙΣΜΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ ΤΗ ΜΑΘΗΣΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

16 Εικόνα έννοιας Εικόνα έννοιας (concept image) είναι η γνωστική δομή που έχει σχηματίσει ένα άτομο αναφορικά με την έννοια Περιλαμβάνει νοητικές εικόνες, προτάσεις και διαδικασίες που αφορούν στην έννοιας

17 Για την κατανόηση μιας έννοιας είναι αναγκαία προϋπόθεση ο σχηματισμό μιας επαρκούς και συνεκτικής εικόνας της έννοιας.

18 Ορισμός Έννοιας Εικόνα Έννοιας (

19 Παράδειγμα αρχικού σχηματισμού εικόνας έννοιας Ένας μαθητής μπορεί να διαθέτει μια εικόνα έννοιας για την έννοια των συστημάτων συντεταγμένων ως αποτέλεσμα της θέασης πολλών γραφικών παραστάσεων σε διάφορες καταστάσεις. Σύμφωνα με αυτήν την εικόνα έννοιας, οι δύο άξονες ενός συστήματος συντεταγμένων είναι μεταξύ τους κάθετοι.

20 Πιθανή εξέλιξη μετά τη διδασκαλία του τυπικού ορισμού Η εικόνα έννοιας μπορεί να μεταβληθεί ώστε να συμπεριλάβει και τα συστήματα συντεταγμένων, των οποίων οι άξονες δεν σχηματίζουν ορθή γωνία. (Αυτό αποτελεί μια ικανοποιητική ανακατασκευή.) Η εικόνα έννοιας μπορεί να παραμείνει αμετάβλητη. Το κελί του ορισμού θα περιέχει τον ορισμό του δασκάλου για λίγο αλλά αυτός ο ορισμός θα ξεχαστεί ή θα διαστρεβλωθεί μέσα σε σύντομο χρονικό διάστημα, και όταν ο μαθητής θα κληθεί να ορίσει ένα σύστημα συντεταγμένων θα αναφερθεί σε ένα, του οποίου οι άξονες σχηματίζουν μια ορθή γωνία. (Σε αυτήν την περίπτωση ο τυπικός ορισμός δεν έχει αφομοιωθεί.) Και τα δύο κελιά θα παραμείνουν αμετάβλητα. Τη στιγμή κατά την οποία ο μαθητής καλείται να ορίσει ένα σύστημα συντεταγμένων θα επαναλάβει τον ορισμό του δασκάλου του, αλλά σε όλες τις άλλες καταστάσεις θα σκεφτεί το σύστημα συντεταγμένων ως δύο κάθετους άξονες.

21 Μια παρόμοια διαδικασία ενδέχεται να εμφανιστεί όταν μια έννοια εισάγεται αρχικά μέσω ενός ορισμού. Εδώ, το κελί της εικόνας έννοιας είναι κενό αρχικά. Μετά από πολλά παραδείγματα και επεξηγήσεις γεμίζει βαθμιαία.

22 Ρόλος των ορισμών κατά την επίλυση προβλήματος

23 Αποδεκτές διαδικασίες Αλληλεπίδραση μεταξύ του ορισμού και της εικόνας

24 Καθαρά τυπική αφαίρεση

25 Αφαίρεση μετά από τη διαισθητική σκέψη

26 Κοινό στοιχείο των αποδεκτών διαδικασιών Τελικό συμπέρασμα με βάση τον τυπικό ορισμό

27 Συνήθης διαδικασία Διαισθητική απάντηση

28 Ερευνητικά δεδομένα Χώρα: Μεγάλη Βρετανία Δείγμα έρευνας: 147 πρωτοετείς φοιτητές που είχαν τα μαθηματικά ως κύριο μάθημα στις δύο τελευταίες τάξεις της δευτεροβάθμιας εκπαίδευσης.

29 ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ 1. Κατά την άποψή σας τι είναι συνάρτηση; 2. Υπάρχει συνάρτηση στην οποία κάθε αριθμός διάφορος του μηδενός αντιστοιχίζεται στο τετράγωνό του και το 0 αντιστοιχίζεται στο -1; 3. Υπάρχει συνάρτηση στην οποία κάθε θετικός αριθμός αντιστοιχίζεται στο 1, κάθε αρνητικός αντιστοιχίζεται στο -1 και το 0 στο 0; 4. Προκύπτει αυτή η γραφική παράσταση από μια συνάρτηση;

30 Αποτελέσματα Ερώτηση 1 Το 57% απάντησε σωστά Το 14% των μαθητών είπε ότι μια συνάρτηση είναι ένας κανόνας αντιστοίχισης και απέρριψε τη δυνατότητα μιας αυθαίρετης συνάρτησης. Ένα επιπλέον 14% υποστήριξε ότι μια συνάρτηση είναι ένας αλγεβρικός τύπος, μια εξίσωση ή μια αριθμητική πράξη. Το υπόλοιπο δεν έδωσε καμία απάντηση ή καμία ικανοποιητική απάντηση.

31 Ερωτήσεις 2 και 3: Όσον αφορά τις εικόνες έννοιας προέκυψε ότι σε ορισμένες περιπτώσεις (στις ερωτήσεις 2 και 3) μεταξύ του ενός τρίτου και των δύο τρίτων των μαθητών θεωρούν ότι μια συνάρτηση θα πρέπει να δίνεται από έναν κανόνα ή, αν δίνονται δύο κανόνες, τότε τα πεδία ορισμού τους θα πρέπει να είναι ημιευθείες ή διαστήματα. Ένας κανόνας για ένα μοναδικό σημείο (όπως στην ερώτηση 2) δεν επιτρέπεται. Μερικοί μαθητές θεωρούν ότι οι αντιστοιχίες οι οποίες δε δίνονται από έναν αλγεβρικό κανόνα δεν είναι συναρτήσεις, εκτός αν η μαθηματική κοινότητα τις θεωρεί ως συναρτήσεις με το να τους δώσει ένα όνομα ή έναν ειδικό συμβολισμό. (Αυτό φάνηκε στις απαντήσεις της ερώτησης 3). Άλλοι μαθητές (περίπου τα 2/5) πιστεύουν πως η γραφική παράσταση μιας συνάρτησης πρέπει να είναι κανονική, να αυξάνει μέσα σε λογικά πλαίσια κλπ... (Αυτό φάνηκε στις απαντήσεις της ερώτησης 4).

32 Ερώτηση 4: Περίπου το 60% των φοιτητών απάντησε σωστά Το υπόλοιπο περίπου 40% των φοιτητών πιστεύουν πως η γραφική παράσταση μιας συνάρτησης πρέπει να είναι κανονική, να αυξάνει μέσα σε λογικά πλαίσια κλπ...

33 Μόνο το ένα τρίτο των μαθητών που έδωσαν το σωστό ορισμό της συνάρτησης απάντησε επίσης σωστά στις ερωτήσεις 2-4. Κανένας μαθητής από αυτούς που έδωσαν λανθασμένο ορισμό δεν απάντησε στις ερωτήσεις 2-4 σωστά.

34 ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

35 Από την έρευνα σχετικά με τη διδασκαλία του Απειροστικού Λογισμού τα τελευταία είκοσι πέντε χρόνια προκύπτει ότι : α) οι μαθητές συναντούν σημαντικά προβλήματα στην κατανόηση των εννοιών του Απειροστικού Λογισμού. β)οι συνήθεις μέθοδοι και οι τεχνικές διδασκαλίας έχουν αποτύχει, όπως επίσης έχει αποτύχει η μονομερής επικέντρωση της ανάλυσης είτε σε αλγοριθμικούς και αλγεβρικούς υπολογισμούς, είτε σε θεωρητικά θέματα.

36 Επίσης από την έρευνα αυτή προκύπτουν συγκεκριμένες δυσκολίες και εμπόδια που συναντούν οι μαθητές στην προσπάθεια τους να κατανοήσουν αυτές τις έννοιες.

37 Η M. Artigue ταξινομεί σε τρεις μεγάλες κατηγορίες τα προβλήματα που δημιουργούνται στους μαθητές κατά τη μελέτη του Απειροστικού Λογισμού.

38 1. Προβλήματα που συνδέονται με ελλείψεις στην κατανόηση των βασικών αντικειμένων που διαπραγματεύεται ο Απειροστικός Λογισμός. Δηλαδή, των πραγματικών αριθμών και της έννοιας της συνάρτησης.

39 Τα βασικά αντικείμενα του Απειροστικού Λογισμού δεν αποτελούν καινούργια γνώση για τους μαθητές. Έχουν συναντήσει σε προηγούμενες τάξεις τα είδη και τις διάφορες αναπαραστάσεις των πραγματικών αριθμών καθώς και την έννοια της συνάρτησης.

40 Εντούτοις, η γνώση αυτών των εννοιών φαίνεται να μην έχει σταθεροποιηθεί στο μυαλό. Η μελέτη του Απειροστικού Λογισμού πρόκειται να διαδραματίσει σημαντικό ρόλο για την ουσιαστική κατανόηση αυτών.

41 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Μελέτες σχετικά με τις αντιλήψεις των μαθητών για τους πραγματικούς αριθμούς δείχνουν ότι αυτές οι αντιλήψεις δεν είναι επαρκείς για την Ανάλυση. Ο διαχωρισμός μεταξύ των διαφόρων κατηγοριών των αριθμών παραμένει αρκετά συγκεχυμένος και φαίνεται να εξαρτάται από τη σημειακή αναπαράσταση τους. Η συσχέτιση μεταξύ πραγματικών αριθμών και πραγματικής ευθείας δεν είναι πλήρης στο μυαλό των παιδιών. Ακόμα και αν οι μαθητές δέχονται ότι υπάρχει ένα προς ένα και επί αντιστοιχία μεταξύ του R και της πραγματικής ευθείας, εντούτοις δεν πείθονται ότι ο κάθε αριθμός έχει τη θέση του στην ευθεία. Επιπλέον, η αυξανόμενη χρήση των υπολογιστών τσέπης τείνει να δημιουργήσει την αντίληψη ότι οι πραγματικοί αριθμοί έχουν δεκαδικές αναπαραστάσεις με πεπερασμένο πλήθος ψηφίων.

42 ΣΥΝΑΡΤΗΣΕΙΣ Πολλοί μαθητές για να ελέγξουν αν μία σχέση ορίζει συνάρτηση χρησιμοποιούν κριτήρια που έρχονται σε αντίθεση με τον ορισμό της έννοιας, αν και οι περισσότεροι από αυτούς είναι σε θέση να τον αναπαράγουν. Τα κριτήρια αυτά σχηματοποιούνται από τυπικά παραδείγματα που θεωρούνται ως πρότυπα και από συσχετισμούς όπως: Συνάρτηση - Τύπος - Καμπύλη.

43 Για αυτό το λόγο το ίδιο αντικείμενο μπορεί να θεωρηθεί συνάρτηση ή όχι ανάλογα με τη σημειακή του αναπαράσταση: Η συνάρτηση f: x f(x)=2 για κάποιους μαθητές δεν είναι συνάρτηση διότι η δοθείσα αλγεβρική έκφραση δεν εξαρτάται από το x. Είναι όμως συνάρτηση αν δοθεί η γραφική

44 Ένα άλλο σημαντικό πρόβλημα των μαθητών είναι η αδυναμία συνδυασμού των διαφορετικών αναπαραστάσεων μιας συνάρτησης και η μετάβαση από μια αναπαράσταση σε άλλη.

45 Επίσης παρουσιάζεται αδυναμία στην θεώρηση της συνάρτησης όχι μόνο ως διαδικασία, αλλά και ως αντικείμενο. Αυτό δημιουργεί προβλήματα όταν πρέπει π.χ. να θεωρήσει ο μαθητής σύνολα συναρτήσεων.

46 2. Προβλήματα που συνδέονται με τη διάσταση που υπάρχει μεταξύ του «αλγεβρικού» και του «αναλυτικού» τρόπου σκέψης.

47 Η Μαθηματική ανάλυση απαιτεί αλγεβρικές δεξιότητες και ικανότητες και ταυτόχρονα απαιτεί απομάκρυνση από τον αλγεβρικό τρόπο σκέψης. Για να διεισδύσουμε στην αναλυτική σκέψη και να είμαστε αποτελεσματικοί σε αυτήν πρέπει να αναπτύξουμε νέες τεχνικές.

48 Π.χ. στην άλγεβρα για να αποδείξουμε ότι δύο ποσότητες α και β είναι ίσες μετασχηματίζουμε τη μία ή και τις δύο σχέσεις με διαδοχικές ισότητες μέχρι να καταλήξουμε σε μια προφανή ισότητα. Άλλη διαδικασία είναι να μετασχηματίσουμε το πηλίκο ( αντ. διαφορά) τους μέχρι να έχουμε αποτέλεσμα ίσο με το 1(αντ. μηδέν).

49 Στον Απειροστικό Λογισμό, πολλές φορές τέτοιες στρατηγικές δεν είναι εφαρμόσιμες ή η πιο σύντομες, καθώς πολλές φορές δεν γνωρίζουμε ακριβώς τα αντικείμενα. Έτσι συχνά αποδεικνύουμε μια ισότητα χρησιμοποιώντας την ισοδυναμία α=β αν και μόνον αν α-β <ε για κάθε ε>0. Δηλαδή, αποδεικνύουμε μια ισότητα μέσω ανισότητας.

50 Το παραπάνω οφείλεται στο γεγονός ότι στον Απειροστικό Λογισμό πολλές φορές τις ποσότητες που χρησιμοποιούμε δεν τις γνωρίζουμε ακριβώς, αλλά προσεγγιστικά. Δηλαδή, ως όρια γνωστών ποσοτήτων.

51 Συνεπώς, ενώ η απόδειξη των ισοτήτων στην Άλγεβρα έχει στατικό χαρακτήρα στον Απειροστικό έχει δυναμικό.

52 Επίσης στον Απειροστικό αντικείμενα και γνώσεις που ήταν ήδη γνωστά πρέπει να αναπροσαρμοστούν. Χαρακτηριστικό παράδειγμα αποτελεί η έννοια της εφαπτομένης.

53 Στην μέση εκπαίδευση εισάγεται ως γεωμετρική έννοια (εφαπτόμενη στον κύκλο) με τις εξής ιδιότητες:

54 Με τον κύκλο έχει μόνο ένα κοινό σημείο. Είναι κάθετη στην ακτίνα του κύκλου στο σημείο επαφής. Έχει ένα κοινό σημείο με τον κύκλο και δεν τον «κόβει». Έχει ένα κοινό σημείο με τον κύκλο και ο κύκλος βρίσκεται στο ένα ημιεπίπεδο.

55 Αυτή η γεωμετρική οπτική αντίληψη μπορεί να επεκταθεί σε άλλες καμπύλες, όπως είναι η έλλειψη και η παραβολή. Δεν υπάρχει όμως άμεση συσχέτιση μεταξύ αυτής της γεωμετρικής αντίληψης της έννοιας της εφαπτομένης και της αναλυτικής έννοιας που μαθαίνει ο μαθητής στον Απειροστικό Λογισμό.

56 Διάφορες έρευνες δείχνουν ότι το Εκπαιδευτικό σύστημα αφήνει στους μαθητές την ευθύνη να αναδιοργανώσουν μόνοι τους τις διάφορες έννοιες, κάτι που δεν μπορούν να το επιτύχουν. Έτσι, τελειώνοντας τη δευτεροβάθμια εκπαίδευση, η πλειοψηφία των μαθητών δεν είναι σε θέση να συνδέσει αυτές τις έννοιες.

57 Έρευνες επίσης έδειξαν ότι όταν η διδασκαλία αναλαμβάνει αυτή την ευθύνη τότε η αναδιοργάνωση των εννοιών επικρατεί αποτελεσματικά και σταθερά.

58 3. Προβλήματα που οφείλονται στη δυσκολία κατανόησης της έννοιας του ορίου.

59 Η έννοια του ορίου είναι μια ιδιαίτερα δύσκολη έννοια, χαρακτηριστική του είδους σκέψης που απαιτείται στα ανώτερα μαθηματικά. Κατέχει κεντρική θέση που διεισδύει σε ολόκληρη τη μαθηματική ανάλυση - ως θεμέλιο της θεωρίας προσέγγισης, της συνέχειας, του διαφορικού και του ολοκληρωτικού λογισμού.

60 Οι διάφορες έρευνες που έχουν διεξαχθεί παρουσιάζουν σαφέστατα ότι η πλειοψηφία των μαθητών δεν κατανοεί πλήρως την έννοια του ορίου, ακόμη και σε ανώτερο στάδιο των σπουδών τους. Αυτό βέβαια δεν τους αποτρέπει από το να λύνουν ασκήσεις, να επιλύουν προβλήματα και να επιτυγχάνουν στις εξετάσεις τους.

61 Θα μελετήσουμε διάφορα εμπόδια που παρουσιάζονται στους μαθητές στην προσπάθεια τους να κατανοήσουν την έννοια του ορίου.

62 Για τις περισσότερες μαθηματικές έννοιες, η διδασκαλία δεν ξεκινά σε παρθένο έδαφος. Στην περίπτωση των ορίων, πριν από οποιαδήποτε διδασκαλία γι αυτό το θέμα ο μαθητής έχει ήδη ορισμένες ιδέες, διαισθήσεις, εικόνες, γνώσεις, που προέρχονται από την καθημερινή εμπειρία, όπως οι κοινές σημασίες των όρων που χρησιμοποιούνται. Αυτές τις αντιλήψεις μιας έννοιας, που εμφανίζονται πριν από την τυπική διδασκαλία, ονομάζονται αυθόρμητες αντιλήψεις (spontaneous conceptions).

63 Όταν ένας μαθητής συμμετέχει σ ένα μάθημα μαθηματικών, αντίθετα με αυτό που μπορεί να φαντάζονται οι περισσότεροι καθηγητές, αυτές οι ιδέες δεν εξαφανίζονται. Αυτές οι αυθόρμητες ιδέες αναμιγνύονται με την νεοαποκτηθείσα γνώση, τροποποιούνται και προσαρμόζονται για να σχηματίσουν τις προσωπικές αντιλήψεις των μαθητών.

64 Έχει αποδειχθεί ότι προκειμένου να επιλυθεί ένα πρόβλημα, γενικά δε στηριζόμαστε μόνο στην επιστημονική θεωρία, αλλά και στο φυσιολογικό ή αυθόρμητο συλλογισμό, ο οποίος είναι θεμελιωμένος στις αυθόρμητες αυτές ιδέες.

65 Στην περίπτωση της έννοιας του ορίου, παρατηρούμε ότι οι λέξεις «τείνει» και «όριο» έχουν μια σημασία για τους μαθητές πριν αρχίσουν οποιαδήποτε μαθήματα και ότι οι μαθητές συνεχίζουν να βασίζονται σ αυτές τις σημασίες και αφότου τους έχει δοθεί ένας τυπικός ορισμός.

66 Οι έρευνες έχουν αποκαλύψει πολλές διαφορετικές σημασίες για την έκφραση «τείνει προς»: πλησιάζει (μένοντας τελικά μακριά του) πλησιάζει... χωρίς να το φθάνει πλησιάζει... μέχρι σχεδόν να το φθάσει μοιάζει

67 Η ίδια η λέξη όριο μπορεί να έχει διαφορετική σημασία για τους ίδιους ανθρώπους σε διαφορετικές στιγμές. Συχνότερα θεωρείται ως ένα «αξεπέραστο όριο», αλλά μπορεί επίσης να είναι:

68 ένα αξεπέραστο όριο το οποίο μπορούμε να φθάσουμε ένα αξεπέραστο όριο το οποίο είναι αδύνατο να φθάσουμε ένα σημείο το οποίο πλησιάζουμε, χωρίς να το φθάνουμε ένα σημείο το οποίο πλησιάζουμε και το φθάνουμε ένα άνω ή κάτω φράγμα, ένα μέγιστο ή ένα ελάχιστο, ένα διάστημα, αυτό που έπεται «αμέσως μετά από» εκείνο ως το οποίο μπορούμε να φθάσουμε, ένας περιορισμός, μια απαγόρευση, ένας κανόνας, το τέλος, το τέρμα.

69 Από τον ένα μαθητή στον άλλο η σημασία που αποδίδεται στις λέξεις ποικίλει. Για ένα μαθητή μια λέξη μπορεί να έχει διάφορες σημασίες, ανάλογα με τις περιστάσεις. Οι αυθόρμητες ιδέες παραμένουν για ένα μεγάλο χρονικό διάστημα. Οι έρευνες δείχνουν ότι μπορούν να παραμείνουν και σε μαθητές σε πολύ πιο προχωρημένο στάδιο μάθησης.

70 Η Aline Robert έχει μελετήσει τα διαφορετικά πρότυπα που οι μαθητές μπορούν να έχουν για την έννοια του ορίου μιας ακολουθίας. Παρά το γεγονός ότι στους μαθητές έχει δοθεί ένας τυπικός ορισμός της συγκλίνουσας ακολουθίας, όταν τους ζητείται να περιγράψουν την έννοια, ενεργούν σα να μη τους είχε δοθεί, έχουν την τάση να δημιουργούν αντιλήψεις που σχετίζονται με διάφορες πτυχές της πρότερης εμπειρίας τους.

71 Μερικοί μαθητές πρότειναν πρωτογενή, στοιχειώδη μοντέλα, που θυμίζουν εκείνα που μπορεί να προκληθούν αυθόρμητα, όπως: σταθερή: «Οι τελικοί όροι έχουν πάντα την ίδια τιμή», φράγμα: "Οι τιμές δεν μπορούν να περάσουν το l»

72 Επιπλέον υπήρξαν μοντέλα που προέκυψαν περισσότερο από την τυπική διδασκαλία: Μονοτονικά και δυναμικά-μονοτονικά «μια συγκλίνουσα ακολουθία είναι μια αύξουσα ακολουθία άνω φραγμένη (ή φθίνουσα κάτω φραγμένη)», «μια συγκλίνουσα ακολουθία είναι μια αύξουσα (ή φθίνουσα) ακολουθία που πλησιάζει ένα όριο».

73 Δυναμικά: «η un τείνει στο l» «η un πλησιάζει το l» «η απόσταση της un από το l γίνεται μικρή» «οι τιμές πλησιάζουν έναν αριθμό όλο και περισσότερο».

74 Στατικά: «τα un βρίσκονται σ ένα διάστημα κοντά στο l» «τα un είναι συγκεντρωμένα γύρω από το l» «Τα στοιχεία της ακολουθίας καταλήγουν να βρίσκονται σε μια γειτονιά γύρω από το l". Μικτά: ένα μίγμα των ανωτέρω

75 Επίσης η Robert διαπίστωσε ότι αυτά τα μοντέλα επηρεάζουν τον τρόπο με τον οποίο οι φοιτητές του πανεπιστημίου έλυναν τα προβλήματα.

76 Σαφώς δεν υπάρχει μια μοναδική έννοια του ορίου στο νου των μαθητών. Είναι εμφανές ότι διαθέτουν ποικίλες εικόνες της έννοιας.

77 Επιπλέον, είναι επίσης σαφές ότι η αρχική διδασκαλία τείνει να δίνει έμφαση στη διαδικασία προσέγγισης του ορίου, παρά στην ίδια την έννοια του ορίου. Το σύνολο των εικόνων της έννοιας που συνδέονται μ αυτή τη διαδικασία, όπως εξηγήθηκε παραπάνω, περιέχει πολλούς παράγοντες που συγκρούονται με τον τυπικό ορισμό («πλησιάζει αλλά δε μπορεί να φθάσει», «δε μπορεί να το περάσει», κ.λπ...). Κατά συνέπεια οι μαθητές αναπτύσσουν εικόνες των ορίων και του απείρου που σχετίζονται με παρανοήσεις που αφορούν τη διαδικασία «της προσέγγισης» ή «της αύξησης» ή «της επ άπειρον συνέχισης».

78 Λόγω της ποικιλίας των αυθόρμητων εννοιών και της αυξανόμενης συνειδητοποίησης του φορμαλισμού από τον μαθητή, συμβαίνει συχνά να υπάρχουν ταυτόχρονα στο μυαλό ενός ατόμου αντιφατικές ιδέες, που οδηγούν σε μια καθολική «εικόνα έννοιας» που περιέχει πιθανούς συγκρουόμενους παράγοντες.

79 Άλλες έννοιες του Απειροστικού Λογισμού, όπως η έννοια της συνέχειας, της διαφόρισης, της ολοκλήρωσης, κλπ., αν και επιφανειακά δείχνουν διαφορετικές, από γνωστική άποψη παρουσιάζουν παρόμοιες δυσκολίες.

80 Λόγου χάρη, η συνέχεια πάσχει από το γεγονός ότι υφίσταται μια αυθόρμητη αντίληψη που προκαλείται από τη χρήση της καθημερινής γλώσσας σε φράσεις όπως «έβρεχε συνεχώς όλη μέρα» (δηλαδή, δεν υπήρξε διακοπή στη βροχόπτωση) ή «η σιδηροδρομική γραμμή είναι συνεχώς ενωμένη» (δεν υπάρχουν κενά στις ράγες).

81 Αυτή η άποψη ενισχύεται συχνά από τις προσπάθειες του δασκάλου να δώσει μια απλή ενόραση στην έννοια της συνέχειας λέγοντας ότι η γραφική παράσταση «είναι μονοκόμματη» ή «σχεδιάζεται χωρίς να σηκώσουμε το μολύβι από το χαρτί», συγχέοντας μ αυτό τον τρόπο τις μαθηματικές έννοιες της συνέχειας και της συνεκτικότητας.

82 Ένα ερωτηματολόγιο που δόθηκε σε πρωτοετείς πανεπιστημιακούς φοιτητές μαθηματικών (Tall & Vinner 1981) περιελάμβανε μια ερώτηση για να διερευνηθούν οι εικόνες έννοιας των μαθητών για τη συνέχεια.

83

84 Αν και όλες οι απαντήσεις για τη f1 είναι «σωστές», στην πλειοψηφία τους είναι «σωστές απαντήσεις για λανθασμένους λόγους», όπως η ιδέα ότι η f1 είναι συνεχής «επειδή δίνεται από έναν και μόνο τύπο».

85 Η f2 είναι συνεχής, σύμφωνα με τον ε-δ ορισμό στο πεδίο ορισμού της R\{0}. Αλλά οι εικόνες έννοιας των μαθητών προτείνουν: Είναι συνεχής επειδή: «η συνάρτηση δίνεται από ένα και μοναδικό τύπο». Δεν είναι συνεχής επειδή «η γραφική παράσταση δεν είναι μονοκόμματη», «η συνάρτηση δεν ορίζεται στην αρχή των αξόνων», «η συνάρτηση απειρίζεται στην αρχή των αξόνων».

86 Στα αρχικά στάδια της μάθησης, επομένως, βλέπουμε να προκύπτουν αυθόρμητες αντιλήψεις που έρχονται συχνά σε σύγκρουση με τον τυπικό ορισμό.

87 ΔΙΔΑΣΚΑΛΙΑ ΕΝΝΟΙΩΝ ΚΑΙ ΘΕΩΡΗΜΑΤΩΝ ΣΤΟΝ ΑΠΕΙΡΟΣΤΙΚΟ ΛΟΓΙΣΜΟ

88 Η διδασκαλία των Μαθηματικών πρέπει να γίνεται προσπάθεια να ικανοποιεί, στον βαθμό που αυτό είναι δυνατόν, τις επόμενες απαιτήσεις

89 1. Να δείχνει στους μαθητές την εξέλιξη της μαθηματικής σκέψης που οδήγησε στο αποτέλεσμα. 2. Να δίνει στους μαθητές την δυνατότητα να συμμετέχουν ενεργά σε αυτή την εξέλιξη.

90 ΔΙΔΑΣΚΑΛΙΑ ΕΝΝΟΙΩΝ Όλα τα μαθηματικά αποτελέσματα έχουν αφετηρία τη λύση προβλημάτων. Συνεπώς το πρώτο στάδιο της διδασκαλίας είναι ένα πρόβλημα που δεν αντιμετωπίζεται με τις υπάρχουσες γνώσεις και που η προσπάθεια για τη λύση του θα οδηγήσει στην ανάγκη εισαγωγής της νέας έννοιας.

91 Όταν αντιμετωπίζουμε ένα πρόβλημα σκεφτόμαστε πως θα το λύσουμε. Το δεύτερο στάδιο της διδασκαλίας είναι η συζήτηση και ο προβληματισμός για την επίλυση του προβλήματος.

92 Από τη συζήτηση αυτή θα προκύψει η ανάγκη εισαγωγής της νέας έννοιας.

93 Στο τρίτο στάδιο αρχίζει η συζήτηση για την έννοια. Η έννοια περιγράφεται συμβολικά, γραφικά, λεκτικά.

94 Στο τέταρτο στάδιο δίνονται παραδείγματα για καλύτερη κατανόηση και αποφυγή παρανοήσεων.

95 ΠΡΟΒΛΗΜΑ Συζήτηση για την επίλυση του προβλήματος ΕΝΝΟΙΑ (Αριθμητικά, συμβολικά, γραφικά, λεκτικά) ΠΑΡΑΔΕΙΓΜΑΤΑ

96 ΔΙΔΑΣΚΑΛΙΑ ΘΕΩΡΗΜΑΤΩΝ Στο πρώτο στάδιο διατυπώνουμε ένα πρόβλημα.

97 Στο δεύτερο στάδιο συζητάμε για την λύση του προβλήματος. Η συζήτηση αυτή ανάγει τη λύση του προβλήματος στην απόδειξη μιας εικασίας.

98 Στο τρίτο στάδιο διατυπώνεται η εικασία και δημιουργείται προβληματισμός για την ισχύ της. Ο προβληματισμός αυτός οδηγεί στην πεποίθηση ότι η εικασία ισχύει.

99 Στο τέταρτο στάδιο διατυπώνεται και αποδεικνύεται το Θεώρημα. Στο πέμπτο στάδιο διαπιστώνεται, μέσω παραδειγμάτων, η αναγκαιότητα του συνόλου των υποθέσεων καθώς και η ισχύς ή όχι του αντιστρόφου.

100 Στο έκτο στάδιο γίνονται ορισμένες εφαρμογές του θεωρήματος και λύνεται, αν είναι εφικτό, το αρχικό πρόβλημα.

101 ΠΡΟΒΛΗΜΑ ΕΙΚΑΣΙΑ ΘΕΩΡΗΜΑ ΚΑΙ ΑΠΟΔΕΙΞΗ Συζήτηση για την επίλυση του προβλήματος Συζήτηση για την εικασία ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΣ ΑΝΤΙΣΤΡΟΦΟΥ ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ & ΑΛΛΕΣ ΕΦΑΡΜΟΓΕΣ

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 2: Προβλήματα σχετικά με τη διδασκαλία του Απειροστικού Λογισμού Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 2. ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ο Απειροστικός

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Προβλήματα που συνδέονται με ελλείψεις στην κατανόηση των βασικών αντικειμένων που διαπραγματεύεται ο Απειροστικός Λογισμός. Δηλαδή, των πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα

4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα 4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα Θέμα της δραστηριότητας Η δραστηριότητα αυτή αφορά στην εισαγωγή των εννοιών του ολικού και του τοπικού ακροτάτου. Στόχοι της δραστηριότητας Μέσω αυτής της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:

Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού 4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις Συνθήκες

Γενικές Παρατηρήσεις Συνθήκες Αριθμοί Γενικές Παρατηρήσεις Συνθήκες Τα ερωτηματολόγια δόθηκαν σε ένα δείγμα 54 πρωτοετών φοιτητών του Τμήματος Μαθηματικών στο Πανεπιστήμιο Αθηνών. Οι φοιτητές / φοιτήτριες δεν είχαν ενημερωθεί για την

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37

Διαβάστε περισσότερα

O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών

O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 1: Γενικά θέματα σχετικά με τη διδασκαλία των Μαθηματικών Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 1. ΓΕΝΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ ΤΗΣ

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης

ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΠΑΛΙΕΣ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΛΙΕΣ ΑΝΤΙΛΗΨΕΙΣ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας

1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας .2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας Θέμα της δραστηριότητας Αυτή η δραστηριότητα εισάγει στην έννοια του Ορίου Ακολουθίας. Δυο φύλλα εργασίας οδηγούν τους μαθητές στον ορισμό της σύγκλισης μηδενικής

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 6: Θέματα σχετικά με τη διδασκαλία των ολοκληρωμάτων. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 6. ΟΛΟΚΛΗΡΩΜΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Ένας μαθητής κατά την μελέτη της ολοκλήρωσης

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

ΠΡΟΣ : ΠΡΟΣ : Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΣ : ΠΡΟΣ : Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση

1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση 1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 5: Θέματα σχετικά με τη διδασκαλία της παραγώγου. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 1. ΠΑΡΑΓΩΓΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του Δημητρίου Α. Ντρίζου Σχολικού Συμβούλου Μαθηματικών Στο κείμενο που ακολουθεί διατυπώνουμε μια σειρά προτάσεων, καθεμιά από τις ο- ποίες, αφού

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ σχολικού συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Εισαγωγή Σύντομη ιστορική αναδρομή Το

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης)

Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Πανεπιστήµιο Αιγαίου Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης Μιχάλης Σκουµιός Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Παρατήρηση ιδασκαλίας και Μοντέλο Συγγραφής Έκθεσης

Διαβάστε περισσότερα

Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας

Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία Πουλιτσίδου Νιόβη- Χριστίνα Τζιρτζιγάνης Βασίλειος Φωκάς Δημήτριος Στόχος έρευνας Να διερευνηθούν οι παράγοντες, που επηρεάζουν την επιλογή

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης 4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης Θέμα της δραστηριότητας Η δραστηριότητα αυτή πραγματεύεται την έννοια της μονοτονίας συνάρτησης και ακολούθως εισάγει το θεώρημα της μονοτονίας

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

των σχολικών μαθηματικών

των σχολικών μαθηματικών Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

εννοιολογικές παρανοήσεις και δυσκολίες στην έννοια της συνάρτησης

εννοιολογικές παρανοήσεις και δυσκολίες στην έννοια της συνάρτησης εννοιολογικές παρανοήσεις και δυσκολίες στην έννοια της συνάρτησης ί ί η έννοια της συνάρτησης: παρανοήσεις και δυσκολίες η έννοια της συνάρτησης είναι µια πολύ δύσκολη έννοια πλήθος ερευνών 1973 Freudenthal

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ

ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ MATHDebate - Η Φωνή των Φοιτητών - Ψάχνοντας την Αριστεία στην Εκπαίδευση Μαθηματικών μέσω της Αύξησης των Κινήτρων για Μάθηση (project 2016-2018) mathdebate.eu Σύντομη

Διαβάστε περισσότερα

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών

Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά

Διαβάστε περισσότερα

Έννοιες Φυσικών Επιστημών Ι

Έννοιες Φυσικών Επιστημών Ι Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Έννοιες Φυσικών Επιστημών Ι Ενότητα 4: Θεωρίες διδασκαλίας μάθησης στη διδακτική των Φ.Ε. Σπύρος Κόλλας (Βασισμένο στις σημειώσεις του Βασίλη Τσελφέ)

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000)

Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Πρόκειται για την έρευνα που διεξάγουν οι επιστήμονες. Είναι μια πολύπλοκη δραστηριότητα που απαιτεί ειδικό ακριβό

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

A. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( 3 διδακτικές ώρες)

A. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( 3 διδακτικές ώρες) A ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( διδακτικές ώρες) 1 Σκοποί Στόχοι α Σκοποί: Οι μαθητές να συνειδητοποιήσουν ότι τα Μαθηματικά μπορεί να είναι

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ

ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΑΙ ΑΝΙΣΩΣΕΩΝ ΣΥΝΑΡΤΗΣΙΑΚΩΝ ΜΟΡΦΩΝ MIAΣ ΜΕΤΑΒΛΗΤΗΣ Στα παρακάτω γίνεται μία προσπάθεια, ομαδοποίησης των ασκήσεων επίλυσης εξισώσεων και ανισώσεων, συναρτησιακών μορφών, συνεχών συναρτήσεων,

Διαβάστε περισσότερα

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης Ενσωμάτωση των ΤΠΕ στην εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Τιμοθέου Σάββας & Χριστοφορίδης Μιχάλης Μελέτη και γραφική Παράσταση Συνάρτησης Τμήμα:Γ6 ( με 18 μαθητές)

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ. PDF created with pdffactory Pro trial version www.pdffactory.com

ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ. PDF created with pdffactory Pro trial version www.pdffactory.com ΜΟΡΦΕΣ ΔΙΔΑΣΚΑΛΙΑΣ Αφηγηματική προσέγγιση: Αποτελεί τη βασική μορφή των δασκαλοκεντρικών μεθόδων διδασκαλίας. Ο δάσκαλος δίνει τις πληροφορίες, ενώ οι μαθητές του παρακολουθούν μένοντας αμέτοχοι και κρατώντας

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ:

ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: σύγχρονες αναγνώσεις Καβάλα 14/11/2015 ΜΑΡΙΑΝΝΑ ΤΖΕΚΑΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 2 Γιατί αλλαγές; 1 3 Για ουσιαστική μαθηματική ανάπτυξη, Σύγχρονο πρόγραμμα

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

Θέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας»

Θέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας» Ημερίδα για Μαθηματικά Σάββατο 28/01/2017 Εκπαιδευτήρια "Ροδίων Παιδεία" Θέμα «Η διδασκαλία και η αξιολόγηση των Μαθηματικών στις Πανελλαδικές Εξετάσεις νέοι δρόμοι και αλλαγή φιλοσοφίας» «Μια αποτύπωση

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ 7 007 ΑΤΜΑΤΖΙΔΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε. Όλα ξεκίνησαν όταν μαθητές της Γ Λυκείου Κατεύθυνσης με ρώτησαν με πόσους τρόπους μπορούν

Διαβάστε περισσότερα