ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου. Ενότητα 8. β τεύχος
|
|
- Αταλάντη Βαρνακιώτης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 48 Ενότητα 8 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου β τεύχος
2 Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου 48 1η Άσκηση Να συμπληρώσεις τον πίνακα: ΠΟρθ.1 6 μ.+ 8 μ.+ 6 μ.+ 8 μ. 8 μ. ΕΟρθ.1 6 μ. Χ 8 μ. 48 τ. μ. μήκος πλάτος περίμετρος εμβαδό 6 μ. 8 μ. 8 μ. 48 τ. μ. 3 εκ. 3 εκ. 1 εκ. 9 τ. εκ. 7 δεκ. 8 δεκ. 30 δεκ. 56 τ.δεκ. 6 χιλ. 15 μ. ΕΟρθ. 7 δεκ. Χ πλάτος 56 τ. δεκ. πλάτος 56 τ. δεκ. : 7 δεκ. πλάτος 8 δεκ. ΠΟρθ. 7 δεκ. + 8 δεκ. + 7 δεκ. + 8 δεκ. 30 δεκ. ΕΟρθ.3 1 μ. Χ μήκος 180 τ. μ. μήκος 180 τ. μ. : 1 μ. μήκος 15 μ. ΠΟρθ.3 1 μ μ.+ 1 μ μ. 54 μ. 9 χιλ. 30 χιλ. 1 μ. 54 μ. 180 τ.μ. Πτετρ. 3 εκ.+ πλάτος + 3 εκ.+ πλάτος1 εκ. Πτετρ. 6 εκ.+ πλάτος + πλάτος1 εκ. πλάτος + πλάτος1 εκ. 6 εκ. 6 εκ. πλάτος 3 εκ. Ετετρ. 3 εκ. Χ 3 εκ. 9 τ. εκ. ΠΟρθ.3 9 χιλ.+ μήκος + 9 χιλ.+ μήκος 30 χιλ. ΠΟρθ.318 χιλ.+ μήκος + μήκος 30 χιλ. μήκος + μήκος 30 χιλ. 18 χιλ. 1 χιλ. μήκος 6 χιλ. ΕΟρθ.3 9 χιλ. Χ 6 χιλ. 54 τ. χιλ. 54 τ. χιλ.
3 η Άσκηση Να συμπληρώσεις τον πίνακα: μήκος πλευράς τετραγώνου περίμετρος εμβαδό 5 μ. 6 εκ. 7 δεκ. 0 μ. 4 εκ. 8 δεκ. 5 τ. μ. 36 τ. εκ. 49 τ.δεκ. Πτετραγώνου 1 4 Χ μήκος πλευράς τετραγώνου 4 Χ 5 μ. 0 μ. Ετετραγώνου 1 μήκος πλευράς τετραγώνου Χ μήκος πλευράς τετραγώνου 5 μ. Χ 5 μ. 5 τ. μ. Πτετραγώνου 4 Χ μήκος πλευράς τετραγώνου 4 εκ. μήκος πλευράς τετραγώνου 4 εκ. : 4 6 εκ. Ετετραγώνου μήκος πλευράς τετραγώνου Χ μήκος πλευράς τετραγώνου 6 εκ. Χ 6 εκ. 36 τ. εκ. Ετετραγώνου 3 μήκος πλευράς τετραγώνου Χ μήκος πλευράς τετραγώνου 49 τ. δεκ. μήκος πλευράς τετραγώνου 7 δεκ. Πτετραγώνου 3 4 Χ μήκος πλευράς τετραγώνου 4 Χ 7 δεκ. 8 δεκ.
4 3η Άσκηση Να συμπληρώσεις τον πίνακα: μήκος μιας κάθετης πλευράς μήκος άλλης κάθετης πλευράς εμβαδό 3 μ. 4 μ. 6 τ. μ. 8 εκ. 6 εκ. 4 τ.εκ. 1 δεκ. 5 δεκ. 30 τ.δεκ. Ετριγώνου 1 μήκος κάθ.πλευράς x μήκος κάθ.πλευράς 3 μ. x 4 μ. 1 τ. μ. 6 τ. μ. Ετριγώνου μήκος κάθ.πλευράς x μήκος κάθ.πλευράς 3 μήκος κάθ.πλευράς x 6 εκ. 4 τ. εκ. 1 Ετριγώνου μήκος κάθ.πλευράς x 3 εκ 4 τ. εκ. μήκος κάθ.πλευράς 4 τ. εκ. : 3 εκ. 8 εκ. Ετριγώνου 3 μήκος κάθ.πλευράς x μήκος κάθ.πλευράς 6 μήκος κάθ.πλευράς x 1 δεκ. 30 τ. δεκ. 1 Ετριγώνου 3 μήκος κάθ.πλευράς x 6 δεκ 30 τ. δεκ. μήκος κάθ.πλευράς 30 τ. δεκ. : 6 δεκ. 5 δεκ.
5 1ο Πρόβλημα Οι αυλές ενός νηπιαγωγείου και του διπλανού του δημοτικού σχολείου έχουν σχήμα τετραγώνου. Η αυλή του νηπιαγωγείου έχει μήκος πλευράς 8 μ. και του δημοτικού είναι 3 μ. μεγαλύτερη από αυτή του νηπιαγωγείου. Να υπολογίσεις την περίμετρο και το εμβαδό της αυλής του δημοτικού σχολείου. Το μήκος της πλευράς του δημοτικού σχολείου είναι : μήκος πλευράς 8 μ. + 3 μ. 11 μ. Άρα η περίμετρος του δημοτικού σχολείου είναι : Πτετραγώνου 4 Χ μήκος πλευράς τετραγώνου 4 Χ 11 μ. 44 μ. Επομένως το εμβαδό του δημοτικού σχολείου είναι : Ετετραγώνου μήκος πλευράς τετραγώνου Χ μήκος πλευράς τετραγώνου 11 μ. Χ 11 μ. 11 τ. μ.
6 1 μονάδες Εμβαδό τετραγώνου, ορθογωνίου και ορθογώνιου τριγώνου Ενότητα 8 ο Πρόβλημα Α Β Δ Γ 3 μονάδες 4 μονάδες 5 μονάδες 1 μονάδες Οι αριθμοί στα λευκά τετράγωνα εκφράζουν το εμβαδό καθενός από αυτά σε τετραγωνικές μονάδες. Να υπολογίσεις το εμβαδό της χρωματισμένης επιφάνειας του μεγάλου τετραγώνου σε τετραγωνικές μονάδες. Ετετρ.Α μήκος Χ μήκος 9 τ. μονάδες Ετετρ.Α 3 Χ 3 9 τ. μονάδες μήκος πλευράς τετραγώνου Α 3 μονάδες Ετετρ.Β 4 Χ 4 16 τ. μονάδες μήκος πλευράς τετραγώνου Β 4 μονάδες Ετετρ.Γ 5 Χ 5 5 τ. μονάδες μήκος πλευράς τετραγώνου Γ 5 μονάδες Άρα το μήκος της πλευράς του μεγάλου τετραγώνου είναι: μονάδες Επομένως το εμβαδό του μεγάλου τετραγώνου είναι: Ετετραγώνου Δ μήκος πλευράς τετραγώνου Χ μήκος πλευράς τετραγώνου 1 Χ τ. μονάδες Το συνολικό εμβαδό των λευκών τετραγώνων είναι: τ. μονάδες Επομένως το εμβαδό του χρωματισμένου τετραγώνου είναι: τ. μονάδες
7 3ο Πρόβλημα Το δάπεδο της αίθουσας εκδηλώσεων ενός σχολείου έχει σχήμα ορθογωνίου μήκους 15 μ. και πλάτους 1 μ. Θα στρωθεί με πλακάκια σχήματος τετραγώνου με μήκος πλευράς 5 εκ. Κάθε μαύρο πλακάκι κοστίζει 9 και κάθε λευκό πλακάκι 7,80. Να υπολογίσεις πόσα κοστίζουν τα πλακάκια που θα χρειαστούν για το δάπεδο της αίθουσας εκδηλώσεων. ΕΟρθ. δαπέδου μήκος Χ πλάτος 15 Χ τ. μ. 180 Χ τ. εκ τ. εκ. ΕΤετρ. πλακακιού μήκος Χ μήκος 5 Χ 5 65 τ. εκ. Άρα τα πλακάκια που θα χρειαστούν για να στρωθεί η αίθουσα είναι: τ. εκ. : 65 τ. εκ..880 πλακάκια Από τα πλακάκια που θα χρειαστούν για να στρωθεί η αίθουσα τα μισά θα είναι μαύρα και τα υπόλοιπα μισά λευκά. Επομένως θα χρειαστούν.880 : μαύρα πλακάκια και λευκά πλακάκια. Τα μαύρα πλακάκια κοστίζουν: Χ Τα λευκά πλακάκια κοστίζουν: Χ 7, Συνολικά τα πλακάκια κοστίζουν:
8 4ο Πρόβλημα 1 τ. εκ. 4,5 τ. εκ. 4 τ. εκ 1 τ. εκ. 4,5 τ. εκ. Το ορθογώνιο του διπλανού σχήματος έχει μήκος 8 εκ. και πλάτος 3 εκ. Τα ορθογώνια τρίγωνα εξωτερικά του ορθογωνίου έχουν κάθετες πλευρές ίσες με το πλάτος ή το μήκος και το πλάτος του ορθογωνίου. Να υπολογίσεις το εμβαδό του σχήματος. ΕΟρθογωνίου μήκος Χ πλάτος 8 Χ 3 4 τ. εκ ΕΜεγάλου τριγώνου μήκος κάθ.πλευράς x μήκος κάθ.πλευράς 8 εκ. x 3 εκ. 4 εκ.. 1 τ. εκ. ΕΜικρού τριγώνου μήκος κάθ.πλευράς x μήκος κάθ.πλευράς 3 εκ. x 3 εκ. 9εκ. 4,5 τ. εκ. Εσχήματος Εορθογωνίου + ΕΜεγάλου τριγώνου + ΕΜεγάλου τριγώνου + ΕΜικρού τριγώνου + ΕΜικρού τριγώνου Εσχήματος 4 τ. εκ + 1 τ. εκ. + 1 τ. εκ. + 4,5 τ. εκ. + 4,5 τ. εκ. 57 τ. εκ.
9 Διερεύνηση Επέκταση Να φέρεις τη διαγώνιο ενός ορθογωνίου και να το κόψεις κατά μήκος της. Να τοποθετήσεις με διαφορετικούς τρόπους τα δύο σχήματα που προκύπτουν και να γράψεις ποιο γεωμετρικό σχήμα φτιάχνεις κάθε φορά. Ισοσκελές τρίγωνο Ισοσκελές τρίγωνο τετράπλευρο Πλάγιο παραλληλόγραμμο Πλάγιο παραλληλόγραμμο Συζητάμε τα διαφορετικά σχήματα που μπορούμε να σχηματίσουμε με τον παραπάνω τρόπο και μετά υπολογίζουμε το εμβαδό του καθενός. Τα σχήματα που σχηματίσαμε έχουν το ίδιο εμβαδό με το αρχικό σχήμα.
10
ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 46 Γεωμετρικά σχήματα - Η περίμετρος Ενότητα 8 β τεύχος Γεωμετρικά σχήματα-η περίμετρος 46 1η Άσκηση Να κυκλώσεις όλα τα κανονικά πολύγωνα: 60 ο 108 ο 108 ο 120
Διαβάστε περισσότεραΘΕΜΑ 1 ο Τα παρακάτω σχήματα έχουν χωριστεί σε ίσα τετράγωνα. Σε ποια από αυτά έχουμε γραμμοσκιάσει του σχήματος; Να κυκλώσεις το σωστό.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Επιτροπή ιαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 10 ος Πανελλήνιος Μαθητικός ιαγωνισμός «Παιχνίδι και Μαθηματικά» 4-3 - 2016 Για μαθητές της Ε Τάξης ημοτικού Ονοματεπώνυμο:.
Διαβάστε περισσότερα5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ. 2 cm
ΠΑΡΑΡΑΦΟΣ Β.1.3 ΕΜΒΑΑ ΕΠΙΠΕΩΝ ΣΧΗΜΑΤΩΝ Τετράγωνο -Ορθογώνιο ΑΣΚΗΣΕΙΣ 1) Ένα τετράγωνο έχει εμβαδό 81 cm 2. Με πόσο ισούται η πλευρά του; (Απάντηση: 9 cm) 2) Ένα τετράγωνο έχει περίμετρο 32 m. Nα υπολογίσετε
Διαβάστε περισσότεραΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών
ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:
ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;
ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια
Διαβάστε περισσότερα5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 5η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 27 34) Πηγή πληροφόρησης: e-selides ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤA MΑΘΗΜΑΤΙΚΑ Δ' 5 η επανάληψη Μαθήματα 27-34
Διαβάστε περισσότερα1.3. Εμβαδά επίπεδων σχημάτων
1.3. μβαδά επίπεδων σχημάτων 1 cm 1 cm μβαδόν τετραγώνο ς θεωρήσομε ένα τετράγωνο πλεράς cm. Μπορούμε να το χωρίσομε σε = = «τετραγωνάκια» πλεράς 1 cm, καθένα από τα οποία έχει εμβαδόν 1 cm. Άρα, το τετράγωνο
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2. Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ. Παράλληλες: Τι θα πρέπει να. Ποιες είναι οι παράλληλες ευθείες;
ΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2 Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Παράλληλες: Τι θα πρέπει να θυμόμαστε από την γεωμετρία; Ποιες είναι οι παράλληλες ευθείες; Ποιες είναι οι κάθετες ευθείες;
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε
Διαβάστε περισσότεραΕίδη τριγώνων ως προς τις πλευρές
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 41 Είδη τριγώνων ως προς τις πλευρές Ενότητα 5 β τεύχος Είδη τριγώνων ως προς τις πλευρές 41 1η Άσκηση Να αντιστοιχίσεις: Το σκαληνό τρίγωνο έχει Το ισοσκελές τρίγωνο
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Μονάδες μέτρησης του όγκου και της χωρητικότητας. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 50 Μονάδες μέτρησης του όγκου και της χωρητικότητας Ενότητα 8 β τεύχος 50 Μονάδες μέτρησης του όγκου και της χωρητικότητας 1η Άσκηση Να συμπληρώσεις τον πίνακα:
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=
Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 3 3 ( 0) ( 5) 3 ( 8) Α= + 3 3 ( ) +. ( 3) 4 Στο διπλανό σχήμα τα τρίγωνα ΑΒΓ και ΑΒΟ είναι ισοσκελή με βάση την πλευρά ΑΒ. Η προέκταση της
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 2
Ε Ω Μ Ε Τ Ρ Ι - Κ Ε Φ Λ Ι Ο 2 Τριγωνομετρία ΛΟΟΣ ΕΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ α α β α β α β 1. ν 2, να υπολογίσετε τους λόγους :,, β β β α β 2. Σε ένα ισόπλευρο τρίγωνο με πλευρά 6 cm και ύψος, να υπολογίσετε τους
Διαβάστε περισσότερα2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ
ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ 1) Στον παρακάτω πίνακα τα ευθύγραμμα τμήματα ΑΒ, ΑΓ και ΒΓ είναι οι πλευρές ενός o ορθογωνίου τριγώνου ΑΒΓ με Â 90. Να συμπληρώσετε τον πίνακα αυτό. ΑΒ 6 3
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότερα2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ Γυμνασίου ΗΜΕΡΟΜΗΝΙΑ: Δευτέρα, 4 Ιουνίου 018 ΧΡΟΝΟΣ: ώρες ΒΑΘΜΟΣ:. ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο
Διαβάστε περισσότερα6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο
Διαβάστε περισσότεραραστηριότητες στο Επίπεδο 1.
ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Κεφάλαια επαναληπτικό 7. Ενότητα 5. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Κεφάλαια 36-44 επαναληπτικό 7 Ενότητα 5 β τεύχος επαναληπτικό 7 Κεφάλαια 36-44 1η Άσκηση Παρατηρούμε τα παρακάτω τρίγωνα και συμπληρώνουμε τον πίνακα, όπως στο
Διαβάστε περισσότεραΠοια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.
5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.
Διαβάστε περισσότερα2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
Διαβάστε περισσότερα3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
Διαβάστε περισσότεραΕνδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :
ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2018 2019 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ 2019 ΜΑΘΗΜΑ : Μαθηματικά ΤΑΞΗ : Γ ΗΜΕΡΟΜΗΝΙΑ : 5 / 6 / 2019 ΧΡΟΝΟΣ : 2 Ώρες Βαθμός : Ολογράφως
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ
ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2015-2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/6/2016 ΤΑΞΗ: Β ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΧΡΟΝΟΣ: 2 ώρες 10:30-12:30 ΤΜΗΜΑ:.. ΑΡ: ΒΑΘΜΟΣ:
Διαβάστε περισσότεραΘΕΜΑ 1 ο Ποιος από τους παρακάτω αριθμούς έχει ακριβώς 33 εκατοντάδες και 24 μονάδες; (Κυκλώνω το σωστό)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-361774 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106
Διαβάστε περισσότεραΑ Φάση ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Μέτρηση µήκους Γ Δημοτικού Δ Δημοτικού Ε Δημοτικού Μ2. Μετρούν και Μ2. Υπολογίζουν την συγκρίνουν την περίμετρο περίμετρο σχημάτων πολυγωνικών σχημάτων χρησιμοποιώντας και επιλύουν
Διαβάστε περισσότεραΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
Διαβάστε περισσότερα3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ
1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου
Διαβάστε περισσότερα3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ
1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί
Διαβάστε περισσότερα3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
Διαβάστε περισσότερα5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : ΤΑΞΗ : Β ΧΡΟΝΟΣ : 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ : 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΤΜΗΜΑ
Διαβάστε περισσότερα1 2. Το Ε. Βαθμός. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Λύση. Απάντηση: ΘΕΜΑ 3 ο. ΘΕΜΑ 4 ο. Να βάλεις. στη σειρά. ΘΕΜΑ 5 ο. Στ ΤΑΞΗ -1- MATHEMATICAL SOCIETY
ΕΛΛΗΝΙΚΗΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 799 - Athens - HELLAS Τηλ. 366532-367784
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
Διαβάστε περισσότεραΕνότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.
Νέο Αναλυτικό Πρόγραμμα Σπουδών Σχολικό έτος 2016-17 Σπύρος Γ. Γλένης spyrosglenis@gmail.com Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals,
Διαβάστε περισσότεραVAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ
VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ Μην γυρίσετε την επόμενη σελίδα πριν σας το πουν. Για το test αυτό πρέπει να γνωρίζετε ότι: Δεν επηρεάζει τη βαθμολογία σου στο σχολείο. Χρησιμοποιείται αποκλειστικά
Διαβάστε περισσότεραΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά
Διαβάστε περισσότεραΠροσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.
Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν
Διαβάστε περισσότεραΜονάδες μέτρησης του μήκους
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 45 Μονάδες μέτρησης του μήκους Ενότητα 8 β τεύχος Μονάδες μέτρησης του μήκους 45 1η Άσκηση Όργανο μέτρησης 1 Υποδεκατόμετρο Να γράψεις τις ομοιότητες και τις διαφορές
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά στερεά - Ο όγκος. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 49 Γεωμετρικά στερεά - Ο όγκος Ενότητα 8 β τεύχος Γεωμετρικά στερεά - Ο όγκος 49 1η Άσκηση Να αναγνωρίσεις τα γεωμετρικά στερεά που σχηματίζουν τα παρακάτω αναπτύγματα:
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Διαγωνισμός Μαθηματικών ικανοτήτων ΠΥΘΑΓΟΡΑΣ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΗΝ Α και Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Θέμα 1 ο Από τους αριθμούς 12, 13, 14, 15, 17 αυτός που έχει τους περισσότερους
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...ΤΜΗΜΑ:...ΑΡ.:... (α) Να ελέγξετε ότι το γραπτό αποτελείται από 11 σελίδες.
ΓΥΜΝΑΣΙΟ ΑΡΧΑΓΓΕΛΟΥ ΛΑΚΑΤΑΜΕΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΠΡΟΑΓΩΓΙΚΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΒΑΘΜΟΣ Αρ.:..... Ολογρ.:..... ΥΠΟΓΡΑΦΗ:..... ΗΜΕΡΟΜΗΝΙΑ: 05.06.2012 ΔΙΑΡΚΕΙΑ:
Διαβάστε περισσότεραΓια το Διοικητικό Συμβούλιο
ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,11 ΝΟΕΜΒΡΙΟΥ 017 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2016 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΑΣΚΗΣΗ 1 η Να γίνουν οι πράξεις στις παρακάτω παραστάσεις: i. 3 5 + 2 = ii. 3 ( 2) + 4 5 ( 3) = iii. iv. 2 ( 3) : 3 2 3 2 4 1 ( 2) 6 1+( 2) 1 v.
Διαβάστε περισσότερα3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΑπάντηση: Οι θεατές άνδρες και γυναίκες ήταν συνολικά. ΘΕΜΑ 3 ο Κύκλωσε το σωστό σύμβολο 1 1 :1 2
Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 8 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» 04 Για μαθητές της Στ Τάξης Δημοτικού ΘΕΜΑ ο Πόσες φορές ο δεκαδικός αριθμός 4.400,800
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014
ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 Αριθμητικά.. ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως: ΥΠ. ΚΑΘΗΓΗΤΗ:......
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011 2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Β ΑΡΙΘΜΗΤΙΚΩΣ : ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 15.06.2012 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:
Διαβάστε περισσότεραΕιδικά θέματα στη ροπή αδράνειας του στερεού.
Ειδικά θέματα στη ροπή αδράνειας του στερεού Η συνική ροπή αδράνειας ως άθροισμα επί μέρους ροπών αδράνειας Έστω το τυχαίο στερεό του σχήματος που αποτελείται από επιμέρους τμήματα Α,Β,Γ,Δ Η ροπή αδράνειας
Διαβάστε περισσότεραΟνοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»
ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό
Διαβάστε περισσότεραΙδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /
Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις / Οι παρακάτω πίνακες καλύπτουν το μεγαλύτερο μέρος της ύλης του αναλυτικού προγράμματος σπουδών της Γεωμετρίας.
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2
ΜΑΘΗΜΑΤΙΚΑ Β ΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΑΣΚΗΣΕΙΣ ΣΕ ΟΛΟ ΤΟ ΚΕΦΑΛΑΙΟ 2 ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΤΡΙΩΝΟΜΕΤΡΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1. Από το διπλανό σχήμα να βρείτε τα: 2. Σε ένα ορθογώνιοι τρίγωνο (Α = 90 ) είναι και Α
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ
ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν
Διαβάστε περισσότεραΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Οι κλασματικοί αριθμοί Οι κλασματικοί αριθμοί η Άσκηση Να γράψεις σε κάθε κουτάκι το κλάσμα που εκφράζει το χρωματισμένο μέρος. 2 2 6 = 6 2η Άσκηση. Να παρατηρήσεις
Διαβάστε περισσότερα(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
Διαβάστε περισσότερα2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014
ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 16 / 6 / 2014 Αριθμητικά :.... ΒΑΘΜΟΣ:... ΤΑΞΗ: Γ Ολογράφως:......
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΗ. 1 Να υπολογίσετε την περίμετρο και το εμβαδόν του παρακάτω τρίγωνο ΑΒΓ που έχει ΑΒ = 17cm, ΑΓ = 25cm και ΑΔ = 15cm. ΑΣΚΗΣΗ. 2 Στο ορθογώνιο τραπέζιο είναι ΑΒ= 9cm,
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2018
ΓΥΜΝΑΣΙΟ ΕΠΙΣΚΟΠΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 017-018 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΗΜΕΡΟΜΗΝΙΑ: 6/6/018 ΧΡΟΝΟΣ: Ώρες Βαθμός:.. Ολογράφως:.. Υπογραφή:.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
Διαβάστε περισσότερα1+ 1. Α Γυμνασίου. Πρόβλημα 1 ο α) Να υπολογίσετε τις παραστάσεις Α = Β = Α= 9 1 : : 5 = 9 1 : 9 5 = (2 μονάδες)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΡΚΥΡΑΣ 2 ος όροφος Δημοτικού Θεάτρου 400 Κέρκυρα e-mail emekerkyra@dide.ker.sch.gr Greek Mathematical Society Branch of Corfu 2 nd floor Public Theater of Corfu
Διαβάστε περισσότεραΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων
ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε
Διαβάστε περισσότεραΟνοματεπώνυμο:. Βαθμός. ημοτικό Σχολείο... Τάξη/Τμήμα
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 06 07 Βαθμός αριθμητικά:..... / 00 =.... / 0 Ολογράφως:...... / 0 Υπογραφή Καθηγητή/τριας:..... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 07 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106
Διαβάστε περισσότεραΜαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για
Διαβάστε περισσότεραΜαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη:ΣΤ Ονοματεπώνυμο:. Σχολείο:.. Η εκτύπωση Η Άννα εκτύπωσε 135 σελίδες στον εκτυπωτή της. Πόσα ψηφία τύπωσε ο εκτυπωτής για την αρίθμηση των σελίδων από το 1 ως το
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
Διαβάστε περισσότεραΜαθηματικά Ε. Μάθημα 34 ο. Ασκήσεις. 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.:
Μάθημα 34 ο Ασκήσεις 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.: A B Γ Δ 2. Να σχεδιάσεις δύο ημιευθείες Λx και Κy: Λ x K y 3. Να σχεδιάσεις δύο ευθείες ε 1 και ε 2 οι οποίες
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Κεφάλαια επαναληπτικό 8. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Κεφάλι 45-52 επνληπτικό 8 Ενότητ 8 β τεύχος 2η Άσκηση Ν κυκλώσεις τις μεττροπές μονάδων μέτρησης στις οποίες πολλπλσιάζουμε με το 100:. πό μ. σε εκ. β. πό δεκ.
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ. Από τις 15 ασκήσεις να λύσετε μόνο τις 12. Κάθε άσκηση βαθμολογείται με πέντε μονάδες.
ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α : Από τις 15 ασκήσεις να λύσετε μόνο τις 1. Κάθε άσκηση βαθμολογείται με πέντε μονάδες. 1. Να κάνετε τις πράξεις: (α) 4αβ +10αβ αβ = (β) 3χψ4χ
Διαβάστε περισσότεραΤι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
Διαβάστε περισσότερα1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑ 1 ο 1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας. 2. Να δείξετε με παραδείγματα σχημάτων ορθογωνίων
Διαβάστε περισσότερα5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //
1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότερα