1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες
|
|
- Ξένων Κομνηνός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου της εξάντλησης των Αρχιμήδη-Ευδόξου για τον υπολογισμό του εμβαδού του κύκλου. Στόχοι της δραστηριότητας Με τη δραστηριότητα αυτή επιδιώκεται οι μαθητές: Να οδηγηθούν με φυσιολογικό τρόπο στην ανάγκη χρήσης άπειρων διαδικασιών για την επίλυση προβλημάτων, τα οποία δεν μπορούν να λυθούν με διαφορετικό τρόπο. Να γνωρίσουν τη μέθοδο της εξάντλησης (και της ιδέας του απείρου που υπάρχει σε αυτήν) σε ένα περιβάλλον απαλλαγμένο από αλγεβρικούς υπολογισμούς. Να αρχίσουν να εξοικειώνονται στην εναλλαγή αναπαραστάσεων μέσα από το παρεχόμενο περιβάλλον στο οποίο συνδυάζονται αρμονικά γραφικές και αριθμητικές αναπαραστάσεις. Λογική της δραστηριότητας Αυτή η δραστηριότητα εισάγει τους μαθητές σε άπειρες διαδικασίες, μέσω του προβλήματος του υπολογισμού του εμβαδού του μοναδιαίου κύκλου. Οι προϋπάρχουσες γνώσεις των μαθητών δεν επαρκούν για τη λύση αυτού του προβλήματος επειδή ο κύκλος δεν είναι δυνατόν να χωριστεί σε πολύγωνα. Μπορούν όμως να χρησιμοποιηθούν οι γνώσεις των μαθητών για τα πολύγωνα προκειμένου να προσεγγιστεί το άγνωστο εμβαδόν. Η έννοια της άπειρης διαδικασίας έρχεται με φυσιολογικό τρόπο ως εργαλείο το οποίο επιτρέπει την οσοδήποτε κοντά προσέγγιση μιας άγνωστης ποσότητας μέσα από άπειρες το πλήθος γνωστές ποσότητες. Η ιδέα αυτή δημιουργεί και το κατάλληλο έδαφος για τη μετέπειτα εισαγωγή των μαθητών στην έννοια του ορίου. Η χρήση του λογισμικού δυναμικής γεωμετρίας, εκτός από τη γραφική αναπαράσταση του προβλήματος, απαλλάσσει τους μαθητές από τις υπολογιστικές δυσκολίες που εμπεριέχονται στον υπολογισμό των εμβαδών των 1
2 πολυγώνων, δίνοντας έτσι τη δυνατότητα να επικεντρώσουν το ενδιαφέρον τους στην άπειρη διαδικασία. Δραστηριότητα και αναλυτικό πρόγραμμα Η δραστηριότητα αυτή μπορεί να προσφερθεί σε ένα εισαγωγικό μάθημα Απειροστικού Λογισμού. Οι μαθητές στο επίπεδο αυτό δεν γνωρίζουν άπειρες διαδικασίες. Η δραστηριότητα μπορεί να πραγματοποιηθεί στα χρονικά πλαίσια μιας διδακτικής ώρας. 2
3 1.1.1 Φύλλο εργασίας (Ανάλυση) Εισαγωγή στις άπειρες διαδικασίες ΠΡΟΒΛΗΜΑ Πώς μπορούμε να υπολογίσουμε το εμβαδόν ενός κύκλου με ακτίνα R=1; Αυτό είναι το γενικό πρόβλημα που θα εισάγει τους μαθητές στην άπειρη διαδικασία. Αναμένεται κάποιοι από τους μαθητές να γνωρίζουν τον τύπο που δίνει το εμβαδόν του κύκλου και κατά πάσα πιθανότητα να δοθεί η απάντηση ότι το ζητούμενο εμβαδόν ισούται μεπ. Στην περίπτωση αυτή μπορεί να γίνει κάποια συζήτηση με ενδεχόμενες αφορμές τις παρακάτω ερωτήσεις: Γιατί το εμβαδόν ισούται μεπ ; Πώς προκύπτει ο τύπος E= π R 2 ; Πώς μπορεί να υπολογιστεί τοπ ; Προκειμένου να αντιμετωπίσουμε το πρόβλημά μας, αρχίζουμε με τρεις ερωτήσεις που σχετίζονται με τις βασικές γνώσεις της μέτρησης εμβαδού. Ε1: Τι σημαίνει ότι ένα τρίγωνο έχει εμβαδόν ίσο με 4,5; Αυτό σημαίνει ότι τέσσερα και μισό τετράγωνα πλευράς 1 μπορούν να καλύψουν ακριβώς την επιφάνεια του τριγώνου. Μπορεί να γίνει κάποια συζήτηση για τη μέτρηση εμβαδού καθώς και για την έννοια της μονάδας μέτρησης εμβαδού. Ε2: Βρείτε γεωμετρικά σχήματα των οποίων το εμβαδόν μπορεί να υπολογιστεί με την προηγούμενη μέθοδο. Με την προηγούμενη μέθοδο μπορούμε να υπολογίσουμε εμβαδά πολυγώνων. Μπορεί να γίνει συζήτηση για τον τρόπο με τον οποίο υπολογίζουμε το εμβαδόν πολυγώνων, χωρίζοντάς τα σε μικρότερα ευθύγραμμα σχήματα των οποίων τα εμβαδά μπορούμε να τα υπολογίσουμε. Ε3: Μπορούμε να χωρίσουμε τον κύκλο σε σχήματα των οποίων τα εμβαδά μπορούμε να τα υπολογίσουμε; Η ερώτηση αυτή είναι ισοδύναμη με την ερώτηση μπορούμε να χωρίσουμε τον κύκλο σε πολύγωνα;. Οι πλευρές των πολυγώνων είναι ευθύγραμμα τμήματα και κατά συνέπεια ο κύκλος δεν μπορεί να χωριστεί σε πολύγωνα. Από την αρνητική απάντηση προκύπτει η επόμενη ερώτηση. Ε4: Με ποιο τρόπο είναι δυνατό να συνδέσουμε το εμβαδόν του κύκλου με τα εμβαδά πολυγώνων; Κάποια συζήτηση μπορεί να προκύψει από τις απαντήσεις των μαθητών. 3
4 Στόχος της συζήτησης είναι να οδηγηθούμε στην ιδέα ότι μπορούμε να βρούμε πολύγωνα με εμβαδόν μεγαλύτερο από αυτό του κύκλου και πολύγωνα με εμβαδόν μικρότερο από αυτό του κύκλου (πχ πολύγωνα εγγεγραμμένα ή περιγεγραμμένα στον κύκλο) Κατασκευάστε δυο τετράγωνα: Ένα εγγεγραμμένο και ένα περιγεγραμμένο στον κύκλο. Προσπαθήστε να απαντήσετε στην ερώτηση χρησιμοποιώντας το αρχείο activity.gr.euc του EucliDraw. Στο περιβάλλον: Μπορούμε να δούμε τον κύκλο. Το κουμπί πλευρές ελέγχει το πλήθος n των πλευρών του κανονικού εγγεγραμμένου και του κανονικού περιγεγραμμένου πολυγώνου. Όταν πατήσουμε το κουμπί περιγεγραμμένο, τότε εμφανίζεται το κανονικό περιγεγραμμένο πολύγωνο με n πλευρές. Με ένα ακόμη κλικ αυτό εξαφανίζεται. Το κουμπί εγγεγραμμένο δρα με αντίστοιχο τρόπο. Επίσης εμφανίζονται τα εμβαδά αυτών των πολυγώνων και η διαφορά τους. Το κουμπί μεγέθυνση εμφανίζει ένα παράθυρο γύρω από ένα προκαθορισμένο σημείο του κύκλου. Μεγαλώνοντας το συντελεστή μεγέθυνσης μπορούμε να επιτύχουμε καλύτερη εστίαση. Ε5: Ποια σχέση υπάρχει ανάμεσα στο εμβαδόν E του κύκλου και στα εμβαδά των δύο αυτών τετραγώνων; Ε6: Ποια είναι η διαφορά των εμβαδών των δύο τετραγώνων; Με τα παραπάνω εμβαδά επιτυγχάνουμε μια πρώτη προσέγγιση του ζητούμενου εμβαδού Ε. Η προσέγγιση αυτή προφανώς δεν είναι πολύ καλή. Έτσι προκύπτει η επόμενη ερώτηση. Ε7: Μέσω ποιας διαδικασίας είναι δυνατόν να επιτύχουμε καλύτερη προσέγγιση του E ; Αυτή η ερώτηση είναι το κρίσιμο σημείο για να περάσουν οι μαθητές στην έννοια των διαδοχικών προσεγγίσεων. Οι μαθητές ενδεχομένως μπορούν να εικάσουν ότι η αύξηση στον αριθμό των πλευρών μπορεί να επιφέρει καλύτερες προσεγγίσεις. Ο διδάσκων μπορεί να παροτρύνει τους μαθητές να εστιάσουν στη διαφορά του εσωτερικού από το εξωτερικό πολύγωνο καθώς το n μεγαλώνει. Η διαφορά μας δείχνει πόσο κοντά βρισκόμαστε στο ζητούμενο εμβαδόν του κύκλου. 4
5 Κατασκευάζουμε το εσωτερικό και εξωτερικό κανονικό πεντάγωνο, επιτυγχάνοντας έτσι καλύτερη προσέγγιση του εμβαδού του κύκλου. Οι μαθητές μπορούν να πειραματιστούν με μεγαλύτερο αριθμό πλευρών. Καθώς ο αριθμός των πλευρών αυξάνεται, τα πολύγωνα δείχνουν να ταυτίζονται με τον κύκλο ενώ στην πραγματικότητα αυτό δεν συμβαίνει. Αν ορισμένοι μαθητές προβληματίζονται μπορεί να χρησιμοποιηθεί η μεγέθυνση. Το ενδιαφέρον μετατοπίζεται στα αριθμητικά αποτελέσματα. Ε8: Συμπληρώστε τον παρακάτω πίνακα: n Εμβαδόν Εγγεγραμμένου n-γώνου Εμβαδόν Περιγεγραμμένου n-γώνου (18) 0,09 (23) 3,1 3,1 (56) 0,009 (114) 3,14 3,14. (177) 0,0009 (187) 3,141 3,141 (243) Διαφορά των εμβαδών μικρότερη ή ίση από (559) 0,00009 Στην ερώτηση αυτή οι μαθητές συμπληρώνουν τα κενά κελιά στον πίνακα. Τα αριθμητικά δεδομένα του πίνακα έχουν στόχο να κάνουν οι μαθητές κάποιες εικασίες σχετικές με τη σύγκλιση των τριών ακολουθιών. Για τους αριθμούς όπως ο 0,09 που δίδονται στον πίνακα αναμένεται από τους μαθητές να βρουν κάποια τιμή του n τέτοια ώστε η διαφορά των δυο εμβαδών να είναι μικρότερη του 0,09. 3,14 σημαίνει ότι το πλήθος των πλευρών είναι τέτοιο ώστε και το εσωτερικό και το εξωτερικό πολύγωνο έχουν εμβαδά με τα πρώτα δύο δεκαδικά τους ψηφία ίσα. Στις παραπάνω ερωτήσεις οι απαντήσεις των μαθητών μπορεί να διαφέρουν. Ε9: Υπάρχει κάποιο βήμα στη διαδικασία αυτή όπου το περιγεγραμμένο και το εγγεγραμμένο πολύγωνο θα έχουν το ίδιο εμβαδόν με εκείνο του κύκλου; 5
6 Για την απάντησή σας στην ερώτηση αυτή μπορείτε να χρησιμοποιήσετε το εργαλείο της μεγέθυνσης. Προφανώς, κανένα πολύγωνο δεν μπορεί να συμπέσει με τον κύκλο. Ε10: Θα τερματίσει αυτή η διαδικασία; Αφού η διαδικασία δεν τερματίζεται μπορεί να συνεχιστεί απεριόριστα. Δηλαδή, μπορούμε πάντοτε να πάρουμε πολύγωνα με περισσότερες πλευρές. Στο σημείο αυτό γίνεται το πέρασμα στις άπειρες διαδικασίες. Ε11: Ποιον αριθμό πλησιάζει η διαφορά των εμβαδών; Η διαφορά πλησιάζει το 0 όσο το πλήθος των πλευρών μεγαλώνει. Ε12: Πόσο κοντά στον αριθμό αυτό μπορεί να φτάσει η διαφορά των εμβαδών; Μπορούμε να βρεθούμε οσοδήποτε κοντά στο 0, αρκεί να επιλέξουμε κατάλληλα μεγάλο αριθμό πλευρών. Ε13: Πόσο κοντά στο εμβαδόν του κύκλου μπορούμε να φτάσουμε; Σε συνδυασμό με την προηγούμενη ερώτηση μπορούμε να βρεθούμε οσοδήποτε κοντά στο εμβαδόν του κύκλου. 6
7 1.1.1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Εισαγωγή στις άπειρες διαδικασίες ΠΡΟΒΛΗΜΑ Πώς μπορούμε να υπολογίσουμε το εμβαδόν ενός κύκλου με ακτίνα R=1; Ε1: Τι σημαίνει ότι ένα τρίγωνο έχει εμβαδόν ίσο με 4,5; Ε2: Βρείτε γεωμετρικά σχήματα των οποίων το εμβαδόν μπορεί να υπολογιστεί με την προηγούμενη μέθοδο. 7
8 Ε3: Μπορούμε να χωρίσουμε τον κύκλο σε σχήματα των οποίων τα εμβαδά μπορούμε να τα υπολογίσουμε; Ε4: Με ποιο τρόπο είναι δυνατό να συνδέσουμε το εμβαδόν του κύκλου με τα εμβαδά πολυγώνων; Κατασκευάστε δυο τετράγωνα: Ένα εγγεγραμμένο και ένα περιγεγραμμένο στον κύκλο. Προσπαθήστε να απαντήσετε στην ερώτηση χρησιμοποιώντας το αρχείο activity.gr.euc του EucliDraw. Στο περιβάλλον: Μπορούμε να δούμε τον κύκλο. Το κουμπί πλευρές ελέγχει το πλήθος n των πλευρών του κανονικού εγγεγραμμένου και του κανονικού περιγεγραμμένου πολυγώνου. Όταν πατήσουμε το κουμπί περιγεγραμμένο, τότε εμφανίζεται το κανονικό περιγεγραμμένο πολύγωνο με n πλευρές. Με ένα ακόμη κλικ αυτό εξαφανίζεται. Το κουμπί εγγεγραμμένο δρα με αντίστοιχο τρόπο. Επίσης εμφανίζονται τα εμβαδά αυτών των πολυγώνων και η διαφορά τους. Το κουμπί μεγέθυνση εμφανίζει ένα παράθυρο γύρω από ένα προκαθορισμένο σημείο του κύκλου. Μεγαλώνοντας το συντελεστή μεγέθυνσης μπορούμε να επιτύχουμε καλύτερη εστίαση. 8
9 Ε5: Ποια σχέση υπάρχει ανάμεσα στο εμβαδόν E του κύκλου και στα εμβαδά των δύο αυτών τετραγώνων; Ε6: Ποια είναι η διαφορά των εμβαδών των δύο τετραγώνων; Ε7: Μέσω ποιας διαδικασίας είναι δυνατόν να επιτύχουμε καλύτερη προσέγγιση του E ; Ε8: Συμπληρώστε τον παρακάτω πίνακα: n Εμβαδόν Εγγεγραμμένου n-γώνου 3,1 3,14 3,141 Εμβαδόν Περιγεγραμμένου n-γώνου 3,1 3,14. 3,141 Διαφορά των εμβαδών μικρότερη ή ίση από 0,09 0,009 0,0009 0,
10 Ε9: Υπάρχει κάποιο βήμα στη διαδικασία αυτή όπου το περιγεγραμμένο και το εγγεγραμμένο πολύγωνο θα έχουν το ίδιο εμβαδόν με εκείνο του κύκλου; Για την απάντησή σας στην ερώτηση αυτή μπορείτε να χρησιμοποιήσετε το εργαλείο της μεγέθυνσης. Ε10: Θα τερματίσει αυτή η διαδικασία; Ε11: Ποιον αριθμό πλησιάζει η διαφορά των εμβαδών; Ε12: Πόσο κοντά στον αριθμό αυτό μπορεί να φτάσει η διαφορά των εμβαδών; Ε13: Πόσο κοντά στο εμβαδόν του κύκλου μπορούμε να φτάσουμε; 10
Διδακτική Απειροστικού Λογισμού
Διδακτική Απειροστικού Λογισμού Ενότητα 3: Θέματα σχετικά με τη διδασκαλία του ορίου. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 3. ΟΡΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σχεδιάζετε να εισάγετε στην τάξη σας την έννοια του
1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας
.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας Θέμα της δραστηριότητας Αυτή η δραστηριότητα εισάγει στην έννοια του Ορίου Ακολουθίας. Δυο φύλλα εργασίας οδηγούν τους μαθητές στον ορισμό της σύγκλισης μηδενικής
2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο
2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο Θέμα της δραστηριότητας Η δραστηριότητα αυτή, με αφορμή τον υπολογισμό της στιγμιαίας ταχύτητας, εισάγει στο όριο συνάρτησης σε σημείο. Στόχοι
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)
Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β
Διδακτική Απειροστικού Λογισμού
Διδακτική Απειροστικού Λογισμού Ενότητα 6: Θέματα σχετικά με τη διδασκαλία των ολοκληρωμάτων. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 6. ΟΛΟΚΛΗΡΩΜΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Ένας μαθητής κατά την μελέτη της ολοκλήρωσης
Διδασκαλία της Μαθηματικής Ανάλυσης με Χρήση Εργαλείων Δυναμικής Γεωμετρίας
Διδασκαλία της Μαθηματικής Ανάλυσης με Χρήση Εργαλείων Δυναμικής Γεωμετρίας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Ελλάδα Πανεπιστήμιο Κρήτης, Ελλάδα Πανεπιστήμιο Southampton, Ηνωμένο Βασίλειο Πανεπιστήμιο
4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού
4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας
Γ. Μπολοτάκης. Γυμνάσιο Δοξάτου,
Εργαστήριο "Εκπαιδευτικό Λογισμικό Μαθηματικών GeoGebra: Περιβάλλον - Εργαλεία - Δημιουργία Εφαρμογών - Διδακτικές Προτάσεις με Προσομοιώσεις - Φύλλα Εργασίας" Γ. Μπολοτάκης Γυμνάσιο Δοξάτου, gbolotis@gmail.com
ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Κανονικά πολύγωνα Τουρναβίτης Στέργιος
Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα στη φύση, τέχνη, ανθρώπινες κατασκευές, Μαθηματικά Κανονικά πολύγωνα στη φύση Η κηρήθρα είναι ένα φυσικό θαύμα αρχιτεκτονικής Οι μέλισσες έχουν
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών
Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση
ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα
4.2 Δραστηριότητα: Ολικά και τοπικά ακρότατα Θέμα της δραστηριότητας Η δραστηριότητα αυτή αφορά στην εισαγωγή των εννοιών του ολικού και του τοπικού ακροτάτου. Στόχοι της δραστηριότητας Μέσω αυτής της
Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;
Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015
ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΒΑΘΜΟΣ : ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Αριθμητικά.. ΗΜΕΡΟΜΗΝΙΑ: 1/6/015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Α Ολογράφως:... ΧΡΟΝΟΣ: ώρες
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας
Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος
Το φτερό του αεροπλάνου
Το φτερό του αεροπλάνου Γνωστικό Αντικείμενο: Φυσική (Πίεση) Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι μαθητές: - Να εξηγούν
ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ
1 η θεματική ενότητα: Εφαρμογές του εκπαιδευτικού λογισμικού IP 2005 ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα Οριζόντια βολή δραστηριότητας: Μάθημα και Τάξη Φυσική Α Λυκείου στην οποία απευθύνεται: Εκπαιδευτικοί:
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Άρθρα - Υλικό Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Χειραπτικά εργαλεία Υλικά/εργαλεία στο νέο Πρόγραμμα σπουδών
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών
ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει
ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας αντικείμενα,
Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος
Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος 0 λεπτά Βαθμολογία Το διαγώνισμα είναι βαθμολογημένο με άριστα
1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.
Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας
4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης
4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης Θέμα της δραστηριότητας Η δραστηριότητα αυτή πραγματεύεται την έννοια της μονοτονίας συνάρτησης και ακολούθως εισάγει το θεώρημα της μονοτονίας
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο. Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών
Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών Το πρόβλημα Ζητήθηκε από τα παιδιά να χωριστούν σε ομάδες και να προσπαθήσουν να μοιράσουν
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
Proslipsis.gr ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό αντικείμενο)
2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.
Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.
Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους
ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ
ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ Το στιγμιότυπο που παρουσιάζεται εδώ πρόκυψε πέντε λεπτά πριν από τη λήξη μιας διδακτικής ώρας η οποία ήταν αφιερωμένη σε μια γενική επανάληψη του κεφαλαίου
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι
Μήκος κύκλου. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ
Μήκος κύκλου Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν
Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων 2014 Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γενικής Παιδείας ΗΜΕΡΗΣΙΑ ΓΕ.Λ.
Λύσεις των θεμάτων επαναληπτικών πανελλαδικών εξετάσεων 04, Μαθηματικά και Στοιχεία Στατιστικής Ημερησίων ΓΕ.Λ. Λύσεις θεμάτων επαναληπτικών πανελληνίων εξετάσεων 04 Στο μάθημα: «Μαθηματικά και Στοιχεία
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:
Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...
Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 13 Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Όλες οι εφαρμογές που καλείσθε να χρησιμοποιήσετε είναι
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.
ΜΕΡΟΣ Β 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ 345 3.5 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. ρ Χωρίζουμε τον κύκλο σε πιο μικρά μέρη και σχηματίζεται ένα ορθογώνιο με διαστάσεις
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες
21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,
1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; 2. Ποια είναι τα δευτερεύοντα στοιχεία ενός τριγώνου;
ΜΕΡΟΣ Β : ΓΕΩΜΕΤΡΙΑ -ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ 1.1 Ισότητα τριγώνων 1. Ποια είναι τα κύρια στοιχεία ενός τριγώνου; Κυρια στοιχεια του τριγωνου ειναι: οι πλευρες του ΑΒ,ΒΓ,ΓΑ οι γωνιες του Α,Β,Γ.
Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:
Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Γεωμετρία. I. Εισαγωγή
I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε
4.1 Δραστηριότητα: H έννοια της παραγώγου και η εφαπτομένη ευθεία
4.1 Δραστηριότητα: H έννοια της παραγώγου και η εφαπτομένη ευθεία Θέμα της δραστηριότητας Αυτή η δραστηριότητα στοχεύει στο να εισάγει τους μαθητές στην έννοια της παραγώγου συνάρτησης σε σημείο x μέσω
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη
ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων Στόχος Εκμάθηση τεχνικών και μεθόδων για να χρησιμοποιείται το λογισμικό φύλλων εργασίας στη διδασκαλία. Διατυπωμένες Θέσεις 1 Δε χρησιμοποιείται
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II
1 Φύλλο 1 Δράσεις με το λογισμικό Cabri-geometry II Στις δύο παρακάτω γραμμές από το περιβάλλον του λογισμικού αυτού η πρώτη αφορά γενικές επεξεργασίες και δεύτερη με τα εικονίδια περιλαμβάνει τις στοιχειώδεις
Ευθύγραμμες Κινήσεις
Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
ΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη
ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
1.4 ΟΜΟΙΟΘΕΣΙΑ ΑΣΚΗΣΕΙΣ. 2. Το οµοιόθετο γωνίας : Είναι γωνία ίση µε την αρχική
1 1.4 ΜΙΘΣΙ ΘΩΡΙ 1. Το οµοιόθετο ευθυγράµµου τµήµατος ίναι ευθύγραµµο τµήµα // AB και τέτοιο ώστε = λ, όπου λ ο λόγος οµοιοθεσίας (το κέντρο οµοιοθεσίας να µην ανήκει στν ευθεία ). Το οµοιόθετο γωνίας
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Σχολ. Έτος : 2007-2008 Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν.... ΓΥΜΝΑΣΙΟ... Τάξη: Γ Μάθημα : Πληροφορική Ημερ/νία : 11 / 6 / 2008 Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Σημειώστε