Το δίκαιο των αδικοπραξιών
|
|
- Σκύλλα Μπλέτσας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Το δίκαιο των αδικοπραξιών Αδικοπραξία (αδίκημα) κατά το ΑΚ 914 = υποχρέωση προς αποζημίωση που έχει ένα πρόσωπο που προκάλεσε σε άλλον ζημία με παράνομη και υπαίτια πράξη του. Προϋποθέσεις Παράνομη συμπεριφορά (αποδοκιμάζεται από την έννομη τάξη) Υπαιτιότητα (ψυχική στάση του δράστη) Ζημία (βλάβη στα υλικά ή άυλα αγαθά) Αιτιώδης συνάφεια (μεταξύ νόμιμου λόγου ευθύνης και της ζημίας) Αν η ευθύνη είναι αντικειμενική αρκεί η πράξη, η ζημία και η αιτιώδης συνάφεια Αποτέλεσμα Υποχρέωση καταβολής αποζημίωσης Για περιουσιακή ζημία Για μη περιουσιακή ζημία (ηθική βλάβη σωματική ακεραιότητα, υγεία, τιμή, ε λευθερία) Ψυχική οδύνη (για οικογένεια θανόντος) Εμείς θα μιλήσουμε για αδικοπραξίες λόγω αμέλειας (ατυχήματα) και όχι με δόλο (π.χ. αδικοπρακτική παρέμβαση τρίτου σε σύμβαση, προσβολή της προσωπικότητας, κλπ.) Οι περιπτώσεις πρόκλησης ζημίας σε τρίτον είναι πολλές. Όταν τα συναλλακτικά έξοδα είναι χαμηλά (και εφόσον τα δικαιώματα των μερών είναι σαφώς προσδιορισμένα), τα μέρη είναι δυνατόν να συμφωνήσουν εκ των προτέρων ως προς τον τρόπο αντιμετώπισης πιθανών ζημιών (θεώρημα Coase θετική εκδοχή). Ωστόσο συχνά, επειδή τα συναλλακτικά έξοδα είναι ιδιαίτερα υψηλά, τέτοιες συμφωνίες δεν είναι δυνατές (π.χ. ένας οδηγός αυτοκινήτου δεν είναι δυνατόν να συμφωνήσει με όλους του άλλους οδηγούν ή με όλους τους πεζούς σχετικά με την αντιμετώπιση πιθανού ατυχήματος). Στις περιπτώσεις αυτές είναι δυνατόν να εφαρμοστεί το θεώρημα Coase στην κανονιστική του μορφή, που διατύπωσε ο Richard Posner, σύμφωνα με την οποία ο νομοθέτης ή ο δικαστής πρέπει να μιμηθούν την αγορά, δηλαδή να επιλέξουν τη ρύθμιση που μεγιστοποιεί την κοινωνική ευημερία. Στο πλαίσιο αυτό, στην περίπτωση των ατυχημάτων, η κατανομή των δικαιωμάτων είναι σκόπιμο να γίνει με τρόπο έτσι ώστε να αναλαμβάνει το κόστος των ατυχημάτων εκείνο το μέρος που είναι στην καλύτερη θέση να αποφύγει ή να ελαχιστοποιήσει τη ζημία. Σε αντίθεση λοιπόν με τις συμβάσεις, όπου η επαφή είναι αμοιβαίως επωφελής, εδώ δεν υπάρχει συναίνεση από κανέναν (αν και ο ένας με τη θέλησή του αναλαμβάνει μια επικίνδυνη δραστηριότητα και ο άλλος αποζημιώνεται όχι όμως πλήρως). Λόγω του μεγάλου κόστους συναλλαγών στις αδικοπραξίες, θα πρέπει το δίκαιο να δώσει τη λύση. Συνεπώς: Στόχος της οικονομικής ανάλυσης του δικαίου των αδικοπραξιών είναι η ελαχιστοποίηση του συνολικού κόστους των ατυχημάτων
2 2 Οι τρεις τύποι του κόστους των ατυχημάτων, σύμφωνα με τον Guido Calabresi, The Costs of Accidents: A Legal and Economic Analysis (New Haven: Yale University Press, 1970): Πρωτογενές κόστος = η βλάβη του ζημιωθέντος (ιατρικά έξοδα, απώλεια μισθών). Δευτερογενές κόστος = το κοινωνικό κόστος των ατυχημάτων. 1 Είναι διαφορετικό ένα άτομο να υφίσταται ζημία ευρώ και διαφορετικό κάθε ένα από άτομα να υφίσταται ζημία 1 ευρώ. Για τη μείωση του δευτερογενούς κόστους ενδείκνυται η ασφάλιση, η οποία ωστόσο αυξάνει το πρωτογενές κόστος (πρόβλημα με κίνητρα δράστη αν δεν υπάρχει υποκατάσταση, ηθικός κίνδυνος θύματος moral hazard). Τριτογενές κόστος = το κόστος εφαρμογής του δικαίου των αδικοπραξιών. Π.χ. Αστυνομία που καλείται στον τόπο του ατυχήματος, έξοδα για τον υπολογισμό της ζημίας, έξοδα δικηγόρου, γενικότερα ο κόπος και ο χρόνος που συνδέεται με την άσκηση αγωγής αποζημίωσης. Αν τεθεί ως στόχος η μείωση του τριτογενούς κόστους (π.χ. με την καθιέρωση ενός καθεστώτος μη ευθύνης) αυξάνεται το πρωτογενές. Το ίδιο συμβαίνει αν τεθεί ως στόχος η μείωση του δευτερογενούς κόστους. Συνεπώς, το δίκαιο των αδικοπραξιών θα έπρεπε να δομηθεί έτσι ώστε να επιτυγχάνεται ο καλύτερος συγκερασμός των παραπάνω στόχων. Κατά λογική αναγκαιότητα, προτεραιότητα έχει ο στόχος της μείωσης του πρωτογενούς κόστους, στον οποίο επικεντρωνόμαστε στη συνέχεια. Για τη μείωση του πρωτογενούς κόστους απαραίτητη είναι η λήψη μέτρων αποτροπής του ατυχήματος, τα οποία πάντως επίσης κοστίζουν. Πολλές φορές μάλιστα το κόστος αποτροπής του ατυχήματος είναι μεγαλύτερο από το κόστος του ίδιου του ατυχήματος. Ο στόχος των οικονομικών είναι η ελαχιστοποίηση του συνολικού κόστους (κόστος ατυχήματος + κόστος αποτροπής). ΑΠΟΤΕΛΕΣΜΑΤΙΚΟ ΕΠΙΠΕΔΟ ΑΤΥΧΗΜΑΤΩΝ οριακό κόστος αποτροπής = οριακό όφελος από αποτροπή Με άλλα λόγια: Μέτρα αποτροπής της ζημίας πρέπει να λαμβάνονται έως το σημείο στο οποίο η λήψη μιας επιπλέον μονάδας μέτρων αποτροπής κοστίζει όσο η μείωση της ζημίας που επιφέρει (η επόμενη μονάδα μέτρων αποτροπής θα μειώνει τη ζημία λιγότερο από το κόστος της). Αντίστοιχα καθορίζεται και το αποτελεσματικό επίπεδο δραστηριότητας: Μια επιπλέον μονάδα δραστηριότητας πρέπει να επιχειρείται όταν το όφελος από αυτής υπερβαίνει το κόστος της. Πώς επιτυγχάνεται αυτό; 1 Το κόστος της ανάληψης του κόστους των ατυχημάτων (Jules Coleman).
3 3 Με την υποχρέωση καταβολής αποζημίωσης, δηλαδή με το να αναλαμβάνει το κόστος των ατυχημάτων ο δράστης (δηλ. σύμφωνα με την κανονιστική εκδοχή του θεωρήματος Coase εκείνο το μέρος που είναι στην καλύτερη θέση για να αποφύγει ή να ελαχιστοποιήσει τη ζημία). Αντίστοιχα δίνεται απάντηση στο ερώτημα ποιος είναι υπαίτιος: Learned Hand formula: PL > B P = πιθανότητα βλάβης L = ζημία B = κόστος αποτροπής της ζημίας PL = αναμενόμενο κόστος της βλάβης/ζημίας Σημαντικό ρόλο παίζει η προβλεψιμότητα της ζημίας. Αν ο δράστης δεν ήταν δυνατόν να προβλέψει το είδος της ζημίας που επήλθε, δεν θα μπορούσε να είχε λάβει μέτρα για την αποτροπή της. Για αυτό δεν έχει νόημα, από πλευράς οικονομικής ανάλυσης του δικαίου να υποχρεούται σε αποζημίωση για αυτή. (Διαφορετικό είναι το ζήτημα όταν ο δράστης μπορούσε να προβλέψει το είδος της ζημίας αλλά όχι την ακριβή της έκταση). ΣΥΓΚΡΙΤΙΚΗ ΕΞΕΤΑΣΗ ΚΑΝΟΝΩΝ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΑΠΟΚΑΤΑΣΤΑΣΗ ΖΗΜΙΑΣ (Βασικές υποθέσεις: δράστης και θύμα ουδέτεροι ως προς τον κίνδυνο, με πλήρη πληροφόρηση) ΠΕΡΙΠΤΩΣΗ 1Α ΜΟΝΟ Ο ΔΡΑΣΤΗΣ ΜΠΟΡΕΙ ( ή είναι αποτελεσματικό) ΝΑ ΛΑΒΕΙ ΜΕΤΡΑ ΠΡΟΛΗΨΗΣ (επίπεδο δραστηριότητας: σταθερό) Μη ευθύνη: καμία λήψη μέτρων αποτροπής αναποτελεσματικός κανόνας Αντικειμενική ευθύνη: Ο δράστης εσωτερικεύει το συνολικό κόστος της δραστηριότητάς του το κόστος του ελαχιστοποιείται όταν λαμβάνει τα αποτελεσματικά μέτρα α ποτροπής της ζημίας αποτελεσματικός κανόνας Υποκειμενική ευθύνη (εφόσον το μέτρο επιμέλειας τίθεται σύμφωνα με τη Learned Hand Formula): 2 Αν ο δράστης δεν λάβει τα αποτελεσματικά μέτρα προστασίας καταβάλλει αποζημίωση στο θύμα (και φέρει και το κόστος των όποιων ανεπαρκών μέτρων πρόληψης υιοθέτησε). Αν τα λάβει φέρει μόνο το κόστος των μέτρων αποτροπής και έτσι ελαχιστοποιεί το κόστος του αποτελεσματικός κανόνας. ΠΕΡΙΠΤΩΣΗ 1Β ΜΕΤΡΑ ΠΡΟΛΗΨΗΣ ΜΟΝΟ ΑΠΟ ΔΡΑΣΤΗ ΕΠΙΠΕΔΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ: ΜΕΤΑΒΛΗΤΟ Αντικειμενική ευθύνη: αποτελεσματική (αιτιολογία όπως σε περίπτωση 1Α) 2 Πάντως αν το μέτρο επιμέλειας τεθεί υπερβολικά υψηλά, πάλι η υποκειμενική ευθύνη είναι αποτελεσματική, γιατί ο δράστης στην ουσία την αντιμετωπίζει σαν αντικειμενική ευθύνη Προτιμά να τηρεί το αποτελεσματικό μέτρο επιμέλειας και να καταβάλλει αποζημίωση.
4 4 Υποκειμενική ευθύνη: αναποτελεσματική: Ο δράστης, για να αποφύγει την ευθύνη, αρκεί να λαμβάνει αποτελεσματικά μέτρα αποτροπής της ζημίας, ανεξάρτητα από τον βαθμό της δραστηριότητάς του. Έτσι ασκεί τη δραστηριότητα σε υπερβολικό βαθμό. Η υποκειμενική ευθύνη μπορεί να γίνει αποτελεσματική αν στο απαιτούμενο επίπεδο ε πιμέλειας καθοριστεί όχι μόνο με αναφορά στα μέτρα αποτροπής της ζημίας αλλά και στο επίπεδο δραστηριότητας. ΠΕΡΙΠΤΩΣΗ 2Α ΚΑΙ Ο ΔΡΑΣΤΗΣ ΚΑΙ ΤΟ ΘΥΜΑ ΜΠΟΡΟΥΝ ΝΑ ΛΑΒΟΥΝ ΜΕΤΡΑ ΠΡΟΛΗΨΗΣ (και αυτό είναι αποτελεσματικό) (επίπεδο δραστηριότητας σταθερό) Μη ευθύνη: Μέτρα πρόληψης μόνο από θύμα αναποτελεσματικό. Αντικειμενική ευθύνη: Μέτρα πρόληψης μόνο από δράστη αναποτελεσματικό. Ευθύνη από αμέλεια: Μέτρα πρόληψης από δράστη (βλ. περίπτωση 1Α) και από το θύμα, γιατί αν ο δράστης είναι επιμελής, τότε το θύμα δεν λαμβάνει καμία αποζημίωση είναι σαν να αντιμετωπίζει καθεστώς μη ευθύνης και για αυτό προσπαθεί να ελαχιστοποιήσει τη ζημία του. Η αντικειμενική ευθύνη μπορεί να γίνει αποτελεσματική αν συνδυαστεί με τον θεσμό του συντρέχοντος πταίσματος. ΠΕΡΙΠΤΩΣΗ 2Β ΜΕΤΡΑ ΠΡΟΛΗΨΗΣ ΑΠΟ ΔΡΑΣΤΗ ΚΑΙ ΑΠΟ ΘΥΜΑ ΕΠΙΠΕΔΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ: ΜΕΤΑΒΛΗΤΟ Ευθύνη από αμέλεια: υπερβολική δραστηριότητα δράστη αναποτελεσματική. Αντικειμενική ευθύνη: (με συντρέχον πταίσμα): υπερβολική δραστηριότητα θύματος αναποτελεσματική. Μόνη λύση στο πλαίσιο του δικαίου των αδικοπραξιών: καθορισμός του απαιτούμενου επιπέδου επιμέλειας όχι μόνο με αναφορά στα μέτρα αποτροπής της ζημίας αλλά και στο επίπεδο δραστηριότητας (βλ. και περίπτωση 1 Β).
5 5 Για όσους βρίσκουν τις γραφικές παραστάσεις επιβοηθητικές Συνολικό κόστος Κόστος μέτρων αποτροπής Αναμενόμενη ζημία x* μέτρα αποτροπής Τα μέτρα αποτροπής της ζημίας είναι ευθέως ανάλογα με το κόστος τους, δηλαδή κάθε επόμενο μέτρο κοστίζει όσο το προηγούμενο (αν το 1 μέτρο κοστίζει 2, τα 2 κοστίζουν 4, τα 3 κοστίζουν 6, κ.ο.κ.). Η αναμενόμενη ζημία εξαρτάται από τα μέτρα αποτροπής. Όσα περισσότερα μέτρα αποτροπής λαμβάνονται, τόσο περισσότερο μειώνεται η ζημία. Ωστόσο, η λήψη του πρώτου μέτρου αποτροπής μειώνει την αναμενόμενη ζημία περισσότερο από όσο η λήψη του δεύτερου μέτρου αποτροπής, που μειώνει τη ζημία περισσότερο από το τρίτο μέτρο αποτροπής κ.ο.κ. (π.χ. το πρώτο μέτρο μειώνει τη ζημία κατά 30, το δεύτερο κατά 20, το τρίτο κατά 15 κ.ο.κ. ). Γι αυτό η αναμενόμενη ζημία είναι μια καμπύλη και όχι ευθεία. Η καμπύλη με το συνολικό κόστος προκύπτει αν προσθέσουμε τις άλλες δύο (δηλαδή αν σε κάθε σημείο της καμπύλης με την αναμενόμενη ζημία προσθέσουμε από πάνω την αντίστοιχη απόσταση μεταξύ του οριζόντιου άξονα και την ευθείας με το κόστος των μέτρων αποτροπής της ζημίας). Το σημείο x* είναι το ελάχιστο της καμπύλης του συνολικού κόστους, δηλαδή στο σημείο αυτό ελαχιστοποιείται το άθροισμα της αναμενόμενης ζημίας και του κόστους των μέτρων αποτροπής της ζημίας. Συνεπώς, το x* είναι το αποτελεσματικό επίπεδο μέτρων αποτροπής της ζημίας.
Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Διαβάστε περισσότεραΑποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ
ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση
Διαβάστε περισσότεραΈννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Διαβάστε περισσότεραΤο κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Διαβάστε περισσότεραΤο υπόδειγμα IS-LM: Εισαγωγικά
1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και
Διαβάστε περισσότερα1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται
1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότερα{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983
20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Πομπιέρη Βασιλεία, Δικηγόρος, LLM UCL Πτωχευτικό Δίκαιο Σημαντικότερες ρυθμίσεις σε προπτωχευτικό στάδιο. Εισαγωγή της διαδικασίας συνδιαλλαγής Σκοπός Η διάσωση και εξυγίανση
Διαβάστε περισσότεραΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Διαβάστε περισσότεραΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Διαβάστε περισσότεραΟι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ
ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών
Διαβάστε περισσότεραΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Διαβάστε περισσότερα1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραΠαραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.
1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Διαβάστε περισσότεραΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
Διαβάστε περισσότεραHY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Διαβάστε περισσότεραΗ ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Διαβάστε περισσότεραΤο Θεώρημα του Coase και η Προστασία των Δικαιωμάτων
Το Θεώρημα του Coase και η Προστασία των Δικαιωμάτων Τι είναι το Θεώρημα του Coase και γιατί είναι τόσο σημαντικό; Ο άγγλος οικονομολόγος Ronald Coase στα τέλη της δεκαετίας του 1950 ασχολήθηκε σχεδόν
Διαβάστε περισσότεραΗμέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης
Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών
Διαβάστε περισσότεραΕπίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Διαβάστε περισσότεραΗ οικονομική προσέγγιση στο δίκαιο
Η οικονομική προσέγγιση στο δίκαιο Ένας πρώτος ορισμός του Δικαίου. Το Δίκαιο είναι ένας ειρηνικός τρόπος διευθέτησης των διαφορών ένα μέσο για την εξασφάλιση της κοινωνικής ειρήνης και ευημερίας. Δεν
Διαβάστε περισσότεραΟ Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Διαβάστε περισσότεραΆσκηση του δικαιώματος σημαίνει την εξουσία του δικαιούχου να ενεργήσει για την
Καραίσκος Δημήτριος: Δικηγόρος υπ. Διδάκτωρ Ιδιωτικού Δικαίου Παν/μίου Αθηνών 1. Άσκηση και κατάχρηση του δικαιώματος Άσκηση του δικαιώματος σημαίνει την εξουσία του δικαιούχου να ενεργήσει για την αξιοποίηση
Διαβάστε περισσότεραΤαξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
Διαβάστε περισσότεραΗ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΟΥ ΔΙΚΑΙΟΥ ΤΩΝ ΣΥΜΒΑΣΕΩΝ * (Στο παράδειγμα της ποινικής ρήτρας, ΑΚ 409)
Η ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΟΥ ΔΙΚΑΙΟΥ ΤΩΝ ΣΥΜΒΑΣΕΩΝ * (Στο παράδειγμα της ποινικής ρήτρας, ΑΚ 409) Αριστείδης Ν. Χατζής Επίκουρος Καθηγητής Φιλοσοφίας Δικαίου & Θεωρίας Θεσμών Τμήμα Μεθοδολογίας, Ιστορίας και
Διαβάστε περισσότερα1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι:
1. Ας υποθέσουμε ότι η εισοδηματική ελαστικότητα ζήτησης για όσπρια είναι ίση με το μηδέν. Αυτό σημαίνει ότι: α) Ανεξάρτητα από το ύψος της τιμής των οσπρίων, ο καταναλωτής θα δαπανά πάντα ένα σταθερό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΠΟΙΝΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΠΟΙΝΙΚΟ ΔΙΚΑΙΟ Διδάσκων: Μαρία Καρ. Μάρκου, Δικηγόρος 5β η Ενότητα Συμμετοχή Φυσικός αυτουργός είναι εκείνος που διαπράττει ο ίδιος το αδίκημα, αυτοπροσώπως, με τα χέρια του, με δικά του μέσα,
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Διαβάστε περισσότεραΓενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Διαβάστε περισσότεραΕυρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Διαβάστε περισσότεραΕφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate
ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται
Διαβάστε περισσότεραΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ
ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.
Διαβάστε περισσότεραα) Το έλλειμμα ή το πλεόνασμα του εμπορικού ισοζυγίου δεν μεταβάλλεται
1. Ο πληθωρισμός ορίζεται ως εξής: (Δ= μεταβολή, Ρ= επίπεδο τιμών, Ρ e = προσδοκώμενο επίπεδο τιμών): α) Δ Ρ e /Ρ β) Ρ e / Ρ γ) Δ Ρ/Ρ δ) (Ρ Ρ e )/Ρ 2. Όταν οι εξαγωγές αυξάνονται: α) Το έλλειμμα ή το πλεόνασμα
Διαβάστε περισσότερατεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές
Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση
Διαβάστε περισσότεραΣυντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότερα3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:
1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους
Διαβάστε περισσότεραΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΕστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ
HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που
Διαβάστε περισσότεραΕισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Διαβάστε περισσότεραΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ
ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
Διαβάστε περισσότεραΦροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10
Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά
Διαβάστε περισσότεραΠροτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότερα(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις
(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ
ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Βασίλειος Σταματόπουλος, Δικηγόρος, Δ.Μ.Σ. Συνάντηση 4 η ΕΝΟΧΕΣ ΔΙΑΖΕΥΚΤΙΚΕΣ Εννοιολογική προσέγγιση. Διαζευκτική είναι η ενοχή που έχει ως αντικείμενο δύο ή περισσότερες
Διαβάστε περισσότεραΑ) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε:
Ο διαγωνισμός της Εθνικής Σχολής Δημόσιας Διοίκησης προϋποθέτει, ως γνωστόν, συνδυασμό συνδυαστικής γνώσης της εξεταστέας ύλης και θεμάτων πολιτικής και οικονομικής επικαιρότητας. Tα Πανεπιστημιακά Φροντιστήρια
Διαβάστε περισσότερα21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Διαβάστε περισσότεραΜονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Διαβάστε περισσότεραΠροτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.
Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι
Διαβάστε περισσότεραΦυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός
Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία
Διαβάστε περισσότεραΗμέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης
Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος
Διαβάστε περισσότερα2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες
20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε
Διαβάστε περισσότερα(13 ο ) ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙII: «βέλτιστο στατικό ευρετήριο»
(13 ο ) ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙII: «βέλτιστο στατικό ευρετήριο» Βέλτιστο στατικό «μεροληπτικό» ευρετήριο «Ευρετήρια» ονομάζουμε δομές οι οποίες μας διευκολύνουν να εντοπίζουμε τα καταχωρισμένα στοιχεία
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότεραΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Διδαγμένο Κείμενο ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α1. Επομένως οι αρετές δεν υπάρχουν μέσα μας εκ φύσεως ούτε αντίθετα προς τη φύση μας, αλλά έχουμε από τη φύση την ιδιότητα να τις δεχτούμε
Διαβάστε περισσότεραΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ
ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ Eugene T. GENDLIN University of Chicago, U.S.A Αυτό το άρθρο είναι μια αναθεωρημένη έκδοση της πλήρους
Διαβάστε περισσότεραΒελτίωση Εικόνας. Σήμερα!
Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram
Διαβάστε περισσότεραΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου
Διαβάστε περισσότεραΚεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά
Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων Περίληψη Κεφαλαίου: Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά χαρακτηριστικά του μείγματος Marketing (Μ.Κ.Τ.), στο πλαίσιο της εύρυθμης λειτουργίας
Διαβάστε περισσότεραΔίκαιο και Οικονομικά: Οι Εξετάσεις
Δίκαιο και Οικονομικά: Οι Εξετάσεις Το κείμενο αυτό ανανεώνεται με τη δική σας παρέμβαση, τις ερωτήσεις, τα σχόλια και τις παρατηρήσεις σας. Θα συνεχίζει να ανανεώνεται μέχρι την ημέρα των εξετάσεων. Αυτή
Διαβάστε περισσότεραEισηγητής: Μουσουλή Μαρία
Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε
Διαβάστε περισσότεραΗ εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Διαβάστε περισσότερα17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Διαβάστε περισσότεραΑνεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές
10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,
Διαβάστε περισσότερα1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Διαβάστε περισσότεραΠοια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε
Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Δυστυχώς είναι μια πραγματικότητα της ζωής ότι αν διατηρείτε στο σπίτι σας φυτά, υπάρχει πάντα η πιθανότητα να υποστούν ζημίες από βλαβερούς
Διαβάστε περισσότερα"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ".
"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ". "Ότι ανόητο είπα μπορεί και να είναι ένα ρέψιμο κάποιου ξεχασμένου αστέρα..." "Δεν κάνει
Διαβάστε περισσότεραΠροτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.
Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι
Διαβάστε περισσότεραMartingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Διαβάστε περισσότεραEισηγητής: Μουσουλή Μαρία
Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΚΕΙΜΕΝΟ. Πέµπτη 19 Νοεµβρίου 1942. Αγαπητή Κίττυ,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ ΕΚΦΡΑΣΗ - ΕΚΘΕΣΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Αγαπητή
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους
Διαβάστε περισσότεραΔ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό
Διαβάστε περισσότεραΕπιλέγοντας τις κατάλληλες γλάστρες
Επιλέγοντας τις κατάλληλες γλάστρες Το τι γλάστρες θα χρησιμοποιήσετε εξαρτάται κυρίως από το πορτοφόλι σας αλλά και το προσωπικό σας γούστο. Οι επιλογές σας είναι αμέτρητες, τόσο σε ποιότητες όσο και
Διαβάστε περισσότεραΚεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
Διαβάστε περισσότεραΔήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.
Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων
Διαβάστε περισσότεραΔΙΚΑΙΟ & ΟΙΚΟΝΟΜΙΚΑ ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΔΙΚΑΙΟ & ΟΙΚΟΝΟΜΙΚΑ ΣΗΜΕΙΩΣΕΙΣ ΑΡΙΣΤΕΙΔΗΣ Ν. ΧΑΤΖΗΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ http://www.phs.uoa.gr/ahatzis THE LAWYER S CLUB
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότερα602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Διαβάστε περισσότερα