Μεταγλωττιστές ΙΙ. Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική
|
|
- ÏΚάϊν Κασιδιάρης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Μεταγλωττιστές ΙΙ Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Νικόλαος Καββαδίας 21 Δεκεμβρίου 2010
2 Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Χρονοπρογραμματισμός κώδικα: δρομολόγηση των λειτουργιών (εντολών) του επεξεργαστή σε χρονοθυρίδες δεσμεύοντας αντίστοιχες λειτουργικές μονάδες με στόχο τη βελτίωση των επιδόσεων εκτέλεσης του προγράμματος Τεχνικές Χρονοπρογραμματισμός χωρίς περιορισμούς (ASAP, ALAP) Χρονοπρογραμματισμός με περιορισμούς (όπως χρονοπρογραμματισμός λίστας: list scheduling) Ευριστικές τεχνικές: με ακέραιο γραμμικό προγραμματισμό, προσομοιωμένη ανόπτηση, γενετικούς αλγορίθμους Βελτιστοποίηση κλειδαρότρυπας (peephole optimization): βελτιστοποίηση με αντικατάσταση ομάδας εντολών βάσει δοθέντος κανόνα εξετάζοντας μικρό τμήμα κώδικα Υπερβελτιστοποίηση (superoptimization): παραγωγή του βέλτιστου κώδικα χαμηλού επιπέδου με εξαντλητική εξέταση όλων των πιθανών περιπτώσεων
3 Χρονοπρογραμματισμός κώδικα (code scheduling) [Aho, 2008, (μετφρ. Ελληνικά)] Κατά το χρονοπρογραμματισμό, κάθε λειτουργία ανατίθεται σε ένα μοναδικό βήμα ελέγχου Κατηγοριοποίηση των αντίστοιχων τεχνικών χωρίς περιορισμό (UCS: unconstrained scheduling) δεν τίθενται εξωτερικοί περιορισμοί λύνεται με την τεχνική ASAP (As Soon As Possible) και ALAP (As Late As Possible) όπου κάθε λειτουργία αντιστοιχίζεται στο πρώτο ή στο τελευταίο βήμα ελέγχου που μπορεί να ανατεθεί, αντίστοιχα υπό περιορισμό πόρων (RCS: Resource-Constrained Scheduling) χρονοπρογραμματισμός λίστας υπό περιορισμό χρόνου (TCS: Time-Constrained Scheduling) αλγόριθμος χρονοπρογραμματισμού κατευθυνόμενου από δύναμη (force-directed scheduling) ο οποίος προσπαθεί να ισοσταθμίσει τις χρήσεις των υφιστάμενων πόρων υπό περιορισμό πόρων και χρόνου Ευριστικές (heuristic) τεχνικές
4 Παραλληλία επιπέδου εντολών (ILP: Instruction-Level Parallelism) Σήμερα, οι περισσότερες αρχιτεκτονικές επεξεργαστή είναι ικανές για την ταυτόχρονη εκτέλεση περισσότερων της μίας εντολών IPC 1 (IPC: Instructions per Clock Cycle) αρχιτεκτονικές πολλαπλής έκδοσης εντολών (multiple-issue architectures): εντολές ανακαλούνται από τη μνήμη, αποκωδικοποιούνται και γίνονται διαθέσιμες σε λειτουργικές μονάδες του επεξεργαστή, ταυτόχρονα νέες εντολές εκδίδονται καθόσον οι προηγηθείσες εντολές βρίσκονται ακόμη σε εξέλιξη (αρχιτεκτονικές με διοχέτευση) συνδυασμός των παραπάνω τεχνικών Παράλληλες αρχιτεκτονικές: διαφοροποίηση στον τρόπο έκδοσης εντολών στατικός καθορισμός από το μεταγλωττιστή: VLIW (Very-Long Instruction Word) αρχιτεκτονικές δυναμικός καθορισμός από το υλικό: υπερβαθμωτές (superscalar) αρχιτεκτονικές
5 Εξαρτήσεις εντολών (instruction dependencies) Εξάρτηση εντολής: μία εντολή i 2 εξαρτάται από την εντολή i 1 όταν δεν είναι εφικτό να εκτελεστεί η i 2 πριν την i 1 χωρίς τη μεταβολή της συμπεριφοράς του προγράμματος Εξάρτηση δεδομένων: η εντολή i 2 χρειάζεται τουλάχιστον μία τιμή που υπολογίζεται από την i 1 Είδη εξάρτησης δεδομένων πραγματική εξάρτηση τύπου RAW (Read After Write): η i 2 διαβάζει μία τιμή η οποία γράφεται από την i 1 αντι-εξάρτηση τύπου WAR (Write After Read): η i 2 γράφει μία τιμή η οποία διαβάζεται από την i 1 αντι-εξάρτηση τύπου WAW (Write After Write): η i 2 γράφει μία τιμή η οποία επίσης γράφεται από την i 1 Οι αντι-εξαρτήσεις εμφανίζονται λόγω της εγγραφής στην ίδια ϑέση αποθήκευσης (π.χ. στον ίδιο καταχωρητή). Μπορούν να απομακρυνθούν με επανονομασία των καταχωρητών
6 Η αρχή της διοχέτευσης εντολών Διαχωρισμός μιας λειτουργίας σε μία ακολουθία σταδίων, ιδανικά με τον ίδιο χρόνο καθυστέρησης Επιτρέπει την εκτέλεση λειτουργιών με επικάλυψη Τρόπος εκμετάλλευσης παραλληλίας στο χρόνο, ενώ η αρχή VLIW εκμεταλλεύεται την παραλληλία στο χώρο Διοχέτευση τόσο εντολών όσο και εντός της ίδιας λειτουργικής μονάδας (micro-pipelining)
7 Χαρακτηριστικά μιας αρχιτεκτονικής διοχέτευσης εντολών Περισσότερες της μιας εντολές βρίσκονται ταυτόχρονα σε διαφορετικά στάδια εκτέλεσης Πιθανή οργάνωση μιας αρχιτεκτονικής διοχέτευσης Ανάκληση εντολής Αποκωδικοποίηση εντολής Ανάκληση ορισμάτων Εκτέλεση εντολής με ενδεχόμενη προσπέλαση μνήμης Εγγραφή ορισμάτων στο αρχείο καταχωρητών Κίνδυνοι (hazards) σε μία αρχιτεκτονική διοχέτευσης Data hazards: λόγω πραγματικών εξαρτήσεων, π.χ. ορίσματα ανάγνωσης που δεν είναι διαθέσιμα Structural hazards: συγκρούσεις για τη δέσμευση λειτουργικών μονάδων (δύο ή περισσότερες εντολές χρειάζονται την ίδια μονάδα) Control hazards: άλματα υπό συνθήκη, των οποίων η τιμή της συνθήκης δεν έχει ακόμη υπολογιστεί
8 Επεξεργαστές RISC με αρχιτεκτονική διοχέτευσης Περιορισμένο ρεπερτόριο εντολών με λίγους τρόπους διευθυνσιοδότησης, σταθερό μήκος εντολής, ομογενής αρχιτεκτονική καταχωρητών Εντολές πάνω σε καταχωρητές, ξεχωριστές εντολές για φόρτωση και αποθήκευση από τη μνήμη
9 Η αρχιτεκτονική VLIW (1) Πολλαπλές λειτουργικές μονάδες (FU: Functional Unit), ιδανικά του ίδιου τύπου αν και αυτό δεν ισχύει στην πράξη (αριθμητική-λογική μονάδα, μονάδα φόρτωσης-αποθήκευσης, πολλαπλασιαστής, διαιρέτης, μονάδα διακλάδωσης) Κάθε εντολή απαρτίζεται από μία ομάδα λειτουργιών με κάθε μία από αυτές να εξυπηρετείται από αντίστοιχη λειτουργική μονάδα Οι FUs συνδέονται με συστοιχίες καταχωρητών. Η απαίτηση για πολλαπλές ϑύρες ανάγνωσης/εγγραφής επιβάλλει πολλές φορές το διαμερισμό του αρχείου καταχωρητών
10 Η αρχιτεκτονική VLIW (2)
11 Αρχιτεκτονικό περίγραμμα μιας απλής VLIW αρχιτεκτονικής
12 Παράδειγμα RISC/superscalar μικροαρχιτεκτονικής: Επεξεργαστής PowerPC
13 Αρχές στατικού και δυναμικού χρονοπρογραμματισμού Στατικός χρονοπρογραμματισμός Σε χρόνο μεταγλώττισης Εφικτή η καθολική εμβέλεια (σε όλο το πρόγραμμα) Σε κάθε βήμα: έλεγχος των εξαρτήσεων των υποψηφίων για δρομολόγηση εντολών με εντολές που έχουν δρομολογηθεί προηγουμένως. Δρομολόγηση των κατάλληλων εντολών με την πρέπουσα κα- ϑυστέρηση Η εμβέλεια συνήθως είναι: βασικό μπλοκ, ακολουθία βασικών μπλοκ (π.χ. από ίχνος εκτέλεσης προγράμματος), εσώτεροι βρόχοι Δυναμικός χρονοπρογραμματισμός Επίλυση στο υλικό Τοπική εμβέλεια Με ανάλυση των τοπικών εξαρτήσεων: έλεγχος των εξαρτήσεων των υποψηφίων για δρομολόγηση εντολών με εντολές που ήδη εκτελούνται ή υπόκεινται σε προγραμματισμένη καθυστέρηση. Αποδέσμευση για δρομολόγηση ή συγκράτηση των υποψηφίων εντολών Η εμβέλεια συνήθως είναι: μικρό παράθυρο μέχρι εντολές, ώστε οι εξαρτήσεις να είναι επιλύσιμες δυναμικά στο υλικό
14 Δρομολόγηση εντολών με στατικό χρονοπρογραμματισμό σε επεξεργαστή VLIW
15 Αλγόριθμος ακολουθιακής δρομολόγησης με τοπολογική κατάταξη (topological sort) Τοπολογική κατάταξη (topological sorting): Οι κορυφές ενός κατευθυνόμενου ακυκλικού γράφου G(V, E) διατάσσονται έτσι ώστε αν ο G περιέχει ακμή (u, v) E τότε ο u να εμφανίζεται πριν τον v στην κατάταξη Γενικά υπάρχουν περισσότερες από μία έγκυρες τοπολογικές κατατάξεις ενός DAG Στο χρονοπρόγραμμα: μία λειτουργία σε κάθε βήμα ελέγχου SEQUENTIAL(G(V, E)) Topological sort on G; Schedule u 0 by setting t 0 (S) = 0; repeat { Schedule u i in increasing topological order; } until (u n is scheduled); return (t i (S) for all i);
16 Παράδειγμα 1 Η σύνθετη έκφραση G = A*B + C*D + E*F Ενδεικτικός κώδικας τριών διευθύνσεων t0 = A * B; t1 = C * D; t2 = E * F; t3 = t0 + t1; G = t2 + t3; a a mul b b c d c d mul t0 t1 add e e mul t2 f f t3 add g g
17 Παράδειγμα 1: Ακολουθιακή δρομολόγηση Τοπολογική κατάταξη e a a c d c d t0 mul t1 f add e f t3 mul t2 add g g b mul b Παραγόμενος κώδικας συμβολομεταφραστή (υποθέτουμε ότι οι μεταβλητές a, b, c, d, e, f βρίσκονται ήδη σε καταχωρητές) L1: mul Rt0, Ra, Rb mul Rt1, Rc, Rd add Rt3, Rt0, Rt1 mul Rt2, Re, Rf add Rg, Rt3, Rt2
18 Ο αλγόριθμος ASAP (As Soon As Possible) Επιλύει το πρόβλημα του χρονοπρογραμματισμού χωρίς περιορισμούς Υποτίθεται ότι το δοσμένο DAG είναι πολικός γράφος (polar graph) ASAP(G(V, E)) Schedule u 0 by setting t 0 (S) = 0; repeat { Select a vertex u i whose predecessors are all scheduled; Schedule u i setting t i (S) = max j:(uj,u i) E(t j (S) + d j ); } until (u n is scheduled); return (t i (S) for all i);
19 Παράδειγμα 1: Χρονοπρογραμματισμός ASAP Χρονοπρόγραμμα ASAP a b c d e f a b c d e f mul mul mul t0 t1 add t2 t3 add g g Παραγόμενος κώδικας συμβολομεταφραστή (οι διπλές κάθετες μπάρες υποδηλώνουν παράλληλη εκτέλεση) L1: mul Rt0, Ra, Rb mul Rt1, Rc, Rd mul Rt2, Re, Rf add Rt3, Rt0, Rt1 add Rg, Rt3, Rt2
20 Ο αλγόριθμος ALAP (As Late As Possible) Επιλύει το πρόβλημα του χρονοπρογραμματισμού χωρίς περιορισμούς και υπό περιορισμό χρόνου Χρησιμοποιεί την έννοια του ορίου καθυστέρησης (latency bound): λ = t n (s) t 0 (s) ALAP(G(V, E), λ) Schedule u n by setting t n (L) = λ + 1; repeat { Select a vertex u i whose successors are all scheduled; Schedule u i setting t i (L) = min j:(ui,u j ) E (t j (L) d i ); } until (u 0 is scheduled); return (t i (L) for all i);
21 Παράδειγμα 1: Χρονοπρογραμματισμός ALAP Χρονοπρόγραμμα ALAP Παραγόμενος κώδικας συμβολομεταφραστή a a b b mul c c mul d d e e f f L1: mul Rt0, Ra, Rb mul Rt1, Rc, Rd mul Rt2, Re, Rf add Rt3, Rt0, Rt1 add Rg, Rt3, Rt2 t0 t1 add mul t3 t2 add g g
22 Η έννοια της ευκινησίας λειτουργίας (operation mobility) Η ευκινησία μιας λειτουργίας ορίζεται ως η διαφορά μεταξύ των χρόνων έναρξης (start times) όπως αυτοί υπολογίζονται από το χρονοπρογραμματισμό με τους αλγορίθμους ASAP και ALAP Δίνεται από τη σχέση: µ i = t i (L) t i (S) για τη λειτουργία i Μηδενική ευκινησία υπονοεί ότι η συγκεκριμένη λειτουργία μπορεί να ξεκινήσει μόνο στο συγκεκριμένο χρονικό σημείο προκειμένου να ικανοποιούνται οι απαιτήσεις του περιορισμού χρόνου Μη μηδενική ευκινησία περιγράφει τα διαθέσιμα χρονικά σημεία (βήματα ελέγχου του χρονοπρογράμματος) στα οποία μπορεί να ξεκινήσει η αντίστοιχη λειτουργία
23 Ο αλγόριθμος χρονοπρογραμματισμού λίστας (1) Επαναληπτικός αλγόριθμος, σε κάθε επανάληψη του οποίου επιλέγεται η καταλληλότερη λειτουργία από μία δεξαμενή αδέσμευτων λειτουργιών ώστε αυτή να ανατεθεί στο πρώτο βήμα ελέγχου για το οποίο δεν παραβιάζονται οι περιορισμοί πόρων Οι λειτουργίες κρίνονται με βάση μία συνάρτηση προτεραιότητας, η οποία ανταποκρίνεται στις απαιτήσεις του προγραμματιστή Στον αλγόριθμο διατηρούνται δύο λίστες: Λίστα ready: διαθέσιμες εντολές που μπορούν να δρομολογηθούν κατά σειρά προτεραιότητας Λίστα active: εντολές που βρίσκονται σε εκτέλεση Σε κάθε βήμα, η εντολή υψηλότερης προτεραιότητας από τη λίστα ready δρομολογείται και μετακινείται στην active όπου μένει για χρόνο εκτέλεσης ίσο με τον απαιτούμενο αριθμό κύκλων μηχανής
24 Ο αλγόριθμος χρονοπρογραμματισμού λίστας (2) Συναρτήσεις προτεραιότητας Η πιο κοινή συνάρτηση προτεραιότητας είναι το μήκος του μακρύτερου μονοπατιού από τον τρέχοντα κόμβο-εντολή μέχρι τον εικονικό κόμβο-ρίζα του ακυκλικού γράφου εξαρτήσεων (data-dependence DAG) Άλλες συναρτήσεις προτεραιότητας είναι δυνατόν να χρησιμοποιηθούν όπως για παράδειγμα ο αριθμός των άμεσα διάδοχων κόμβων για την τρέχουσα εντολή (number of immediate successor nodes)
25 Ο αλγόριθμος χρονοπρογραμματισμού λίστας (3) cycle 1; ready { leaf nodes of DDG }; active ; while (ready active ) if (ready ) then remove an operation from ready; Schedule(operation) cycle; active active operation; endif cycle cycle + 1; update the ready queue; endwhile
26 Παράδειγμα 1: Χρονοπρογραμματισμός λίστας με περιορισμούς πόρων ZΘεωρούμε ότι υπάρχει διαθεσιμότητα ενός πολλαπλασιαστή και ενός αθροιστή Τελικό χρονοπρόγραμμα Παραγόμενος κώδικας λίστας συμβολομεταφραστή a a b mul b c c d d e e f f L1: mul Rt0, Ra, Rb mul Rt1, Rc, Rd mul Rt2, Re, Rf add Rt3, Rt0, Rt1 add Rg, Rt3, Rt2 t0 mul t1 add mul t3 t2 add g g
27 Βελτιστοποίηση κλειδαρότρυπας [McKeeman, 1965] Γίνεται μετά τη μεταγλώττιση, δηλαδή τη μετατροπή της ενδιάμεσης αναπαράστασης σε τελικό κώδικα Η βασική ιδέα Ανακάλυψη τοπικών βελτιστοποιήσεων εξετάζοντας κάθε φορά ένα παράθυρο κώδικα Αντικατάσταση του τρέχοντος μοτίβου εντολών (ακολουθία ή υπογράφος εντολών) εφόσον υπάρχει αντίστοιχος κανόνας αντικατάστασης Κανόνες αντικατάστασης Εκφραση Αντικατάσταση mov r1, r1 shr r1, r2, 0 mov r1, r2 add r1, r1, constant lw r2, constant(r1) lw r2, 0(r1) neg r1, r2 sub r1, $zero, r2 abs r10, r11 sra $at, r11, 31 xor r10, r11, $at subu r10, r10, $at
28 Το εργαλείο copt [copt] Απλό εργαλείο αντικατάστασης μοτίβων (patterns) από λεκτικές μονάδες σύμφωνα με κανόνα αντικατάστασης Οταν ένας κανόνας αναγνωριστεί, εφαρμόζεται πάντα Αντιμετωπίζει το πρόγραμμα χαμηλού επιπέδου ως κείμενο Μορφή κανόνων στο copt <pattern for input line 1>... <pattern for input line n> = <pattern for output line 1>... <pattern for output line m> <blank line> Παράδειγμα abs %0, %1 = sra $at, %1, 31 xor %0, %1, $at subu %0, %0, $at
29 Υπερβελτιστοποίηση [Massalin, 1987] Δοθέντος ενός τμήματος κώδικα και του συνόλου εντολών του στοχευόμενου επεξεργαστή, ο υπερβελτιστοποιητής παράγει το βέλτιστο δυνατό κώδικα Το πρόβλημα της γέννησης βέλτιστου κώδικα είναι δυσεπίλυτο και έτσι συνήθως η αναζήτηση γίνεται με εφαρμογή ωμής δύναμης (brute-force search) σε συνδυασμό με τεχνικές αποκοπής υποπεριπτώσεων που η περαιτέρω διερεύνησή τους δεν μπορεί να οδηγήσει σε βέλτιστο κώδικα Παραδείγματα εφαρμογής: συνάρτηση εξαγωγής προσήμου (signum function), απόλυτη τιμή ακεραίου, μέγιστο και ελάχιστο δύο ακεραίων, πολλαπλασιασμοί/διαιρέσεις με σταθερά Εργαλεία υπερβελτιστοποίησης GNU superopt [superopt] Aha superoptimizer [Aha!]
30 Το εργαλείο superopt (1) Χρησιμοποιεί πραγματικά σύνολα εντολών (PowerPC, SPARC) ή ένα γενικό σύνολο εντολών με εντολές όπως: adc, add, and, copy, exchange, ior Παράδειγμα: τμήμα κώδικα για την επιλογή υπό συνθήκη σε C r = (unsigned int) (v0!= 0? v1 : v2); Κανόνας στο superopt DEF_GOAL (SELECT, 3, "select", { r = (unsigned_word) v0!= 0? v1 : v2; }) Εάν ο χρήστης ζητήσει όλες τις ακολουθίες με 5 ή λιγότερες εντολές, το superopt ϑα επιστρέψει 276 ακολουθίες εντολών που υλοποιούν τον κώδικα select, όπως: 1: r3:=sub(r2,r1) r4:=add_co(r0,-1) r5:=adc_cio(r5,r5) r6:=and(r5,r3) r7:=add_co(r6,r1)
31 Το εργαλείο superopt (2) Πραγματοποιεί εξαντλητικό έλεγχο για την εύρεση της βραχύτερης ακολουθίας Δέχεται ως είσοδο την έκφραση προς βελτιστοποίηση, καθώς και το μέγιστο αριθμό επιτρεπόμενων εντολών στην παραγόμενη ακολουθία Δεν μπορεί να βελτιστοποιήσει κώδικα παράγοντας μεγάλες ακολουθίες καθώς η πολυπλοκότητα του χρησιμοποιούμενου αλγορίθμου είναι εκθετική: O(m n 2n ) όπου m είναι ο αριθμός των εντολών της στοχευόμενης αρχιτεκτονικής και n είναι η ακολουθία ελάχιστου μήκους για το τμήμα κώδικα υπό βελτιστοποίηση Το πρακτικό μέγεθος ακολουθίας εντολών κυμαίνεται μεταξύ 2 και 7 εντολών Η υπερβελτιστοποίηση είναι χρήσιμη μόνο για ορισμένα τμήματα κώδικα που εμφανίζονται σε εσώτερους βρόχους
32 Αναφορές του μαθήματος I A. V. Aho, R. Sethi, and J. D. Ullman, Μεταγλωττιστές: Αρχές, Τεχνικές και Εργαλεία, με την επιμέλεια των: Άγγελος Σπ. Βώρος και Νικόλαος Σπ. Βώρος και Κων/νος Γ. Μασσέλος, κεφάλαια 8.7, 10, , Εκδόσεις Νέων Τεχνολογιών, Website for the English version: W. M. McKeeman, Peephole optimization, Communications of the ACM, vol. 8, no. 7, pp , July H. Massalin, Superoptimizer: A look at the smallest program, in Proceedings of the Second International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS II), January 1987, pp D. Spinellis, Declarative peephole optimization using string pattern matching, ACM SIGPLAN Notices, vol. 34, no. 2, pp , February A simple retargetable peephole optimizer. [Online]. Available: ftp: //ftp.cs.princeton.edu/pub/packages/lcc/contrib/copt.shar
33 Αναφορές του μαθήματος II The GNU superoptimizer. [Online]. Available: ftp://ftp.gnu.org/pub/gnu/superopt/ The Aha! superoptimizer. [Online]. Available: Graphviz. [Online]. Available:
Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική. Προηγμένα Θέματα Θεωρητικής Πληροφορικής
Βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Προηγμένα Θέματα Θεωρητικής Πληροφορικής Χρονοπρογραμματισμός κώδικα και βελτιστοποιήσεις εξαρτημένες από την αρχιτεκτονική Νικόλαος Καββαδίας nkvv@uop.r
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. Επιλογή κώδικα. 24 Νοεμβρίου Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Επιλογή κώδικα Νικόλαος Καββαδίας nkavv@uop.gr 24 Νοεμβρίου 2010 Ο γεννήτορας κώδικα Επιθυμητές ιδιότητες του γεννήτορα κώδικα (code generator) Το παραγόμενο πρόγραμμα χαμηλού επιπέδου
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Επιλογή κώδικα Νικόλαος Καββαδίας nkavv@uop.gr 24 Μαρτίου 2010 Σημαντικά ζητήματα στη γέννηση κώδικα (1) Επιθυμητές ιδιότητες του γεννήτορα κώδικα (code generator)
Διαβάστε περισσότεραΑποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Διαβάστε περισσότερα21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Διαβάστε περισσότεραΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Διαβάστε περισσότερα{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΟι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Διαβάστε περισσότεραΔ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Διαβάστε περισσότεραΑλγόριθμοι & Βελτιστοποίηση
Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)
Διαβάστε περισσότεραΒελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας. Προηγμένα Θέματα Θεωρητικής Πληροφορικής
Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας (Ι) Νικόλαος Καββαδίας nkavv@uop.gr 19 Μαΐου 2010 Βελτιστοποιήσεις για την εκμετάλλευση
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας (ΙΙ) Νικόλαος Καββαδίας nkavv@uop.gr 26 Μαΐου 2010 Μετασχηματισμοί βρόχου (loop
Διαβάστε περισσότεραΑς υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Διαβάστε περισσότεραΣκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. Γενικά χαρακτηριστικά του επεξεργαστή MU0. nkavv@uop.gr. Προγραμματιζόμενοι επεξεργαστές
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Προγραμματιζόμενοι επεξεργαστές Ρεαλιστικό παράδειγμα: ο επεξεργαστής MU0 (MicroProcessor
Διαβάστε περισσότεραPointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2
Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. nkavv@uop.gr. 26 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Ανασκόπηση του μαθήματος και ϑέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 26 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Παραλειπόμενα Αναδρομή στο περιεχόμενο του μαθήματος
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας
Μεταγλωττιστές ΙΙ Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας και ενίσχυση της τοπικότητας Νικόλαος Καββαδίας nkavv@uop.gr 22 Δεκεμβρίου 2010 Βελτιστοποιήσεις για την εκμετάλλευση της παραλληλίας
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Διαβάστε περισσότεραΣυναρτήσεις. Σημερινό μάθημα
Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότεραΓέννηση ενδιάμεσης αναπαράστασης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Τύποι IR. Άποψη του μεταγλωττιστή από την πλευρά της IR.
Η έννοια της ενδιάμεσης αναπαράστασης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 17 Μαρτίου 2010 Ενδιάμεση αναπαράσταση (IR: intermediate
Διαβάστε περισσότεραΤρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Διαβάστε περισσότεραCSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
Διαβάστε περισσότεραΈννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Διαβάστε περισσότεραΤο κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Διαβάστε περισσότεραΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Ανασκόπηση του μαθήματος - Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 02 Ιουνίου 2010 Σκιαγράφηση της διάλεξης Σύνοψη του μαθήματος
Διαβάστε περισσότεραΓενικά για τον καταμερισμό καταχωρητών. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Εναλλακτικές προσεγγίσεις στο πρόβλημα του
Γενικά για τον καταμερισμό καταχωρητών Προηγμένα Θέματα Θεωρητικής Πληροφορικής Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 1 Απριλίου 010 Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση
Διαβάστε περισσότεραΣυναρτήσεις & Κλάσεις
Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT
Διαβάστε περισσότεραΗ ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Διαβάστε περισσότεραΚληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading
Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ
Διαβάστε περισσότεραΝικόλαος Καββαδίας Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 03 Νοεμβρίου 2010 Αντικείμενο του μαθήματος CST325: Μεταγλωττιστές ΙΙ (1) Επιμέρους στόχοι του μαθήματος Παρουσίαση ϑεμάτων
Διαβάστε περισσότεραΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
Διαβάστε περισσότεραΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
Διαβάστε περισσότεραΣκιαγράφηση της διάλεξης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής.
Σκιαγράφηση της διάλεξης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Ανασκόπηση του μαθήματος - Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr Σύνοψη του μαθήματος Ενδεικτικά
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Διαβάστε περισσότεραΦροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10
Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά
Διαβάστε περισσότερα8 Βελτιστοποιήσεις για την ανάδειξη της παραλληλίας
Αντικείμενο του μαθήματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Προηγμένα Θέματα Θεωρητικής Πληροφορικής Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 10 Μαρτίου 2010 Επιμέρους στόχοι
Διαβάστε περισσότερα17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Διαβάστε περισσότεραΣυγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης
Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση
Διαβάστε περισσότερα«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Διαβάστε περισσότεραΣκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων κώδικας
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Μοντελοποίηση συνδυαστικών κυκλωμάτων Νικόλαος Καββαδίας nkavv@uop.gr 06 Μαρτίου 2012 Περισσότερα για τα αρθρώματα Αναθέσεις και τελεστές Συντρέχων
Διαβάστε περισσότεραΣχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
Διαβάστε περισσότεραΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες
Διαβάστε περισσότεραΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ
ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Η οργάνωση του μεταγλωττιστή Νικόλαος Καββαδίας nkavv@uop.gr 10 Μαρτίου 2010 Αντικείμενο του μαθήματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Επιμέρους στόχοι
Διαβάστε περισσότεραΕισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Διαβάστε περισσότεραΕπίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Διαβάστε περισσότεραΦόρμα Σχεδιασμού Διάλεξης (ημ/α: 17/03/08, έκδοση: 1.0)
1. Κωδικός Μαθήματος: (Εισαγωγή στον Προγραμματισμό) 2. Α/Α Διάλεξης: 1 1. Τίτλος: Εισαγωγή στους υπολογιστές. 2. Μαθησιακοί Στόχοι: Συνοπτική παρουσίαση της εξέλιξης των γλωσσών προγραμματισμού και των
Διαβάστε περισσότεραΣκιαγράφηση της διάλεξης. Γλώσσες Περιγραφής Υλικού Ι. nkavv@uop.gr. Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος. Περιεχόμενο εξετάσεων
Σκιαγράφηση της διάλεξης Γλώσσες Περιγραφής Υλικού Ι Θέματα πρακτικής εξάσκησης Νικόλαος Καββαδίας nkavv@uop.gr 08 Ιουνίου 2011 Ανασκόπηση ϑεμάτων παλαιών εξετάσεων του μαθήματος Εξεταστική περίοδος Ιουνίου-Ιουλίου
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Διαβάστε περισσότεραΤαξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
Διαβάστε περισσότεραΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
Διαβάστε περισσότεραΕισαγωγή στη γλώσσα προγραμματισμού Fortran 95
Τ Ε Τ Υ Π Κ Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Φεβρουάριος 2015 Copyright c 2006 2015 Σ. Σταματιάδης, (stamatis@materials.uoc.gr) Η στοιχειοθεσία έγινε από
Διαβάστε περισσότεραΜονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραHY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Διαβάστε περισσότεραΠαραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότερα5.1 Μετρήσιμες συναρτήσεις
5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο
Διαβάστε περισσότεραΕπίλυση δικτύων διανομής
ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών
Διαβάστε περισσότεραΕφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική. Νικόλαος Καββαδίας Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 08 Δεκεμβρίου 2010 Η έννοια της βελτιστοποίησης προγράμματος Βελτιστοποίηση προγράμματος (program optimization):
Διαβάστε περισσότεραΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά
Διαβάστε περισσότεραnkavv@physics.auth.gr nkavv@uop.gr
Γλώσσες Περιγραφής Υλικού Μη προγραμματιζόμενοι επεξεργαστές Νικόλαος Καββαδίας nkavv@physics.auth.gr nkavv@uop.gr 26 Μαΐου 2009 Σκιαγράφηση της διάλεξης Μη προγραμματιζόμενοι επεξεργαστές Υλοποίηση με
Διαβάστε περισσότεραΜία χρονοσειρά (time serie) είναι μια ακολουθία
Matching Βάση Χρονοσειρών Μία χρονοσειρά (time serie) είναι μια ακολουθία πραγματικών αριθμών, που αντιπροσωπεύουν μετρήσεις μιας πραγματικής μεταβλητής σε ίσα χρονικά διαστήματα πχ Οι τιμές των μετοχών
Διαβάστε περισσότεραΕπιχειρησιακή Ερευνα Ι
Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.
Διαβάστε περισσότεραΨηφιακή Εικόνα. Σημερινό μάθημα!
Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη
Διαβάστε περισσότεραΜεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση τελικού κώδικα για RISC επεξεργαστές. 12 Ιανουαρίου 2011. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ
Μεταγλωττιστές ΙΙ Γέννηση τελικού κώδικα για RISC επεξεργαστές Νικόλαος Καββαδίας nkavv@uop.gr 12 Ιανουαρίου 2011 Σκιαγράφηση της διάλεξης Η αρχιτεκτονική επεξεργαστή MIPS Γέννηση τελικού κώδικα για τον
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Σχεδίαση Λογικών Κυκλωμάτων Γιάννης Λιαπέρδος [gliaperd@teikal.gr] Μάρτιος 2012 1 Ηλεκτρονικά Ελεγχόμενοι ιακόπτες Για την υλοποίηση των λογικών κυκλωμάτων χρησιμοποιούνται ηλεκτρονικά
Διαβάστε περισσότεραΜητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή
Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού
Διαβάστε περισσότεραέγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου.
Π Π Σ Τ Π Ε Τ Ψ Σ Δομές Δεδομένων 2016-2017 2η Εργασία Χρήστος Δουλκερίδης Ορέστης Τελέλης 1 Περιγραφή Η ομαδοποίηση εγγράφων (document clustering) με βάση τα περιεχόμενά τους είναι ένα πολύ ενδιαφέρον
Διαβάστε περισσότεραΤο υπόδειγμα IS-LM: Εισαγωγικά
1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ
ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών
Διαβάστε περισσότεραΔήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων
Διαβάστε περισσότεραΗλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα
Τ Ε Τ Υ Π Κ Ηλεκτρονικοί Υπολογιστές Ι: Εισαγωγή στη γλώσσα προγραμματισμού Fortran 95 Σημειώσεις Διαλέξεων Σ. Σ Ηράκλειο Σεπτέμβριος 2014 Copyright c 2006 2014 Σ. Σταματιάδης, (stamatis@materials.uoc.gr)
Διαβάστε περισσότεραΣυναρτήσεις ΙΙ. Σημερινό μάθημα
Συναρτήσεις ΙΙ 1 Σημερινό μάθημα Εμβέλεια Εμφωλίαση Τύπος αποθήκευσης Συναρτήσεις ως παράμετροι Πέρασμα με τιμή Πολλαπλά return Προκαθορισμένοι ρ Παράμετροι ρ Υπερφόρτωση συναρτήσεων Inline συναρτήσεις
Διαβάστε περισσότεραΓενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Διαβάστε περισσότεραΕυρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Διαβάστε περισσότεραΠΡΟΣΕΓΓΙΣΤΙΚΑ ΣΧΗΜΑΤΑ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΔΡΟΜΟΛΟΓΗΣΗΣ
Μ Π Σ Λ Θ Α Υ m l ΠΡΟΣΕΓΓΙΣΤΙΚΑ ΣΧΗΜΑΤΑ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΔΡΟΜΟΛΟΓΗΣΗΣ Δ Ε Γεώργιος Ζώης Επιβλέπων: Σταύρος Γ. Κολλιόπουλος, Επ. Καθηγητής, Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Αθήνα, Μάρτιος
Διαβάστε περισσότεραG περιέχει τουλάχιστον μία ακμή στο S. spanning tree στο γράφημα G.
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 2014-2015 Λύσεις 3ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Βουδούρη Καλλιρρόη ΙΑΓ%ΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑ:.. ΘΕΜΑ Α Α. Να ση)ειώσετε στο γρα1τό σας δί1λα α1ό τον
Διαβάστε περισσότεραRing Routing and Wavelength Conversion. Γιώργος Ζώης
Ring Routing and Wavelength Conversion Γιώργος Ζώης Ενότητες της παρουσίασης 1. Directed Ring Routing Wavelength Conversion σε WDM δίκτυα. 2. Wavelength Conversion σε shortest path δρομολογήσεις. 3. Επιπλέον
Διαβάστε περισσότεραΠροηγμένα Θέματα Θεωρητικής Πληροφορικής
Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 28 Απριλίου 2010 Η έννοια της βελτιστοποίησης προγράμματος Βελτιστοποίηση προγράμματος
Διαβάστε περισσότεραΗ έννοια της βελτιστοποίησης προγράμματος. Προηγμένα Θέματα Θεωρητικής Πληροφορικής
Η έννοια της βελτιστοποίησης προγράμματος Προηγμένα Θέματα Θεωρητικής Πληροφορικής Βελτιστοποιήσεις ανεξάρτητες από την αρχιτεκτονική Νικόλαος Καββαδίας nkavv@uop.gr 28 Απριλίου 2010 Βελτιστοποίηση προγράμματος
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Διαβάστε περισσότερα