Α. Ροπή δύναµης ως προς άξονα περιστροφής
|
|
- Βασιλεύς Χριστιανός Κουντουριώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό και στη σελίδα Ο l A Η Ροπή της F έχει µέτρο ίσο µε το γινόµενο του µέτρου της F επί την κάθετη απόσταση l της F από τον άξονα περιστροφής. Συµβολίζεται µε τ και είναι µέγεθος ΔΙΑΝΥΣΜΑΤΙΚΟ
2 Μηχανική στερεού σώµατος, Ροπή Μέτρο της ροπής: τ F = F l Η κάθετη απόσταση l της F από τον άξονα περιστροφής ονοµάζεται: «µοχλοβραχίονας». Η διεύθυνση της τ F είναι ίδια µε τη διεύθυνση του άξονα τ F F περιστροφής. Η φορά της τ F προκύπτει από Ο l A τον κανόνα του δεξιού χεριού. Μονάδα µέτρησης της ροπής το 1 Ν m (SI).
3 Μηχανική στερεού σώµατος, Ροπή Υπολογισµός της Ροπής Δύναµης 1 η Περίπτωση: L Ο l F φ A τ F = F l τ F = F L ηµφ η Περίπτωση: L τ F Μηδέν διότι η F Π διέρχεται από τον άξονα περιστροφής 0 τ F = τ FΚ + τ FΠ = Ο F Π φ A = τ FΚ = F Κ L = τ F F F Κ = F ηµφ L
4 3 η Περίπτωση: τ F Μηχανική στερεού σώµατος, Ροπή Στο σηµείο Α του στερεού ασκείται η δύναµη F. F Π F η F δε βρίσκεται σε επίπεδο κάθετο στον άξονα περιστροφής. O l A F K η F αναλύεται σε δύο συνιστώσες: i) την F Π που είναι παράλληλη στον άξονα περιστροφής και η οποία δε δηµιουργεί ροπή τ FΠ =0 ii) Την F Κ που είναι σε επίπεδο κάθετο στον άξονα περιστροφής. Η ροπή της είναι ίση µε τη ροπή της F: τ FΚ = τ F = F Κ l
5 Μηχανική στερεού σώµατος, Ροπή τ F F Π F Τελικά η ροπή της F είναι η ροπή της F Κ και έχει τη διεύθυνση του άξονα O l A F K περιστροφής. Η φορά της βρίσκεται µε τον κανόνα του δεξιού χεριού.
6 4 η Περίπτωση: τ F1 F 1 Μηχανική στερεού σώµατος, Ροπή Στο σηµείο Ο διέρχεται ο άξονας περιστροφής κάθετα στη σελίδα. O l 1 Το στερεό δέχεται δύο δυνάµεις F 1, F µε µοχλοβραχίονες l 1 και l αντίστοιχα. F l Οι ροπές των F 1 και F έχουν µέτρα: τ F1 = F 1 l 1 τ F τ F = F l Η συνισταµένη ροπή βρίσκεται αν αθροίσουµε διανυσµατικά: (θεωρούµε θετική τη φορά περιστροφής που είναι αντίθετη από τη φορά περιστροφής των δεικτών του ρολογιού) Στ = F 1 l 1 F l
7 Μηχανική στερεού σώµατος, Ροπή B. Ροπή ως προς σηµείο O τ F l F Ορίζουµε ως ροπή µιας δύναµης ως προς σηµείο το διανυσµατικό µέγεθος που έχει: α) µέτρο : το γινόµενο του µέτρου της δύναµης επί την απόσταση του φορέα της δύναµης από το σηµείο τ F = F l β) διεύθυνση : κάθετη στο φορέα της δύναµης και στη διεύθυνση της κάθετης απόστασης της δύναµης από το σηµείο. γ) φορά : όπως ορίζεται από τον κανόνα του δεξιού χεριού.
8 Γ. Ροπή ζεύγους δυνάµεων Ζεύγος δυνάµεων ονοµάζουµε δύο δυνάµεις που είναι αντίθετες (έχουν ίσα µέτρα, ίδια διεύθυνση, αντίθετη φορά), αλλά ασκούνται σε διαφορετικά σηµεία του στερεού. F 1 τ 1 d l 1 Μηχανική στερεού σώµατος, Ροπή και F 1 = F F = F 1 (ίσα µέτρα) O τ 1 = F 1 l 1 και τ = F l Στ l τ F Στ = τ 1 + τ = F 1 l 1 + F l = = F 1 ( l 1 + l ) Στ = F 1 d
9 Μηχανική στερεού σώµατος, Ροπή Άρα: Ροπή ζεύγους δυνάµεων Στ = F 1 d Η ροπή ζεύγους έχει µέτρο που ισούται µε το γινόµενο του µέτρου της µίας δύναµης, επί, τη µεταξύ τους απόσταση. Αυτό ισχύει ανεξάρτητα από τη θέση του άξονα περιστροφής. Π.χ.: F 1 τ 1 l 1 O l τ 1 = - F 1 l 1 και τ = F l Στ = τ 1 + τ = - F 1 l 1 + F l = d = F 1 (- l 1 + l ) Στ = F 1 d Στ F τ
10 Μηχανική στερεού σώµατος, Ισορροπία ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Για να έχουµε ισορροπία σε ένα στερεό σώµα θα πρέπει: 1 ον : Η συνισταµένη των δυνάµεων που δέχεται να είναι µηδέν ΣF = 0 ΣF ΣF x y = = 0 0 ον : Το αλγεβρικό άθροισµα των ροπών ως προς οποιοδήποτε σηµείο να είναι µηδέν και Στ = 0
11 Μηχανική στερεού σώµατος, Ροπή Αδράνειας ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ Στερεό µάζας Μ r άξονας περιστροφής r 1 m 1 στοιχειώδης µάζα m 1 Διαιρούµε το στερεό σε µεγάλο αριθµό στοιχειωδών µαζών που απέχουν διαφορετικές αποστάσεις από τον άξονα περιστροφής. Ορίζουµε ως ροπή αδράνειας του στερεού ως προς τον άξονα περιστροφής το άθροισµα των γινοµένων m i r i για ό- λες τις στοιχειώδεις µάζες που αποτελούν το στερεό: m r 3 m 3 I = m 1 r 1 + m r + +m N r N ή I = N i= 1 m i r i
12 Μηχανική στερεού σώµατος, Ροπή Αδράνειας Η ροπή αδράνειας : Είναι µονόµετρο µέγεθος. Έχει µονάδα µέτρησης το 1 Kg m. Έχει τιµή που εξαρτάται: α) από τη µάζα του σώµατος β) από τον τρόπο που η µάζα του στερεού είναι κατανεµηµένη γύρω από τον άξονα περιστροφής. ΠΡΟΣΟΧΗ: Η ροπή αδράνειας είναι διαφορετική για κάθε άξονα περιστροφής, όταν µιλάµε για το ίδιο σώµα.
13 Μηχανική στερεού σώµατος, Ροπή Αδράνειας Υπολογισµός ροπής αδράνειας δακτυλίου ακτίνας R και µάζας Μ, ως προς άξονα περιστροφής που διέρχεται από το c.m. και είναι κάθετος στο επίπεδο του δακτυλίου. I = m 1 R + m R + +m N R R I = ( m 1 + m + +m N ) R m 1 m m 3 I = M R
14 Μηχανική στερεού σώµατος, Ροπή Αδράνειας ΠΙΝΑΚΑΣ ΜΕ ΤΙΣ ΡΟΠΕΣ ΑΔΡΑΝΕΙΑΣ ΟΡΙΣΜΕΝΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΩΜΑΤΩΝ ΩΣ ΠΡΟΣ ΑΞΟΝΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΌ ΤΟ ΚΕΝΤΡΟ ΜΑΖΑΣ
15 Μηχανική στερεού σώµατος, Ροπή Αδράνειας Θεώρηµα STEINER ή ΠΑΡΑΛΛΗΛΩΝ ΑΞΟΝΩΝ Έστω ένα στερεό µάζας Μ. Ρ d Ι cm : ροπή αδράνειας του στερεού ως προς άξονα που διέρχεται από το c.m. Ι Ρ : ροπή αδράνειας του στερεού ως προς A c.m. (M) τον άξονα Ρ που διέρχεται από το ση- µείο Α του στερεού. Το Α απέχει απόσταση d από το c.m. Και ο άξονας Ρ είναι παράλληλος µε τον άξονα που διέρχεται από το c.m. I Ρ = Ι cm + M d
16 Μηχανική στερεού σώµατος, Ροπή Αδράνειας Τελικά, τί εκφράζει η Ροπή Αδράνειας; Η ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ ΕΚΦΡΑΖΕΙ ΤΗΝ ΑΝΤΙΣΤΑΣΗ ΠΟΥ ΦΕΡΝΕΙ ΕΝΑ ΣΤΕΡΕΟ ΟΤΑΝ ΠΡΟΣΠΑΘΟΥΜΕ ΝΑ ΤΟΥ ΜΕΤΑΒΑΛΛΟΥΜΕ ΤΗ ΣΤΡΟΦΙΚΗ ΤΟΥ ΚΙΝΗΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ( Δ Η Λ Α Δ Η Ο Τ Α Ν Π Α Μ Ε Ν Α Τ Ο Υ ΔΗΜΙΟΥΡΓΗΣΟΥΜΕ ΓΩΝΙΑΚΗ ΕΠΙΤΑΧΥΝΣΗ ).
17 Μηχανική στερεού σώµατος, Θεµελιώδης Νόµος Στροφικής Κίνησης ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΤΗΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ Για στερεό σώµα που στρέφεται γύρω από άξονα, ισχύει: Στ = Ι α γ Η παραπάνω σχέση συνδέει τα µέτρα των Στ και α γ. Δε συνδέει τα µεγέθη αυτά διανυσµατικά. Η σχέση ισχύει πάντα για στροφικές κινήσεις. Η σχέση ισχύει και για σύνθετες κινήσεις, αρκεί να ισχύουν οι προϋποθέσεις : α) ο άξονας περιστροφής να διέρχεται από το κέντρο µάζας β) ο άξονας περιστροφής να είναι και άξονας συµµετρίας γ) ο άξονας περιστροφής να µην αλλάζει διεύθυνση (να κινείται παράλληλα στην αρχική του θέση).
18
19 Μηχανική στερεού σώµατος, Στροφορµή ΣΤΡΟΦΟΡΜΗ Α. Στροφορµή Υλικού Σηµείου που Εκτελεί Κυκλική Τροχιά υ p Σύµβολο στροφορµής: l Μέγεθος: διανυσµατικό l r m Ορισµός : i) µέτρο της στροφορµής: = r p = m υ r ii) διεύθυνση κάθετη στην ακτίνα r και στην ορµή p iii) φορά που την προσδιορίζουµε µε τον κανόνα του δεξιού χεριού. Μονάδα µέτρησης στο S.I. : το 1 Kg m /s ή το 1 J s
20 Παρατήρηση: Μηχανική στερεού σώµατος, Στροφορµή Στροφορµή έχει ένα υλικό σηµείο ΠΑΝΤΑ ως προς την αρχή ενός συστήµατος αναφοράς, ακόµα κι αν εκτελεί ευθύγραµµη κίνηση: y m p υ = ψ p = m υ ψ ψ O r l x όπου ψ η απόσταση της αρχής Ο από το φορέα (διεύθυνση) της ταχύτητας.
21 Μηχανική στερεού σώµατος, Στροφορµή B. Στροφορµή Στερεού Σώµατος Που Στρέφεται ως Προς Άξονα Περιστροφής Στερεό µάζας Μ ω στοιχειώδης µάζα m 1 Το στερεό σώµα στρέφεται µε γωνιακή ταχύτητα ω. r 1 m 1 Διαιρούµε το στερεό σε µεγάλο αριθµό στοιχειωδών µαζών που εκτελούν κυκλικές τροχιές. m r r 3 Όλες έχουν την ίδια γωνιακή ταχύτητα ω (ίδια µε του στερεού), αλλά η καθεµιά διαφορετική γραµ- m 3 µική ταχύτητα υ i που εξαρτάται από την ακτίνα της τροχιάς της: υ i = ω r i
22 L ω Μηχανική στερεού σώµατος, Στροφορµή Κάθε στοιχειώδης µάζα έχει στροφορµή: i = r p i i i i i i = i m = m (ω r ) r i υ i r i i = m i ω r i m r r 1 r 3 m 1 m 3 Για να υπολογίσουµε τη στροφορµή L του στερεού αθροίζουµε (διανυσµατικά) τις στροφορµές όλων των στοιχειωδών µαζών: L = l 1 + l + l 3 + L = m 1 ω r 1 + m ω r + m 3 ω r 3 + L = (m 1 r 1 + m r + m 3 r 3 + ) ω άρα L = Ι ω Η κατεύθυνση της L είναι ίδια µε την κατεύθυνση της ω.
23 Γ. Για σύστηµα πολλών στερεών σωµάτων, η συνολική στροφορµή είναι το διανυσµατικό άθροισµα των στροφορµών των στερεών: Μηχανική στερεού σώµατος, Στροφορµή L = L + L + L ήµατος 1 3 συστ +... Μια πιο γενική µορφή του θεµελιώδους νόµου της στροφικής κίνησης: Α. Για ένα στερεό: L I ω = dl = I dω dl dt dl dl = I α γ = Στ dt dt = I dω dt
24 B. Για σύστηµα στερεών σωµάτων: Η σχέση εξής: Σ τ = dl dt Μηχανική στερεού σώµατος, Στροφορµή Στ επεκτείνεται και στα συστήµατα στερεών ως = εξωτερικ ών dl συστήµατος όπου: Στ εξωτ είναι η συνισταµένη των ροπών των εξωτερικών dt δυνάµεων που ασκούνται στο σύστηµα. [ dl : ρυθµός µεταβολής της στροφορµής (µονάδα το 1 Ν m) ] dt
25 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Α. Για ένα στερεό Αν το αλγεβρικό άθροισµα των ροπών που δέχεται το στερεό είναι µηδέν τότε: dl Σ τ = 0 0 = dl = 0 L L = 0 τελικ ή αρχική dt L = αρχική L τελική Β. Για ένα σύστηµα στερεών Με όµοιο τρόπο µπορούµε να δείξουµε ότι αν το αλγεβρικό άθροισµα των ροπών των εξωτερικών δυνάµεων που δέχεται το σύστηµα είναι µηδέν τότε: Στ εξωτ = 0 Μηχανική στερεού σώµατος, Στροφορµή I αρχική ω L = αρχική = ( αρχ) L(τελ) συστήµατος συστήµατος I τελική ω τελική
26 Μηχανική στερεού σώµατος, Στροφορµή
27 Μηχανική στερεού σώµατος, Στροφορµή
28 Μηχανική στερεού σώµατος, Στροφορµή
29 Μηχανική στερεού σώµατος, Ενέργεια ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Α. Όταν εκτελεί µόνο µεταφορική κίνηση: K = 1 M υ cm Μ: η µάζα του στερεού σώµατος υ cm : η ταχύτητα του κέντρου µάζας του στερεού
30 Μηχανική στερεού σώµατος, Ενέργεια Β. Όταν εκτελεί µόνο στροφική κίνηση: Στερεό µάζας Μ ω r 1 m 1 Το στερεό σώµα στρέφεται µε γωνιακή ταχύτητα ω. Διαιρούµε το στερεό σε µεγάλο αριθµό στοιχειωδών µαζών που εκτελούν κυκλικές τροχιές. Όλες έχουν την ίδια γωνιακή ταχύτητα ω (ίδια µε του στερεού), αλλά η καθεµιά διαφορετική γραµµική ταχύτητα υ i που εξαρτάται από την ακτίνα της τροχιάς της: υ i = ω r i r Κάθε στοιχειώδης µάζα έχει κατά την κίνηση της m r 3 m 3 κινητική ενέργεια: K i 1 1 = m υ K ( ) i i i = mi ω ri 1 K i = mi ω ri
31 Β. Όταν εκτελεί µόνο στροφική κίνηση: m 1 r 1 m 3 r 3 r m ω Αθροίζοντας τις κινητικές ενέργειες όλων των υλικών σηµείων υπολογίζω την κινητική ενέργεια του στερεού:... K K K K =... r ω m 1 r ω m 1 r ω m 1 K = ω I 1 K = ( ) ω... r m r m r m 1 K = Μηχανική στερεού σώµατος, Ενέργεια
32 Γ. Όταν εκτελεί σύνθετη κίνηση: Αθροίζουµε τις κινητικές ενέργειες που έχει το στερεό λόγω µεταφορικής και λόγω στροφικής κίνησης που εκτελεί και υπολογίζω την κινητική ενέργεια του στερεού: K Μηχανική στερεού σώµατος, Ενέργεια = 1 M υ cm + 1 I ω Π.χ. Ο τροχός που κυλά έχει κινητική ενέργεια λόγω µεταφορικής και λόγω στροφικής κίνησης.
33 Μηχανική στερεού σώµατος, Ενέργεια ΕΡΓΟ ΚΑΤΑ ΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ Έστω ένας τροχός ακτίνας R. Μία δύναµη F ds R F ασκείται στην περιφέρεια του, παραµένοντας εφαπτόµενη. Σε µία απειροστά µικρή στροφή του τροχού, κατά γωνία dθ, η δύναµη F, µετακινεί το σηµείο dθ εφαρµογής της πάνω σε στοιχειώδες τόξο ds. Τότε το έργο που παράγει η δύναµη είναι: dw= F ds dw = F (R dθ) Το γινόµενο F R είναι η ροπή της δύναµης, εποµένως: dw= τ dθ
34 Μηχανική στερεού σώµατος, Ενέργεια ΕΡΓΟ ΚΑΤΑ ΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ Αν θέλουµε να υπολογίσουµε το έργο της δύναµης ds R dθ F όταν το σώµα στρέφεται κατά γωνία Δθ, τότε µπορούµε να χωρίσουµε τη γωνία σε µεγάλο αριθµό απειροστών γωνιών d θ και να προσθέσουµε τα έργα για όλες τις στοιχειώδεις µετατοπίσεις της δύναµης. Καθώς η F έχει σταθερή ροπή έχουµε: W = dw + dw + dw W = τ dθ + τ dθ + τ dθ ( dθ + dθ + dθ...) W = τ 3 W = τ Δθ
35 Μηχανική στερεού σώµατος, Ενέργεια ΙΣΧΥΣ ΔΥΝΑΜΗΣ Γενικά: ΙΣΧΥΣ = ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΕΝΕΡΓΕΙΑΣ P = dw dt µονάδα µέτρησης της ισχύος στο S.I.: το 1 Watt (W) Ισχύς Δύναµης: Ρυθµός µε τον οποίο µια δύναµη δίνει ενέργεια σε ένα σώµα (θετική ισχύς), ή Ρυθµός µε τον οποίο µια δύναµη παίρνει ενέργεια από ένα σώµα (αρνητική ισχύς) J W = s
36 Μηχανική στερεού σώµατος, Ενέργεια ΙΣΧΥΣ ΔΥΝΑΜΗΣ Ισχύς Δύναµης που προκαλεί ροπή σε στερεό σώµα: P F = dw dt F P F ± τ dθ = P F = ± τ ω dt Η σχέση µας επιτρέπει να υπολογίζουµε τη στιγµιαία ισχύ που έχει µια δύναµη. Αν θέλουµε να υπολογίσουµε τη µέση ισχύ µιας δύναµης, τότε χρησιµοποιούµε τη σχέση: P F = W Δt F
37 Μηχανική στερεού σώµατος, Ενέργεια ΘΕΩΡΗΜΑ ΕΡΓΟΥ - ΕΝΕΡΓΕΙΑΣ Σε οποιοδήποτε είδος κίνησης που εκτελεί ένα σώµα ισχύει ότι: Το αλγεβρικό άθροισµα των έργων των δυνάµεων (ΣW) που δέχεται το σώµα, είναι ίσο µε τη µεταβολή της κινητικής του ενέργειας (ΔΚ). Για στερεό που κάνει στροφική κίνηση: 1 1 I ω I ω τελ αρχ = ΣW & $ % Για στερεό που κάνει σύνθετη κίνηση: 1 1 # & 1 1 # M υ I ω M υ I ω cm ( τελ ) + τελ! $ cm(αρχ ) + αρχ! = " % " ΣW
38
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
w w w.k z a c h a r i a d i s.g r
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό
ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών
Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΗΜΕΙΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ. Είδη κινήσεων, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΗΜΕΙΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Είδη κινήσεων, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας Στο κεφάλαιο αυτό θα ασχοληθούμε
1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.
Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική
ΚΕΦΑΛΑΙΟ 4 Ο ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
06 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 4 Ο ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Τι ονομάζουμε υλικό σημείο και τι στερεό σώμα; Ποια στερεά σώματα ονομάζονται μηχανικά στερεά;. Πότε ένα σώμα λέμε ότι κάνει μεταφορική
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
8 ο Μάθημα Περιστροφική κίνηση. Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση
8 ο Μάθημα Περιστροφική κίνηση Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση Στερεό σώμα Στερεό ονομάζουμε ένα σώμα με καθορισμένο μέγεθος και σχήμα
Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1α. (δ) Α1β. (α) Αα. (α) Αβ. (δ) Α3α. (β) Α3β. (γ) Α4α. (β)
Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως
Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 1ο: ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις ηµιτελείς παρακάτω προτάσεις να γράψετε
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που
ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση. ΘΕΜΑ Β Ένα ομογενές σώμα με κανονικό γεωμετρικό σχήμα κυλίεται, χωρίς να
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ Κυκλικός δίσκος ακτίνας R και μάζας m, περιστρέφεται με σταθερή γωνιακή ταχύτητα ω 0 (η τριβή στον άξονα περιστροφής θεωρείται αμελητέα).
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α
3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙOΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. δ. γ 3. α 4. δ 5. α.σ β.λ γ.σ δ.λ ε.λ ΘΕΜΑ Β. Σωστή είναι
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α1α-Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
8 ο Μάθημα Περιστροφική κίνηση
8 ο Μάθημα Περιστροφική κίνηση Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση Σχέση γωνιακής ταχύτητας και επιτάχυνσης Κινητική ενέργεια λόγω περιστροφής
ΦΥΣΙΚΗ. α) έχουν κάθε χρονική στιγμή την ίδια οριζόντια συνιστώσα ταχύτητας, και την ίδια κατακόρυφη συνιστώσα ταχύτητας.
Β Λυκείου 14 / 04 / 2019 ΦΥΣΙΚΗ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις A1 A4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Η ορμή ενός σώματος :
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
Κ τελ Κ αρχ = W αντλ. + W w 1 2 m υ2-0 = W αντλ. - m gh W αντλ. = 1 2 m υ2 + m gh. Άρα η ισχύς της αντλίας είναι: dw m υ + m g h m υ + g h
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέµα Α Κυριακή 19 Φεβρουαρίου 2017 Α1. δ Α2. β Α3. β Α4. γ Α5. α) Σ β) Λ γ) Σ δ) Λ ε) Λ Θέµα Β Β1. Σωστή απάντηση είναι η γ. Στο δίσκο ασκούνται τρεις δυνάµεις:
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.
ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό
Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.
Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
Διαγώνισμα Μηχανική Στερεού Σώματος
Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
S συνφ (3.27), =± F h (3.28)
Στη συγκεκριμένη ενότητα, θα ασχηθούμε με το έργο και την μηχανική ενέργεια στην περιστροφική κίνηση, όπως επίσης και με την ορθή διτύπωση των ενεργειακών θεωρημάτων και αρχών (ΘΜΚΕ, ΘΔΜΕ, ΑΔΕ, κλπ) που
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο
Κεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΓΙΟΥ ΕΠΙΠΕΔΟΥ
ΚΥΛΙΣΗ ΣΤΕΡΕΟΥ ΚΑΤΑ ΜΗΚΟΣ ΠΛΑΙΟΥ ΕΠΙΠΕΔΟΥ Σε ένα πλάγιο επίπεδο γωνίας κλίσης κυλίεται χωρίς να ολισθαίνει προς τα κάτω, ένα στερεό σώµα µε κατανοµή µάζας συµµετρική ως προς το κέντρο του. ( Το στερεό
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Ερωτήσεις. 2. Η ροπή αδράνειας μιας σφαίρας μάζας Μ και ακτίνας R ως προς άξονα που διέρχεται
- Μηχανική στερεού σώματος Ερωτήσεις 1. Στερεό στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως στο διπλανό διάγραμμα ω -. Να χαρακτηρίσετε τις παρακάτω προτάσεις
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α
6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε
Διαγώνισμα: Μηχανική Στερεού Σώματος
Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Ζεύγος δυνάµεων Κύλιση - Κρούση
Ζεύγος δυνάµεων Κύλιση - Κρούση Οµογενής σφαίρα µάζας Μ=2kg και ακτίνας R=0,5m ηρεµεί πάνω σε λείο οριζόντιο δάπεδο, µε την κατακόρυφη διάµετρό της να απέχει απόσταση s=60,5m από λείο κατακόρυφο τοίχωµα.
μηχανικη στερεου σωματοσ
μηχανικη στερεου σωματοσ 4 Ροπή δύναμης 112 Ισορροπία στερεού 115 Ροπή αδράνειας 116 Στροφορμή 122 Κινητική ενέργεια λόγω περιστροφής 126 Σύνοψη 131 Ασκήσεις 132 4-1 ΕΙΣΑΓΩΓΗ Στην προσπάθειά μας να απλοποιήσουμε
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ
Στερεό σώμα - 07-4 Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ 4.1. Εισαγωγικές έννοιες. ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΣΗΜΕΙΑΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Θεωρούμε ένα σημειακό αντικείμενο το οποίο κινείται σε κυκλική τροχιά κέντρου Ο και ακτίνας
i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β
Φύλλο Εργασίας: ΚΙΝΗΜΑΤΙΚΗ ΟΜΑΛΗΣ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Λίγη γεωµετρία πριν ξεκινήσουµε: Σε κύκλο ακτίνας, η επίκεντρη γωνία Δθ µετρηµένη σε ακτίνια (rad) και το µήκος του τόξου Δs στο οποίο βαίνει, συνδέονται
Φυσική Γ Λυκείου Στερεό Σώµα KI
Φυσική Γ Λυκείου Στερεό Σώµα KI. 009-010 1 Στερεό σώµα Φυσική Γ Λυκείου KI 009-010 Φυσική Γ Λυκείου Στερεό Σώµα Γενικές Παρατηρήσεις Συνοπτική Θεωρία Τυπολόγιο 1.1. Κυκλική κίνηση Κάθε σώµα που εκτελεί
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α.2 ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacharia@uniwa.gr
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4
ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Εισαγωγή Στην Α Λυκείου είχαμε μελετήσει τη δύναμη προκειμένου
ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)
ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Β. Σωστή απάντηση είναι η γ. Οι θέσεις των δεσµών στον θετικό ηµιάξονα είναι: χ = (κ + 1) λ 4 δεύτερος δεσµός είναι στη θέση που προκύπτει για κ = 1 δ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέµα Α Κυριακή 6 Μαρτίου 016 Α1. β Α. γ Α5. α) Λ β) Σ γ) Σ Α. γ Α4. γ δ) Σ ε) Σ Θέµα Β Β1. Σωστή απάντηση είναι η β. Το έργο της δύναµης για την
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Τι είναι το υλικό σηµείο και σε τι διαφέρει από το στερεό σώµα; Γνωρίζουµε ότι αν σε υλικό σηµείο ασκηθούν δυνάµεις, τότε θα µεταβληθεί η κινητική του
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα, για τις αντίστοιχες αλγεβρικές τιμές των ταχυτήτων των δύο σωμάτων πριν από την κρούση τους προκύπτει ότι:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑ (10) ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ
ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ ΔΥΝΑΜΗ Τις δυνάμεις τις διακρίνουμε βασικά με δύο τρόπους: Συντηρητικές Μη συντηρητικές
A! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2
A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕΟ
ΠΡΤΥΠ ΠΕΙΡΑΜΑΤΙΚ ΛΥΚΕΙ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΛΗΣ ΣΜΥΡΝΗΣ Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΤΡΙΩΡ ΕΠΑΝΑΛΗΠΤΙΚ ΔΙΑΓΩΝΙΣΜΑ ΣΤO ΣΤΕΡΕ Μαθητής/Μαθήτρια -----------------------------------------------
Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή
Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου
Παίζοντας με ένα γιο γιο
Παίζοντας με ένα γιο γιο Ένα γιο γιο είναι κατασκευασμένο από ένα λεπτό σωλήνα μάζας m Σ και ακτίνας =π/4 και δύο ομογενείς δίσκους με μάζα m και ακτίνα 0 = ο καθένας. Τα κέντρα των τριών σωμάτων είναι
Kινηµατική άποψη της επίπεδης κίνησης
Kινηµατική άποψη της επίπεδης κίνησης Θα λέµε ότι ένα στερεό σώµα εκτελεί επίπεδη κίνηση, όταν οι αποστάσεις των υλικών του σηµείων από ένα ορισµένο επίπεδο αναφοράς (ε), παραµέ νουν αµετάβλητες µε το
Υλικό Φυσικής Χημείας Μηχανική στερεού. Τρεις κινήσεις ενός
Τρεις κινήσεις ενός τροχού. 1) Σε οριζόντιο επίπεδο κινείται ένας τροχός ακτίνας R=0,5m. Η ταχύτητα του σημείου Α, στο άκρο μιας κατακόρυφης ακτίνας, είναι οριζόντια μέτρου υ Α =4m/s, ενώ η ταχύτητα του
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
ΦΥΣΙΚΉ Ομάδας Προσανατολισμού Θετικών Σπουδών Γ τάξη Γενικού Λυκείου ΤΟΜΟΣ 5ος
ΦΥΣΙΚΉ Ομάδας Προσανατολισμού Θετικών Σπουδών Γ τάξη Γενικού Λυκείου ΤΟΜΟΣ 5ος Σημείωση: Στο Ευρετήριο Όρων τα γράμματα Α, Β, Γ,..., Θ δηλώνουν αντίστοιχα τον 1ο, 2ο, 3ο,...,9ο τόμο. ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ,
Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα
Οι δίσκοι και η ροπή της τριβής
Οι δίσκοι και η ροπή της τριβής Οριζόντιος οµογενής δίσκος (1) µάζας 1 =1kg, και ακτίνας R=, περιστρέφεται µε γωνιακή ταχύτητα µέτρου ω 1 =10rad/s κατά τη φορά κίνησης των δεικτών του ρολογιού. εύτερος,
τους: =. Το αποτέλεσµα δηλαδή της αλληλεπίδρασής τους περιγράφεται από
Θεµελιώδης νόµος της Μηχανικής Εννοιολογικό πλαίσιο και παραδείγµατα για την καλύτερη κατανόηση της εφαρµογής του στην επίπεδη κίνηση υλικού σηµείου και στερεού σώµατος Εισαγωγή ΕΝΝΙΛΓΙΚ ΠΛΑΙΣΙ Η έννοια
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 5 Μάρτη 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 24 Γενάρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4