ΥδροδυναµικέςΜηχανές
|
|
- Τρύφαινα Λούλης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης
2 Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις µιας αξονικής και µιας ακτινικής στροβιλοµηχανής (ΣΜ). Λόγω της περιστροφικής κίνησης χρησιµοποιείται το κυλινδρικό σύστηµα συντεταγµένων. Σεαυτόέχουµετρειςδιευθύνσεις: α. αξονική x, πουσυµπίπτειµε τον άξονα περιστροφής β. ακτινική r, που εκτείνεται κατά µήκος της ακτίνας γ. εφαπτοµενική θ, που δίνεται από τη γωνία περιστροφής κατά τη φορά περιστροφής της ΣΜ.
3 Ταχύτηταρευστούσε κυλινδρικέςσυντεταγµένες Η ταχύτητα του ρευστού συµβολίζεται µε το γράµµα c. Σε ένα κυλινδρικό σύστηµα συντεταγµένων (x, r, θ) οι συνιστώσες της ταχύτητας του ρευστού θα συµβολίζονται µε (c x, c r, c θ ). Η ταχύτητα της πτερωτής (στερεού) συµβολίζεται µε u και έχει µόνο εφαπτοµενική συνιστώσα, δηλαδή στο κυλινδρικό σύστηµασυντεταγµένωνοισυνιστώσεςτηςθαείναι: (0,0,u).
4 Απόλυτηκαισχετική ταχύτηταρευστού Η ταχύτητα του ρευστού µπορεί να εκφράζεται µέσω του απόλυτου διανύσµατος αναφερόµενη σε ακίνητο σύστηµα συντεταγµένων. c r Επίσης, η ταχύτητα του ρευστού µπορεί να εκφράζεται µέσω του σχετικού διανύσµατος αναφερόµενη σε σύστηµα συντεταγµένων που κινείται µαζί µε την πτερωτή. Τα δύο ανωτέρω διανύσµατα συνδέονται µεταξύ τους µέσω του διανύσµατος της ταχύτητας περιστροφής της πτερωτής, ως εξής: r c r = u + r w u r w r
5 Αξονικέςστροβιλοµηχανές Στην αξονική ΣΜ του σχήµατος αποµονώνουµε την κυλινδρικήεπιφάνεια abcd. Η ροή εισέρχεται αξονικά στην είσοδο της πτερωτής (θέση ) και εξέρχεται πάλι αξονικά στην έξοδο της πτερωτής (θέση ).
6 σεαξονικήσμ Στην είσοδο της πτερωτής της ΣΜ αναπτύσσονται οι ακόλουθες ταχύτητες: Η απόλυτη ταχύτητα εισαγωγής της ροής του ρευστού στηνπτερωτή c. Ηπεριφερειακήταχύτηταπεριστροφήςτηςπτερωτής, πουσεακτίνα r έχειτιµή: u =ω r. Οιδύοανωτέρωταχύτητεςέχουνωςαποτέλεσµαηροή του ρευστού εντός της πτερωτής να αποκτήσει µία σχετικήταχύτητα w ωςπροςσύστηµακινούµενοµετην πτερωτή που, διανυσµατικά, θα δίνεται από τη σχέση: r r r c = w + u Η ταχύτητα αυτή είναι πάντα εφαπτοµενική στην καµπύλη του πτερυγίου.
7 σεαξονικήσμ r r r c = w + u
8 σεαξονικήσμ Στην έξοδο της πτερωτής της ΣΜ αναπτύσσονται οι ακόλουθες ταχύτητες: Ηπεριφερειακήταχύτηταπεριστροφήςτηςπτερωτής, πουσεακτίνα r έχειτιµή: u =ω r. Η σχετική ταχύτητα της ροής που είναι εφαπτοµενική στην καµπύλη του πτερυγίου. Οι δύο ανωτέρω ταχύτητες έχουν ως αποτέλεσµα τη διαµόρφωση της διεύθυνσης και του µέτρου της ταχύτητας εξόδου της ροής του ρευστού από την πτερωτή, ώστε να ικανοποιείται η σχέση: r r r c = w + u
9 σεαξονικήσμ r r r c = w + u
10 σεαξονικήσμ Στη γενική περίπτωση η ταχύτητα εισαγωγής του ρευστού στην πτερωτή δεν θα είναι αξονική, αλλά θα έχει καιµιαεφαπτοµενικήσυνιστώσα. Τα δύο τρίγωνα ταχυτήτων στην είσοδο και στην έξοδο της ροής από την πτερωτή παριστάνονται στη γενική περίπτωση στο ακόλουθο σχήµα.
11 σεαξονικήσμ Στην περίπτωση που τα δύο τρίγωνα ταχυτήτων αναφέρονταιστηνίδιαακτινικήαπόσταση (r =r ), τότε ονοµάζονταιτρίγωνακοινήςβάσης.
12 σεαξονικήσμ Στασχήµατααυτάαπεικονίζονταιηαξονική c x καιη εφαπτοµενική c θ συνιστώσατηςαπόλυτηςταχύτηταςτου ρευστού. Ηαξονικήσυνιστώσα c x είναιαυτήπουκαθορίζειτην παροχή του ρευστού διαµέσου της πτερωτής. Ηεφαπτοµενικήσυνιστώσα c θ είναιαυτήπουκαθορίζειτην εναλλαγή έργου µεταξύ ρευστού και πτερωτής.
13 σεαξονικήσμ Ισχύουν οι σχέσεις: Γιατηνίδιαακτινικήαπόσταση: r =r. Περιφερειακήταχύτητα u=ω r = πnr/60 (ω=πn/60) όπου ω η γωνιακή ταχύτητα της πτερωτής σε rad/sec και n οαριθµόςστροφώντηςµηχανήςσε rpm. Γιατηνίδιαακτινικήαπόσταση: u =u. Λόγω της συνέχειας της µάζας: m& ρ όπου: A A = m& A = = π c π x ( r ) r ( r r ) = ρ ρ Q A = ρ c x Q
14 Ισχύουν οι σχέσεις: Τρίγωνοταχυτήτων σεαξονικήσμ Γιατηνίδιαακτινικήαπόσταση: Α =Α, οπότε: ρ cx= ρ cx Επίσης, ανηροήείναιασυµπίεστη, τότε: c x =c x
15 σεαξονικήσμ Επίσης ισχύουν οι παρακάτω τριγωνοµετρικές σχέσεις: cosα =c x /c και cosα =c x /c sinα =c θ /c και sinα =c θ /c tanβ =(u -c θ )/c x και tanβ =(u -c θ )/c x Οι r γωνίες r αrκαι β σχηµατίζονται r ανάµεσα στα διανύσµατα c και cx w αντίστοιχα. c x
16 σεαξονικήσμκαιµηχανικήισχύς Μέσω της εξίσωσης της ροπής της ορµής (στροφορµή) ως προς ένα άξονα περιστροφής για µόνιµη ροή, αποδεικνύεται ότι η αποδιδόµενη µηχανική ισχύς στο ρευστό ισούται µε: W& = ρ Q ( u c u ) θ cθ Με βάση την ανωτέρω σχέση, η ισχύς προσλαµβάνεται ως θετική όταν πρόκειται για αντλία και αρνητική όταν πρόκειται για στρόβιλο. εδοµένου ότι η αποδιδόµενη µηχανική ισχύς ισούται µε: W& = ρ g Η Q προκύπτειτελικάότι: Η= u cθ u c g θ
17 σεαξονικήσμκαιµηχανικήισχύς Από την τελευταία σχέση καταλήγουµε στα ακόλουθα συµπεράσµατα: u cθ u cθ Η= g όταν το ρευστό εισέρχεται στην πτερωτή χωρίς συστροφή, τότε παίρνουµε το µέγιστο µανοµετρικό (α =0 ο, οπότε c θ =0) τούτοεπιτυγχάνεταιµετην τοποθέτηση των οδηγητικών πτερυγίων στην είσοδο κάθε βαθµίδας αντλίας τοµανοµετρικόαυξάνειµεαύξησητης u (αύξηση στροφών) ή/και µε αύξηση της εφαπτοµενικής συνιστώσας c θ (κατάλληληδιαµόρφωσηπτερωτής).
18 σεαξονικήσμκαιµηχανικήισχύς Η εφαρµογή του θεωρήµατος Bernoulli µεταξύ εισόδου και εξόδου της πτερωτής δίνει: P c P c + + Η= γ g γ + g
19 σεακτινικήσμ ΣτηνείσοδοκαιστηνέξοδοτηςπτερωτήςτηςΣΜ αναπτύσσονται οι ακόλουθες ταχύτητες: Η απόλυτη ταχύτητα εισαγωγής και εξαγωγής της ροής του ρευστούστηνπτερωτή c και c αντίστοιχα. Η περιφερειακή ταχύτητα περιστροφής της πτερωτής, που σεακτίνα r έχειτιµή u =ω r καισεακτίνα r έχειτιµή u =ω r. Οιδύοανωτέρωταχύτητεςέχουνωςαποτέλεσµαηροήτου ρευστούνααποκτήσειµίασχετικήταχύτηταπου, διανυσµατικά, θα δίνεται από τη σχέση: r r r c w + u r r r c = w + u = Η ταχύτητα αυτή είναι πάντα εφαπτοµενική στην καµπύλη του πτερυγίου.
20 σεακτινικήσμ Το τρίγωνο ταχυτήτων σε ακτινική ΣΜ σχεδιάζεται γνωρίζοντας τη διεύθυνση της περιφερειακής ταχύτητας u (εφαπτοµενική της τροχιάς περιστροφής) και τη διεύθυνση της σχετικήςταχύτητας w (εφαπτοµενική στην καµπύλη του πτερυγίου). r r r c = w + u r r r c = w + u
21 σεακτινικήσμ Ηαπόλυτηταχύτητατουρευστούεντόςτηςπτερωτής c έχεισυνήθωςµόνοακτινικήσυνιστώσα. Στη γενική περίπτωση όµως µπορεί να έχει και εφαπτοµενική συνιστώσα. Τα δύο τρίγωνα ταχυτήτων στην είσοδο και στην έξοδο της ροής από την πτερωτή παριστάνονται στη γενική περίπτωση στο ακόλουθο σχήµα.
22 σεακτινικήσμ Ηαπόλυτηταχύτητατουρευστούεντόςτηςπτερωτής c έχει αναλυθεί στα σχήµατα αυτά στις δύο συνιστώσες της κατάτηνακτινική c r καιεφαπτοµενική c θ διεύθυνση. u r c r r u w Η γωνία β αποτελεί στοιχείο σχεδιασµού της πτερωτής της αντλίας, καθώς ορίζεται από την εφαπτοµενική διεύθυνση και την καµπύλη του πτερυγίου. Οι γωνίες α και β σχηµατίζονται r ανάµεσα στα διανύσµατα και αντίστοιχα.
23 σεακτινικήσμ Ισχύουν οι σχέσεις: Περιφερειακήταχύτητα u =ω r και u =ω r όπου ω=πn/60 η γωνιακή ταχύτητα της πτερωτής σε rad/sκαι n οαριθµόςστροφώντηςµηχανήςσε rpm. Λόγω της συνέχειας της µάζας: όπου: όπου b το πλάτος πτερυγίου κατά την αξονική διεύθυνση. r r b r π A b r π A c A ρ c A ρ Q ρ Q ρ m m = = = = = & &
24 Ισχύουν οι σχέσεις: Για ασυµπίεστη ροή: A r c b r c = r Τρίγωνοταχυτήτων σεακτινικήσμ A = r c r b c r
25 σεακτινικήσμ Επίσης ισχύουν οι παρακάτω τριγωνοµετρικές σχέσεις: cosα =c θ /c και cosα =c θ /c sinα =c r /c και sinα =c r /c tanβ =c r /(u -c θ ) και tanβ =c r /(u -c θ ).
26 σεακτινικήσμκαιµηχανικήισχύς Και στην περίπτωση των ακτινικών ΣΜ ισχύουν οι σχέσεις: Αποδιδόµενη µηχανική ισχύς: W& = ρ Q Μανοµετρικό: ( u c u ) θ cθ Η= u cθ u c g Εφαρµογή θεωρήµατος Bernoulli: θ P c P + + Η= γ g γ + c g
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 12 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
ΥδροδυναµικέςΜηχανές
ΥδροδυναµικέςΜηχανές Χαρακτηριστικές καµπύλες υδροστροβίλων Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Θεωρητικήχαρακτηριστική υδροστροβίλου Θεωρητική χαρακτηριστική υδροστροβίλου
ΠΕΡΙΕΧΟΜΕΝΑ 4.1 ΘΕΩΡΙΑ ΔΙΣΔΙΑΣΤΑΤΩΝ ΠΤΕΡΥΓΩΣΕΩΝ 4.3 ΤΡΙΓΩΝΑ ΤΑΧΥΤΗΤΩΝ ΑΚΤΙΝΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΑΣΚΗΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 4.
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 4.1 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 4.1 4.1.1 ΓΕΝΙΚΑ 4.1.2 ΟΡΟΛΟΓΙΑ ΠΤΕΡΥΓΩΣΗΣ 4.1.3 ΑΝΑΛΥΣΗ ΔΥΝΑΜΕΩΝ ΣΕ ΠΤΕΡΥΓΩΣΕΙΣ 4.1.4 ΚΥΚΛΟΦΟΡΙΑ ΚΑΙ ΑΝΩΣΗ 4.1.5 ΚΥΛΙΝΔΡΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ & ΣΧΕΤΙΚΗ ΤΑΧΥΤΗΤΑ 4.1.6
ΥδροδυναµικέςΜηχανές
ΥδροδυναµικέςΜηχανές Αντλίες Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Αντλίες Ορισµός Είναι οι µηχανές που χρησιµοποιούνται για να µετακινούν υγρά. Βασική ενεργειακή µετατροπή:
Υδραυλικές Μηχανές και Ενέργεια
Υδραυλικές Μηχανές και Ενέργεια Διάλεξη 8. - Υδροστρόβιλοι αντιδράσεως - Ολοκλήρωση θεωρίας για υδροστρόβιλους δράσεως Σκουληκάρης Χαράλαμπος Ηλεκτρολόγος Μηχανικός & Μηχ. Η/Υ, MSc, PhD hskoulik@civil.auth.gr
ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ
ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Mάθημα: Θερμικές Στροβιλομηχανές. Εργαστηριακή Ασκηση. Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή
Ε.Μ. ΠΟΛΥΤΕΧΝΕIΟ ΕΡΓΑΣΤΗΡIΟ ΘΕΡΜIΚΩΝ ΣΤΡΟΒIΛΟΜΗΧΑΝΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ Mάθημα: Θερμικές Στροβιλομηχανές Εργαστηριακή Ασκηση Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Κ. Μαθιουδάκη Καθηγητή
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές
Κεφάλαιο 5 Η στροφορμή στις ρευστοδυναμικές μηχανές Σύνοψη Απόδοση του νόμου της στροφορμής σε ροϊκά συστήματα Αξονοσυμμετρικοί όκοι ελέχου Αντλίες, Στρόβιλοι Θεωρία πτερυώσεων (τρίωνα ταχυτήτων Θεωρητική
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
ΥδροδυναµικέςΜηχανές
ΥδροδυναµικέςΜηχανές Σπηλαίωση υδροστροβίλων Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Το φαινόµενο της σπηλαίωσης αναπτύσσεται στους υδροστροβίλους µε τρόπο ανάλογο µε την
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
Κεφάλαιο 1: Κινηματική των Ταλαντώσεων
Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 08 Δυναμική περιστροφικής κίνησης Ροπή Ροπή Αδρανείας ΦΥΣ102 1 Περιστροφική κίνηση
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Φυγοκεντρική αντλία 3η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Φυγοκεντρική αντλία 3η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της πραγματικής χαρακτηριστικής
ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΒΑΘΜΟΙ ΑΠΟΔΟΣΗΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΑΣΚΗΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 2.1 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ 2.1 2.1.1 ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΑΖΑΣ 2.1.2 1 ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΕΝΕΡΓΕΙΑΣ 2.1.3 2 ος ΝΟΜΟΣ NEWTON
Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)
ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται
ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΑΝΤΛΙΩΝ
ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΑΝΤΛΙΩΝ (Από Β.Μ.Π. Ευγενίδου Ιδρύματος, Αθήνα 2015) Επιμέλεια : Ράπτης Κων/νος Δρ. Μηχανολόγος Μηχανικός Ε.Μ.Π. Ασπρόπυργος 2018 Σελίδα 1 από 8 ΑΝΤΛΙΕΣ 1. Γενικά Η ροή ενός ρευστού
Υδραυλικές Μηχανές και Ενέργεια
Υδραυλικές Μηχανές και Ενέργεια Διάλεξη 6. - Εξισώσεις διατήρησης μάζας, ορμής και ενέργειας Σκουληκάρης Χαράλαμπος Ηλεκτρολόγος Μηχανικός & Μηχ. Η/Υ, MSc, PhD hskoulik@civil.auth.gr Ξάνθη, 18 Νοεμβρίου
ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ
ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ Aπό τo βιβλίο Heinz Grohe: Otto und Dieselmotoren. 9 Auflage, Vogel Buchverlag 1990. Kεφάλαιο 2: Mechanische Grundlagen Επιμέλεια μετάφρασης:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.
Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6
ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΑΕΡΟΔΥΝΑΜΙΚΗ
ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: Δρ. Κονταξάκης Κώστας Επικ. καθηγητής ΤΕΙ Κρήτης 1 2 Ροϊκός σωλήνας δρομέα ανεμοκινητήρα 3 Για τη μελέτη του αεροδυναμικού πεδίου γύρω από το δίσκο θα εφαρμοστούν οι γνωστοί νόμοι της
Κεφάλαιο 7 - Φυγοκεντρικές Διατάξεις Διακίνησης Ρευστών
Κεφάλαιο 7 - Φυγοκεντρικές Διατάξεις Διακίνησης Ρευστών Σύνοψη Περιγράφεται η δομή, λειτουργία και χρήση δύο ευρύτατα χρησιμοποιούμενων διατάξεων μεταφοράς υγρών και αερίων, οι οποίες είναι η φυγοκεντρική
Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και
Διαφορική ανάλυση ροής
Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΝΤΛΙΩΝ
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΑΝΤΛΙΩΝ (Από Β.Μ.Π. Ευγενίδου Ιδρύματος, Αθήνα 2015) Επιμέλεια : Ράπτης Κων/νος Δρ. Μηχανολόγος Μηχανικός Ε.Μ.Π. Ασπρόπυργος 2018 Σελίδα 1 από 7 Χαρακτηριστικά Στοιχεία Αντλιών
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα, για τις αντίστοιχες αλγεβρικές τιμές των ταχυτήτων των δύο σωμάτων πριν από την κρούση τους προκύπτει ότι:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑ (10) ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέµα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα
ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.
Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ. ΘΕΜΑ Β Β1. Σωστή απάντηση είναι η γ. Ο αριθμός των υπερβολών ενισχυτικής συμβολής που τέμνουν την
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής
ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler)
ΜΑΡΤΙΟΣ 07 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 0.800sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
5-6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΟΣΤΡΟΒΙΛΟΙ
-6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΟΣΤΡΟΒΙΛΟΙ PELTON & FRANCIS Σκοπός της Άσκησης Σκοπός της άσκησης είναι η χάραξη των καμπυλών ισχύος, ροπής στρέψης και βαθμού απόδοσης συναρτήσει του αριθμού στροφών των υδροστροβίλων
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
ΕΡΩΤΗΣΕΙΣ. c) Με τον µικτό στρόβιλο επιτυγχάνεται συνολικά µικρότερο µήκος του στροβίλου για κάθε ιπποδύναµη.
ΒΑΘΜΟΣ ΣΦΡΑΓΙ Α Α.Ε.Ν. ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012 2013 ΑΤΜΟΣΤΡΟΒΙΛΟΙ ΕΞΑΜΗΝΟ ΟΝΟΜΑ... ΕΠΙΘΕΤΟ... ΑΡΙΘΜΟ ΜΗΤΡΩΟΥ... ΕΡΩΤΗΣΕΙΣ 1. Σε ενα ατµοστροβιλος
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)
Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,
ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018
Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Μία ηχητική πηγή που εκπέμπει ήχο συχνότητας κινείται με σταθερή ταχύτητα πλησιάζοντας ακίνητο παρατηρητή, ενώ απομακρύνεται από άλλο ακίνητο παρατηρητή.
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και
ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 7-Μάρτη-015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ
ΠΡΤΥΠ ΠΕΙΡΑΜΑΤΙΚ ΛΥΚΕΙ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡ ΕΠΑΝΑΛΗΠΤΙΚ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕ Μαθητής/Μαθήτρια -----------------------------------------------
mg ηµφ Σφαίρα, I = 52
Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Και τα στερεά συγκρούονται
Και τα στερεά συγκρούονται Εξετάζοντας την ελαστική κρούση υλικών σημείων, ουσιαστικά εξετάζουμε την κρούση μεταξύ δύο στερεών σωμάτων, δύο μικρών σφαιρών, τα οποία εκτελούν μόνο μεταφορική κίνηση. Τι
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο
ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάσαµε την κίνηση ενός υλικού σηµείου υπό την επίδραση µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού σηµείου έχοµε ένα στερεό σώµα.
Κεφάλαιο Η2. Ο νόµος του Gauss
Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ. Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ονοματεπώνυμο Σπουδαστή: Πατρώνυμο Σπουδαστή:
1. Εισαγωγή στην Κινητική
1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας
ΦΥΣ 111 Γενική Φυσική Ι 4 η Εργασία Επιστροφή: 11.10.18 1. Ένα κιβώτιο µάζας 20kg το οποίο είναι συνδεδεµένο µε µία τροχαλία κινείται κατά µήκος µίας λείας επιφάνειας. Το κιβώτιο είναι συνδεδεµένο µέσω
Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
ΑΣΚΗΣΗ 8 ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΕΠΑΓΩΓΙΚΟΥ ΚΙΝΗΤΗΡΑ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. DEPARTMENT OF ELECTRICAL ENGINEERING 3 ος Εργαστηριακός Κύκλος ΑΣΚΗΣΗ 8 ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΕΠΑΓΩΓΙΚΟΥ ΚΙΝΗΤΗΡΑ ΤΕΙ ΑΜΘ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος Άσκηση 2, Καθηγητής Σ. Τσαγγάρης ΑΣΚΗΣΗ 2
Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος 3-4- Άσκηση, Πεδίο ταχυτήτων : u=, v=6x ΑΣΚΗΣΗ ) Ενα στοιχείο του ρευστού, κινούµενο στο πεδίο ταχυτήτων µεταφέρεται, περιστρέφεται και παραµορφώνεται
Κεφάλαιο 6 - Εξίσωση ορμής Πρόσπτωση δέσμης ρευστού σε στερεή επιφάνεια
Κεφάλαιο 6 - Εξίσωση ορμής Πρόσπτωση δέσμης ρευστού σε στερεή επιφάνεια Σύνοψη Εξετάζονται δύο περιπτώσεις μιας τυπικής εφαρμογής της εξίσωσης ορμής, της πρόσπτωσης δέσμης νερού σε στερεή επιφάνεια. Στην
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ
ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο
ΚΕΦΑΛΑΙΟ 8 Ροπή και Στροφορµή Μέρος δεύτερο Στο προηγούµενο Κεφάλαιο εξετάσαµε την περιστροφή στερεού σώµατος περί σταθερό άξονα. Εδώ θα εξετάσοµε την εξίσωση κίνησης στερεού σώµατος γενικώς. Πριν το κάνοµε
Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή
Μετασχηματισμός Jοukowski κυκλικού κυλίνδρου σε ομοιόμορφη ροή Κυκλικός κύλινδρος (ακτίνας r ) βρίσκεται εντός επίπεδης, άτριβης, δυναμικής ροής. Η γωνία πρόσπτωσης της αδιατάρακτης (επ άπειρον) ροής είναι
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης
ΜΟΝΟΔΙΑΣΤΑΤΗ ΑΝΑΛΥΣΗ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Αποτελέσματα Αναγωγής Μετρήσεων Εργαστηριακής Άσκησης Μέτρηση Χαρακτηριστικής Καμπύλης Βαθμίδας Αξονικού Συμπιεστή Ονοματεπώνυμο Σπουδαστή: Κωδικός Σπουδαστή:
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
ΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛ. ΔΙΑΓΩΝΙΣΜΑ 2018 ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση Α1 Περιπολικό ακολουθεί αυτοκίνητο
ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:
ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο