Ειδικά Θέματα Διδακτικής Μαθηματικών Επίλυση προβλήματος. Η διδασκαλία της επίλυσης προβλήματος. Διδάσκουσα: Δρ. Τζεκάκη Μαριάννα
|
|
- Άρχέλαος Μπουκουβαλαίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ειδικά Θέματα Διδακτικής Μαθηματικών Επίλυση προβλήματος Η διδασκαλία της επίλυσης προβλήματος Διδάσκουσα: Δρ. Τζεκάκη Μαριάννα Εργασία: Γιούρση Ιωάννα Κουκουλάκης Χαράλαμπος Πηλιανίδης Νίκος Σαραφούδη Ευφροσύνη
2 Η διδασκαλία της επίλυση προβλήματος Ερώτημα Με ποιον τρόπο ο δάσκαλος των μαθηματικών μπορεί να διδάξει στους μαθητές του την επίλυση προβλημάτων; Διαπιστώσεις: Η διδασκαλία είναι δύσκολη, τόσο από μαθηματική όσο και από παιδαγωγική και ψυχολογική άποψη (σημειώσεις Τζεκάκη). Τα παιδιά μαθαίνουν μαθηματικά κάνοντας μαθηματικά (Cai, 2010), δηλαδή διαμέσου διαδικασιών επίλυσης προβλήματος (Balacheff, 1990). 2
3 Η επίλυση προβλήματος είναι μια σύνθετη διαδικασία και όχι ένα σύνολο απλών αλγοριθμικών δεξιοτήτων. Το πώς οι εκπαιδευτικοί χειρίζονται το δίλημμα της διδασκαλίας, μιας τόσο περίπλοκης διαδικασίας, καθιστά την επίλυση προβλήματος μια διαδικασία στην οποία οι εκπαιδευτικοί έχουν κάτι να πουν. (Chapman,1997) Οι ίδιοι οι εκπαιδευτικοί θα πρέπει να σχεδιάζουν και να ελέγχουν διαδικασίες μάθησης, σύμφωνα με την πρακτική τους και την πρακτική της τάξης τους, και όχι να αναπαράγουν έτοιμες διαδικασίες. (Balacheff, 1990). 3
4 Τα προβλήματα είναι το όχημα μέσα από το οποίο το επιθυμητό περιεχόμενο, δηλαδή οι μαθηματικές ιδέες μαθαίνονται. Η διδασκαλία μέσω της επίλυσης προβλήματος πρέπει να ξεκινάει το πλαίσιο των προβλημάτων από εκεί που βρίσκονται οι μαθητές, να έχει ως στόχο τις μαθηματικές ιδέες που θα διδαχθούν, να περιέχει αιτιολογήσεις για τις μεθόδους και τις απαντήσεις που θα δοθούν (απαντήσεις οι οποίες μπορεί να μην είναι μονοσήμαντες, ούτε να εξάγονται άμεσα από τα δεδομένα). (Van de Walle et al., 2012, σ. 35) 4
5 Αρχές μάθησης και διδασκαλίας (Principles of learning and teaching) (Polya, 1963) Αρχή της ενεργητικής μάθησης και διδασκαλίας (Principle of acsve learning and teaching) Ο καλύτερος τρόπος για να μάθει κάποιος είναι να το ανακαλύψει μόνος του. Ο δάσκαλος να αφήνει τους μαθητές να ανακαλύψουν μόνοι τους όσα είναι εφικτά κάτω από τις δεδομένες συνθήκες. Αρχή καλύτερου κινήτρου (Principle of best mosvason) Ο δάσκαλος να δώσει προσοχή στην επιλογή, στη διαμόρφωση και στη παρουσίαση του προβλήματος που προτείνει. Το πρόβλημα να σχετίζεται με την καθημερινή εμπειρία των μαθητών και να εισάγεται με ένα μικρό αστείο ή παράδοξο. Το καλύτερο κίνητρο είναι το ενδιαφέρον του μαθητή για την εργασία του. Ο δάσκαλος να αφήνει τους μαθητές να εικάσουν το αποτέλεσμα (έτσι οι μαθητές δεσμεύονται με τον εαυτό τους και ανυπομονούν να μάθουν αν η εικασία τους είναι σωστή ή όχι). Αρχή των διαδοχικών φάσεων (Principle of consecusve phases) Τα προβλήματα που δίνει ο δάσκαλος στους μαθητές θα πρέπει να περιλαμβάνουν δυο σημαντικές φάσεις της μάθησης: την ανακάλυψη και την αφομοίωση. Και οι δυο φάσεις συνδέουν το πρόβλημα με τον κόσμο γύρω μας αλλά και με την γνώση. 5
6 Τρόπος διδασκαλίας Στην αρχή της διδασκαλίας Ενεργοποίηση της προηγούμενης γνώσης, σιγουριά ότι το πρόβλημα κατανοήθηκε, θέσπιση σαφών προσδοκιών. Κατά τη διάρκεια της διδασκαλίας Δημιουργία μικρών ομάδων, παρακολούθηση του τρόπου σκέψης των μαθητών, παροχή κατάλληλης στήριξης, διάλογος, συνεργασία και αντικρουόμενες απόψεις μεταξύ των μελών, παροχή αξιόλογων επεκτάσεων. Μετά τη διδασκαλία Ανάπτυξη μιας μαθηματικής κοινότητας μαθητών, άκουγε προσεκτικά χωρίς να αξιολογείς, ανακεφαλαίωσε τις κεντρικές ιδέες, βρες μελλοντικά προβλήματα. (Van de Walle et al., 2012, σ. 49; Yackel, Cobb, & Wood, 1991) 6
7 Ο ρόλος της επίλυσης προβλήματος στη διδασκαλία Διδασκαλία σχετικά με την επίλυση προβλήματος (Teaching about problem solving). Πώς να γίνει η επίλυση προβλήματος; Εκμάθηση στρατηγικών επίλυσης προβλήματος κατά τον Polya. Διδασκαλία για την επίλυση προβλήματος (Teaching for problem solving). Για να είναι οι μαθητές ικανοί να επιλύουν προβλήματα. Προηγούνται οι αφηρημένες έννοιες, έπεται η επίλυση προβλήματος. Η αναφορά στο «πρόβλημα» περιορίζεται σε απλές ασκήσεις εφαρμογής ή σε διερευνητικές ασκήσεις σε καθαρά μαθηματικό πλαίσιο, χωρίς σύνδεση με την πραγματική ζωή (Ιστορικά ήταν ο πρώτος πόλος). Διδασκαλία διαμέσου της επίλυσης προβλήματος(teaching via problem solving). Χρήση προβλημάτων για την εισαγωγή μιας νέας μαθηματικής έννοιας ή διαδικασίας. Η δημιουργία μαθησιακών περιβαλλόντων, σύμφωνα με τη θεωρία των ρεαλιστικών μαθηματικών και τη θεωρία διδακτικών καταστάσεων. (Schroeder and Lester,1989; Κολέζα, 2009) 7
8 Chapman Olive (1997) Προσωπικές μεταφορές ως βάση για τη σύλληψη των εννοιών διαμέσου των προβλημάτων Έρευνα του τρόπου σκέψης τριών εκπαιδευτικών πάνω στη διδασκαλία ΕΠ (πώς ερμήνευαν, οργάνωναν και διεξήγαγαν την επίλυση προβλήματος) Αν και υπήρχαν ατομικές διαφορές, κατά τη διδασκαλία της επίλυσης προβλήματος υπήρχαν τέσσερα στάδια: (i) παρουσίαση του προβλήματος στους μαθητές, (ii) ανταπόκριση των μαθητών, (iii) συνεργασία των μαθητών, (iv) κλείσιμο (παρουσίαση όλων των στρατηγικών και συζήτηση). Μία εκπαιδευτικός ζητούσε από τα παιδιά να γράψουν το πρόβλημα. Οι εκπαιδευτικοί περιέγραψαν την επίλυση προβλήματος με τρεις μεταφορές: «κοινότητα», «περιπέτεια», «παιχνίδι» Κάθε μία αντανακλούσε τις προσωπικές εμπειρίες των τριών εκπαιδευτικών. 8
9 Silver E. (1994) Διδασκαλία επίλυσης προβλήματος μέσω problem- posing «Το να θέτεις προβλήματα» (problem posing) ως χαρακτηριστικό ερευνητικά προσανατολισμένης διδασκαλίας. «Το να θέτεις προβλήματα» ως ένας τρόπο για τη βελτίωση της επίλυσης προβλήματος εκ μέρους των μαθητών. «Το να θέτεις προβλήματα» ως ένα παράθυρο της μαθηματικής κατανόησης των μαθητών. «Το να θέτεις προβλήματα» ως ένας τρόπος να βελτιώσεις τη διάθεση των μαθητών έναντι των μαθηματικών. 9
10 Saenz Ludlow (2006) Διδασκαλία επίλυσης προβλήματος: δημιουργία προβλημάτων- ιστοριών (story problems) Μία εκπαιδευτικός της τρίτης τάξης, θέτει μία ιστορία- πρόβλημα από την προσωπική της ζωή και ζητά από τους μαθητές να το λύσουν κάνοντας νοερούς υπολογισμούς, να παρουσιάσουν τις διαφορετικές στρατηγικές επίλυσης που χρησιμοποίησαν, να θέσουν και άλλες ερωτήσεις με βάση τα δεδομένα που τους δόθηκαν και τέλος να δημιουργήσουν δικά τους παρόμοια προβλήματα. Τα προβλήματα αυτά ήταν πέρα από το επίπεδο ενός καλά ταξινομημένου εγχειριδίου. Παρατηρήθηκε μια σταδιακή κατανόηση, από τους μαθητές, της έννοιας του αριθμού και των κλασμάτων, ικανότητα να ενσωματώνουν φανταστικές και πραγματικές εμπειρίες μέσα σε αριθμητικά πλαίσια και να εγκαθιδρύουν αριθμητικές σχέσεις που ήταν ενδιαφέρουσες για αυτούς. Έδωσε κίνητρο στους μαθητές να επιχειρήσουν να λύσουν περισσότερο απαιτητικά ιστορίες- προβλήματα που τους τέθηκαν στη συνέχεια. Επιτάχυνε τη συμβολική δραστηριότητα των μαθητών και τις διαλογικές αλληλεπιδράσεις μεταξύ τους, αλλά και μεταξύ μαθητών και εκπαιδευτικού. 10
11 Saenz Ludlow (2006) Διδασκαλία επίλυσης προβλήματος: δημιουργία προβλημάτων- ιστοριών (story problems) Άλλοι τύποι προβλημάτων που αναφέρει η έρευνα είναι τα ακόλουθα: Ιστορίες- προβλήματα πολλαπλών ερωτήσεων (Story- problems with mulsple quessons). Αινίγματα- προβλήματα (riddle problems), τα οποία εισάγουν τους μαθητές στον πολλαπλασιασμό π.χ. Είμαι ένας διψήφιος αριθμός, ανάμεσα στο 25 και το 35 και είμαι πολλαπλάσιο του 3 και του 9. Ποιος αριθμός είμαι; Γιατί; Σχέδια προβλήματα (project problems), που προκαλούν τους μαθητές να σκεφτούν και να αναπτύξουν την αίσθηση του αριθμού και τις σχέσεις μεταξύ των αριθμών αφού η επίλυσή τους δεν περιορίζεται στην εκτέλεση μιας και μόνο πράξης. 11
12 Leikin Roza (2003) Διδασκαλία επίλυσης προβλήματος - με- διάφορους- τρόπους: μία δραστηριότητα επαγγελματικής ανάπτυξης Η διδασκαλία της επίλυσης προβλήματος, εστιάζοντας στη λύση προβλημάτων με όσο το δυνατό περισσότερους τρόπους, μπορεί να αναπτύξει περισσότερες συνδέσεις πάνω στη μαθηματική γνώση. (NCTM, 2000) Παράλληλα μπορεί να βοηθήσει τους μαθητές να μην τα παρατάνε εύκολα όταν λύνουν προβλήματα. (Schoenfeld, 1985) Η ύπαρξη ή όχι της τάσης των εκπαιδευτικών να δέχονται μόνο τις λύσεις προβλημάτων που έχουν διδάξει, οφείλεται στο βαθμό της γνώσης περιεχομένου και τις πεποιθήσεις που έχουν (τάση προς στερεοτυπικές λύσεις ή πεποιθήσεις επίλυσης προβλήματος). (Thompson, 1992) 12
13 Leikin Roza (2003) Διδασκαλία επίλυσης προβλήματος - με- διάφορους- τρόπους: μία δραστηριότητα επαγγελματικής ανάπτυξης Προτείνεται η επίλυση προβλήματος με χρήση συμμετρίας, η οποία, κάποιες φορές, δίνει κομψές λύσεις. Αυτός ο τρόπος διδασκαλίας της επίλυσης προβλήματος είναι και μία μέθοδος επαγγελματικής ανάπτυξης των εν- ενεργεία εκπαιδευτικών, αφού καλλιεργεί τον αναστοχασμό εν- δράσει (Schon, 1983) και μετά τη δράση. (Jaworski, 1994) Ο αναστοχασμός μπορεί να αφορά τόσο την προσωπική μαθηματική πρακτική του εκπαιδευτικού, όσο και μαθησιακούς σκοπούς. 13
14 Ρόλος του Δασκάλου Ο ρόλος του δασκάλου σε μια διδασκαλία εστιασμένη στην επίλυση προβλήματος (Stacey & Groves, 1985) όπως αναφέρει η Κολέζα: Να βοηθάει τα παιδιά να αποδέχονται τις προκλήσεις. Ένα πρόβλημα δεν είναι πρόβλημα έως ότου θελήσει κάποιος να το λύσει. Να δημιουργεί μια ενθαρρυντική ατμόσφαιρα στην τάξη. Τα παιδιά να αντιμετωπίζουν το άγνωστο χωρίς να αισθάνονται ότι απειλούνται. Να επιτρέψει στα παιδιά να εφαρμόσουν τις στρατηγικές τους. Να τα βοηθάει όταν είναι απαραίτητο χωρίς να δίνει τις απαντήσεις. Να συζητήσει με τα παιδιά για το τι σημαίνει «κάνω Μαθηματικά». Τα παιδιά μαθαίνουν αποτελεσματικότερα όταν ο δάσκαλος εφιστά την προσοχή τους ρητά σε σχετικές στρατηγικές και διαδικασίες. 14
15 Βιβλιογραφία Balacheff, N. (1990). Towards a ProblémaŠque for Research on MathemaŠcs. Journal for Research in MathemaŠcs EducaŠon, 21(4), Cai, J. (2010). Helping elementary school students become successful mathemašcal problem solvers. In D. Lambdin (Ed.), Teaching and learning mathema/cs: Transla/ng research to the classroom (pp. 9 14). Reston, VA: NCTM. Retrieved from hdp://sjepd.wikispaces.com/file/view/teaching+and+learning+research+for+elem+(chapter+6)+.pdf Chapman, O. (1997). Metaphors In the Teaching of MathemaŠcal Problemsolving. Educa/onal Studies In Mathema/cs,32: De Walle, J.A., Karp, K.S., Bay- Williams, J.M. (2007). Διδάσκοντας Μαθηματικά για Δημοτικό και Γυμνάσιο Μια αναπτυξιακή διαδικασία (6 η Έκδ.). Αθήνα: Επίκεντρο. Κολέζα, Ε. (2009). Θεωρία και Πράξη στη Διδασκαλία των Μαθηματικών (στ έκδοση). Αθήνα: Εκδόσεις Τόπος. Leikin, R. (2003). Problem- Solving Preferences of MathemaŠcs Teachers: Focusing on Symmetry. JournalofMathema/csTeacherEduca/on,6: Polya, G. (1963). On Learning, Teaching, and Learning Teaching George Polya, 70(6), Saenz- Ludlow, A. (2006). A teacher's method to introduce story- problems: Student- generated problems. In J. Novotna & H. Moraova& M. Kratka& N. Stehlikova (Eds.), Proceedings of 30th Interna/onal Group of Psychology of Mathema/cs Educa/on, Vol. 5, pp Prague: PME. Schroeder, T. L., & Lester, F. K., Jr. (1989). Developing understanding in mathemašcs via problem solving. In P. R. Tra on (Ed.), New direc/ons for elementary school mathema/cs (pp ). Reston, VA: NCTM Silver, E. A. (1994). On mathemašcal problem posing. For the Learning of Mathema/cs, 14(1): Yackel, E., Cobb, P., & Wood, T. (1991). Small- Group InteracŠons as a Source of Learning OpportuniŠes in Second- Grade MathemaŠcs. Journal for Research in MathemaŠcs EducaŠon, 22(5),
16 Is Teaching an Art or a Science? Ευχαριστούμε!!! Γιούρση Ιωάννα, Κουκουλάκης Χαράλαμπος Πηλιανίδης Νίκος, Σαραφούδη Ευφροσύνη 16
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Μαριάννα Τζεκάκη Παρουσίαση των άρθρων:
Inquiry based learning (ΙΒL)
Inquiry based learning (ΙΒL) ΟόροςIBL αναφέρεται σε μαθητοκεντρικούς τρόπους διδασκαλίας: Διατυπώνουν δικά τους επιστημονικά προσανατολισμένα ερωτήματα Δίνουν προτεραιότητα σε ενδείξεις/αποδεικτικά στοιχεία
ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ:
ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: σύγχρονες αναγνώσεις Καβάλα 14/11/2015 ΜΑΡΙΑΝΝΑ ΤΖΕΚΑΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 2 Γιατί αλλαγές; 1 3 Για ουσιαστική μαθηματική ανάπτυξη, Σύγχρονο πρόγραμμα
Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές
Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών
Δρ Μαριλένα Παντζιαρά Λειτουργός Παιδαγωγικού Ινστιτούτου/Αναλυτικά Προγράμματα Μαθηματικών
Οργάνωση μαθήματος Μαθηματικών με έμφαση σε πρακτικές διαμορφωτικής αξιολόγησης (Σε συνεργασία με εκπαιδευτικούς του Δημοτικού Σχολείου Αγ. Ομολογητών ΚΒ) Δρ Μαριλένα Παντζιαρά Λειτουργός Παιδαγωγικού
Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007
Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση
Δρ. Μαρία Γραβάνη «Νέες προσεγγίσεις στην εκπαίδευση ενηλίκων», Παιδαγωγικό Ινστιτούτο Κύπρου Σάββατο, 20 Μαΐου 2017
Δρ. Μαρία Γραβάνη «Νέες προσεγγίσεις στην εκπαίδευση ενηλίκων», Παιδαγωγικό Ινστιτούτο Κύπρου Σάββατο, 20 Μαΐου 2017 1 Επισκόπηση της Παρουσίασης Βασικά βήματα οργάνωσης και σχεδιασμού διδακτικής ενότητας
Διαμορφωτική Αξιολόγηση στο μάθημα της Οικιακής Οικονομίας. Σεμινάρια Σεπτέμβρη 2016
Διαμορφωτική Αξιολόγηση στο μάθημα της Οικιακής Οικονομίας Σεμινάρια Σεπτέμβρη 2016 ΑΞΙΟΛΟΓΗΣΗ «Είναι μια συνεχής διαδικασία παρακολούθησης και ελέγχου του βαθμού επίτευξης των διδακτικών στόχων (δεικτών),
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 ΘΕΜΑΤΑ ΕΡΕΥΝΑΣ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΧΗΜΕΙΑΣ Διεπιστημονικότητα Ιστορία & Φιλοσοφία της Χημείας Γλωσσολογία Χημεία Διδακτική της Χημείας Παιδαγωγική Ψυχολογία
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα
Μεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων
Μεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων Πέτρος Χαβιάρης & Σόνια Καφούση chaviaris@rhodes.aegean.gr; kafoussi@rhodes.aegean.gr
ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την
1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν
BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS
BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της
Η Διδασκαλία επίλυσης προβλήματος: Καλλιεργήσιμη ή όχι; Μπίσκα Παναγιώτα (Α.Μ. 937) Φακούδης Δημοσθένης (Α.Μ. 956)
Η Διδασκαλία επίλυσης προβλήματος: Καλλιεργήσιμη ή όχι; Μπίσκα Παναγιώτα (Α.Μ. 937) Φακούδης Δημοσθένης (Α.Μ. 956) Επίλυση προβλήματος Η επίλυση προβλήματος παρουσιάζεται να έχει διπλή υπόσταση. Έτσι μπορεί
ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών
ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.
Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά
ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:
Κάθε επιλογή, κάθε ενέργεια ή εκδήλωση του νηπιαγωγού κατά τη διάρκεια της εκπαιδευτικής διαδικασίας είναι σε άμεση συνάρτηση με τις προσδοκίες, που
ΕΙΣΑΓΩΓΗ Οι προσδοκίες, που καλλιεργούμε για τα παιδιά, εμείς οι εκπαιδευτικοί, αναφέρονται σε γενικά κοινωνικά χαρακτηριστικά και παράλληλα σε ατομικά ιδιοσυγκρασιακά. Τέτοια γενικά κοινωνικο-συναισθηματικά
Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης
Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας
2 ο Εργαστήριο (4 τμήματα) 3 ο Εργαστήριο (4 τμήματα) 4 ο Εργαστήριο (4 τμήματα)
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΣΗΣ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο 1. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ/ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το οργανόγραμμα των εκπαιδευτικών δραστηριοτήτων που
Μαθηματικής Εκπαίδευσης; Χρυσάνθη Σκουμπουρδή, Πανεπιστήμιο Αιγαίου,
Το Εκπαιδευτικό Υλικό 1 στη σχέση Διδακτικής Μαθηματικών και Μαθηματικής Εκπαίδευσης Χρυσάνθη Σκουμπουρδή, Πανεπιστήμιο Αιγαίου, kara@aegean.gr Η προσπάθεια περιγραφής και αξιολόγησης της σχέσης της Διδακτικής
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 Θέματα Διδακτικής Φυσικών Επιστήμων 1. ΟΙ ΙΔΕΕΣ ΤΩΝ ΜΑΘΗΤΩΝ 2. ΤΑ ΜΟΝΤΕΛΑ ΚΑΙ Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ 3. ΤΟ ΕΡΓΑΣΤΗΡΙΟ & ΤΟ ΠΕΙΡΑΜΑ 4. ΔΙΔΑΚΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ
των σχολικών μαθηματικών
Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ
Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα
Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΕΑΠΗ ΜΑΘΗΜΑ: Μαθηματικά στην προσχολική εκπαίδευση ΕΞΑΜΗΝΟ: Ε (2015 2016) ΟΔΗΓΟΣ ΜΑΘΗΜΑΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΕΑΠΗ ΜΑΘΗΜΑ: Μαθηματικά στην προσχολική εκπαίδευση ΕΞΑΜΗΝΟ: Ε (2015 2016) ΟΔΗΓΟΣ ΜΑΘΗΜΑΤΟΣ 1. ΠΕΡΙΕΧΟΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1 ος κύκλος (Μαθήματα 1-3): Περιεχόμενο και βασικός
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ ΚΑΙ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ ΚΑΙ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΑΝΑΓΝΩΡΙΖΟΝΤΑΣ ΤΗ ΔΙΑΦΟΡΕΤΙΚΟΤΗΤΑ & ΑΝΑΠΤΥΣΣΟΝΤΑΣ ΔΙΑΦΟΡΟΠΟΙΗΜΕΝΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Διαστάσεις της διαφορετικότητας Τα παιδιά προέρχονται
Νέες τάσεις στη διδακτική των Μαθηματικών
Νέες τάσεις στη διδακτική των Μαθηματικών Μέχρι πριν λίγα χρόνια ηαντίληψη που επικρατούσε ήταν ότι ημαθηματική γνώση είναι ένα αγαθό που έχει παραχθεί και καλούνται οι μαθητές να το καταναλώσουν αποστηθίζοντάς
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία Πουλιτσίδου Νιόβη- Χριστίνα Τζιρτζιγάνης Βασίλειος Φωκάς Δημήτριος Στόχος έρευνας Να διερευνηθούν οι παράγοντες, που επηρεάζουν την επιλογή
Διδασκαλία των Παιχνιδιών για Κατανόηση. «Ποια προσέγγιση θα έπρεπε να χρησιμοποιήσουμε για να παρουσιάσουμε τα παιχνίδια στους μαθητές;»
Διδασκαλία των Παιχνιδιών για Κατανόηση «Ποια προσέγγιση θα έπρεπε να χρησιμοποιήσουμε για να παρουσιάσουμε τα παιχνίδια στους μαθητές;» Η πιο συχνή προσέγγιση: η διδασκαλία ενός ενιαίου τύπου τυποποιημένου
ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΣΗΣ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο 1. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ/ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το οργανόγραμμα των εκπαιδευτικών δραστηριοτήτων που
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική
ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΣΗΣ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο 1. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ/ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το οργανόγραμμα των εκπαιδευτικών δραστηριοτήτων που
Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση
Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση
Αναλυτικό Πρόγραμμα Μαθηματικών
Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,
Σχολική Μουσική Εκπαίδευση: αρχές, στόχοι, δραστηριότητες. Ζωή Διονυσίου
Σχολική Μουσική Εκπαίδευση: αρχές, στόχοι, δραστηριότητες Ζωή Διονυσίου Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά
Μοντέλα Εκπαίδευσης με σκοπό τη Διδασκαλία με χρήση Ψηφιακών Τεχνολογιών
1ο Κεφάλαιο Μοντέλα Εκπαίδευσης με σκοπό τη Διδασκαλία με χρήση Ψηφιακών Τεχνολογιών Τις τελευταίες δεκαετίες, οι επιστημονικές ενώσεις, οι συνδικαλιστικοί φορείς και εκπαιδευτικοί της πράξης μέσω συνεδρίων
Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ. Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου
Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου ΕΙΣΑΓΩΓΗ Το Δυναμικό Μοντέλο Εκπαιδευτικής Αποτελεσματικότητας
ΔΕΞΙΟΤΗΤΕΣ ΖΩΗΣ ΣΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ. Σακελλαρίου Κίμων Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ, Τρίκαλα
ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΔΕΞΙΟΤΗΤΕΣ ΖΩΗΣ ΣΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Σακελλαρίου Κίμων Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ, Τρίκαλα ΘΕΜΑΤΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ Τι είναι
Θέµατα της παρουσίασης. Βάσεις σχεδιασµού αναλυτικών προγραµµάτων φυσικής αγωγής. Τι είναι το αναλυτικό
ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ Βάσεις σχεδιασµού αναλυτικών προγραµµάτων φυσικής αγωγής ιγγελίδης Νικόλαος Πανεπιστήµιο Θεσσαλίας ΤΕΦΑΑ, Τρίκαλα Θέµατα της παρουσίασης
Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές
Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές Σκοποί ενότητας Να συζητηθούν βασικές παιδαγωγικές αρχές της προσχολικής εκπαίδευσης Να προβληματιστούμε για τους τρόπους με τους οποίους μπορεί
ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ
ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ Φυσικές Επιστήμες Θεματικό εύρος το οποίο δεν είναι δυνατόν να αντιμετωπιστεί στο πλαίσιο του σχολικού μαθήματος. Έμφαση στην ποιότητα, στη συστηματική
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου
Βασίλειος Κωτούλας vaskotoulas@sch.gr h=p://dipe.kar.sch.gr/grss Αρχαιολογικό Μουσείο Καρδίτσας Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Η Δομή της εισήγησης 1 2 3 Δυο λόγια για Στόχοι των Ερευνητική
ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ
ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ 2016-2017 Μάθημα 1 ο Εισαγωγή στις βασικές έννοιες Προτεινόμενη Βιβλιογραφία Elliot, S. N., Kratochwill, T. R., Cook, J. L., & Travers, J. F. (2008). Εκπαιδευτική Ψυχολογία: Αποτελεσματική
Μαθηματικά Δ Δημοτικού. Πέτρος Κλιάπης 12η περιφέρεια Θεσ/νικης
Μαθηματικά Δ Δημοτικού Πέτρος Κλιάπης 12η περιφέρεια Θεσ/νικης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση
Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu
Τι έχουμε μάθει για την προώθηση της Δημιουργικότητας μέσα από τις Φυσικές Επιστήμες και τα Μαθηματικά στην Ελληνική Προσχολική και Πρώτη Σχολική Ηλικία; Ευρήματα για την εκπαίδευση στην Ελλάδα από το
περιλαμβάνει αντιδιαισθητικές έννοιες
2. Πηγή δυσκολιών για την ατομική θεωρία Η ατομική θεωρία περιλαμβάνει αντιδιαισθητικές έννοιες Η καθημερινή αισθητηριακή εμπειρία υπαγορεύει ότι : τα στερεά και τα υγρά είναι συνεχή - π.χ. το έδαφος είναι
ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ»
ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ» ΕΙΣΗΓΗΣΗ: «Πρακτικές αξιολόγησης κατά τη διδασκαλία των Μαθηματικών» Γιάννης Χριστάκης Σχολικός Σύμβουλος 3ης Περιφέρειας
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Τρίτη 24 και Τετάρτη 25 Οκτωβρίου 2017
Τρίτη 24 και Τετάρτη 25 Οκτωβρίου 2017 Παιδαγωγικές προσεγγίσεις και διδακτικές πρακτικές - η σχέση τους με τις θεωρίες μάθησης Παρατηρώντας τη μαθησιακή διαδικασία Τι είδους δραστηριότητες παρατηρήσατε
H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη
H Συμβολή της Υπολογιστικής Σκέψης στην Προετοιμασία του Αυριανού Πολίτη Κοτίνη Ι., Τζελέπη Σ. Σχ. Σύμβουλοι Κ. Μακεδονίας στην οικονομία, στη τέχνη, στην επιστήμη, στις ανθρωπιστικές και κοινωνικές επιστήμες.
ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ
ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ Μάθημα 1 ο Εισαγωγή στις βασικές έννοιες Προτεινόμενη Βιβλιογραφία Elliot, S. N., Kratochwill, T. R., Cook, J. L., & Travers, J. F. (2008). Εκπαιδευτική Ψυχολογία: Αποτελεσματική
Μαθηματικά Ε Δημοτικού
Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση
Ψυχοκοινωνικές Διαστάσεις των Κινητικών Παιχνιδιών. ΚΡΙΤΗΡΙΑ ΓΙΑ την ΑΞΙΟΛΟΓΗΣΗ της ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΞΙΑΣ ενός ΠΑΙΧΝΙΔΙΟΥ
Ψυχοκοινωνικές Διαστάσεις των Κινητικών Παιχνιδιών ΚΡΙΤΗΡΙΑ ΓΙΑ την ΑΞΙΟΛΟΓΗΣΗ της ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΞΙΑΣ ενός ΠΑΙΧΝΙΔΙΟΥ Σκοποί της παρουσίασης Παρουσίαση των Ψυχοκινητικών, γνωστικών και συναισθηματικών
Αξιολόγηση της διαδικασίας επίλυσης προβλημάτων
Αξιολόγηση της διαδικασίας επίλυσης προβλημάτων Δ.Δ.Π.Μ.Σ. «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩ Ν» ΜΑΘΗΜΑ: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚ ΩΝ ΚΑΘΗΓΗΤΡΙΑ : ΤΖΕΚΑΚΗ Μ. Assessing Problem-Solving Thought Annette
ΕΠΕΑΕΚ ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ Τ.Ε.Φ.Α.Α.ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - ΑΥΤΕΠΙΣΤΑΣΙΑ
ΕΠΕΑΕΚ ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ Τ.Ε.Φ.Α.Α.ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΚΕ 1301 «ΕΙ ΙΚΟΤΗΤΑ ΣΧΟΛΙΚΗ ΦΥΣΙΚΗ ΑΓΩΓΗ
(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού
ΕΙΣΑΓΩΓΗ Τα Μαθηματικά της Φύσης και της Ζωής, που αναφέρονται στοn τίτλο του βιβλίου αυτού, αποτελούν την επωνυμία της ομάδας των επιστημόνων που εργάζονται για τον εκσυγχρονισμό της διδασκαλίας των μαθηματικών
Εκπαιδευτική Ρομποτική
Διάλεξη 3 Εκπαιδευτική Ρομποτική Ανάπτυξη Εφαρμογών για την Εκπαίδευση & την Ειδική Αγωγή Θεοδώρα Παπάζογλου, Χαράλαμπος Καραγιαννίδης the.papazoglou@gmail.com, karagian@uth.gr Διάλεξη 3: RoboFcs 1/18
ΣΧΈΔΙΟ RELEASE για τη δια βίου μάθηση και την ενδοϋπηρεσιακή επιμόρφωση των εκπαιδευτικών στην Κύπρο
ΣΧΈΔΙΟ RELEASE για τη δια βίου μάθηση και την ενδοϋπηρεσιακή επιμόρφωση των εκπαιδευτικών στην Κύπρο Παρουσίαση από τις: Φροσούλα Πατσαλίδου, ερευνήτρια, & Μαίρη Κουτσελίνη, επιστημονική υπεύθυνη του προγράμματος
Μαθηµατική. Μοντελοποίηση
Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 8: Επίλυση προβλήματος Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να γίνει
Ενότητα 1: Πώς να διδάξεις ηλικιωμένους για να χρησιμοποιήσουν τη ψηφιακή τεχνολογία. Ημερομηνία: 15/09/2017. Intellectual Output:
Τίτλος: Εταίρος: Ενότητα 1: Πώς να διδάξεις ηλικιωμένους για να χρησιμοποιήσουν τη ψηφιακή τεχνολογία SOSU Oestjylland Ημερομηνία: 15/09/2017 Intellectual Output: IO3 ΠΕΡΙΕΧΟΜΕΝΑ Ψυχολογικές Πτυχές...2
Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000)
Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Πρόκειται για την έρευνα που διεξάγουν οι επιστήμονες. Είναι μια πολύπλοκη δραστηριότητα που απαιτεί ειδικό ακριβό
Μουσική Αγωγή στην Προσχολική και Πρωτοβάθμια Εκπαίδευση. Ζωή Διονυσίου
Μουσική Αγωγή στην Προσχολική και Πρωτοβάθμια Εκπαίδευση Ζωή Διονυσίου Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά
Μαίρη Κουτσελίνη Πανεπιστήμιο Κύπρου
Μαίρη Κουτσελίνη Πανεπιστήμιο Κύπρου Πώς ορίζεται η Ποιότητα των διδακτικών εγχειριδίων; Η δυνατότητά τους να ανταποκριθούν στους σκοπούς της εκπαίδευσης και τους σκοπούς της διδασκαλίας του συγκεκριμένου
Διδακτική της Πληροφορικής
Διδακτική της Πληροφορικής ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Ανδρέας Σ. Ανδρέου (Αναπλ. Καθηγητής ΤΕΠΑΚ - Συντονιστής) Μάριος Μιλτιάδου, Μιχάλης Τορτούρης (ΕΜΕ Πληροφορικής) Νίκος Ζάγκουλος, Σωκράτης Μυλωνάς (Σύμβουλοι Πληροφορικής)
Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013
Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Σκοπός τη σημερινής παρουσίασης: αναγνώριση της παρατήρησης ως πολύτιμη
Αξιολόγηση της ικανότητας επίλυσης προβλήµατος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ MAΘHMA ΕΙΔΙΚΑ ΘΕΜΑΤΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ
Δραστηριότητες στη Μαθηματική Εκπαίδευση
Παιδαγωγικό Τµήµα Νηπιαγωγών Δραστηριότητες στη Μαθηματική Εκπαίδευση Ενότητα 2: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών Παιδαγωγικό Τµήµα Νηπιαγωγών Δραστηριότητα activity στη διδασκαλία
Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική. Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων
Πληροφορική και Τεχνολογίες Πληροφορίας & Επικοινωνιών: Συνύπαρξη και παιδαγωγική πρακτική Τάσος Μικρόπουλος Ιωάννα Μπέλλου Πανεπιστήμιο Ιωαννίνων Πληροφορική και ΤΠΕ Η Πληροφορική και οι Τεχνολογίες της
Διήμερο εκπαιδευτικού επιμόρφωση Μέθοδος project στο νηπιαγωγείο. Έλενα Τζιαμπάζη Νίκη Χ γαβριήλ-σιέκκερη
Διήμερο εκπαιδευτικού επιμόρφωση Μέθοδος project στο νηπιαγωγείο Έλενα Τζιαμπάζη Νίκη Χ γαβριήλ-σιέκκερη Δομή επιμόρφωσης 1 η Μέρα Γνωριμία ομάδας Παρουσίαση θεωρητικού υποβάθρου Προσομοίωση : α) Επιλογή
Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης
Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα
Θέμα: Κατασκευή προβλήματος, σημασία και εφαρμογές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ
ΣΥΝΕΔΡΙΟ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ»
ΣΥΝΕΔΡΙΟ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ» του Διεθνούς Ερευνητικού Προγράμματος: Ανάπτυξη θεωρητικού σχήματος κατανόησης της ποιότητας στην εκπαίδευση: Εγκυροποίηση του
ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) Αντιμετώπιση των ΜΔ δια των ΣΤΡΑΤΗΓΙΚΩΝ Σωτηρία
Διδακτικές Τεχνικές (Στρατηγικές)
Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη
Σαλτερής Νίκος Δρ. Πολιτικής Επιστήμης και Ιστορίας Σχολικός Σύμβουλος. H Γεωγραφία στο Δημοτικό Σχολείο
Σαλτερής Νίκος Δρ. Πολιτικής Επιστήμης και Ιστορίας Σχολικός Σύμβουλος H Γεωγραφία στο Δημοτικό Σχολείο Α Μέρος: Η γεωγραφία ως επιστημονικό αντικείμενο και η διδασκαλία της στο σύγχρονο δημοτικό σχολείο
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ Κάθε αναφορά απόψεις που προέρχεται από εξωτερικές πηγές -βιβλία, περιοδικά, ηλεκτρονικά αρχεία, πρέπει να επισημαίνεται, τόσο μέσα στο κείμενο όσο και στη βιβλιογραφία,
ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ
ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
ΔΙΑΤΑΡΑΧΗ ΑΥΤΙΣΤΙΚΟΥ ΦΑΣΜΑΤΟΣ: Βασικε ς πληροφορι ες
ΔΙΑΤΑΡΑΧΗ ΑΥΤΙΣΤΙΚΟΥ ΦΑΣΜΑΤΟΣ: Βασικες πληροφοριες Πέτρος Γαλάνης Δρ. ΕΚΠΑ, Δάσκαλος Ε.Α. (ΚΕ.Δ.Δ.Υ. Δ Αθήνας) Τι είναι η Διαταραχή Αυτιστικού Φάσματος (ΔΑΦ); Ο όρος «Διαταραχή Αυτιστικού Φάσματος» (ΔΑΦ)
Towards a Creative Education in the Classroom. Methodologies and Innovative Dynamics for Teaching. Bilbao - Spain, 27/06/ /07/2016
Δράση KA1 Μαθησιακή Κινητικότητα Προσωπικού Σχολικής Εκπαίδευσης I.P.O.Q. - Ionidios Plan for Openess and Quality (2015-1-EL01-KA101-013745) Towards a Creative Education in the Classroom. Methodologies
Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία
Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία Συμμετοχή στο Πρόγραμμα του Παιδαγωγικού Ινστιτούτου ΥΠΟΣΤΗΡΙΞΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΜΑΘΗΣΗΣ ΜΕΣΩ ΕΡΕΥΝΑΣ-ΔΡΑΣΗΣ Σχολική χρονιά: 2015-2016 ΤΟ ΠΡΟΦΙΛ ΤΗΣ
Διδακτική Μεθοδολογία και καινοτόμες προσεγγίσεις μαθημάτων Υγείας-Πρόνοιας. Mιχάλης Ροβίθης, Λέκτορας τμήματος Νοσηλευτικής, ΤΕΙ Κρήτης
Διδακτική Μεθοδολογία και καινοτόμες προσεγγίσεις μαθημάτων Υγείας-Πρόνοιας Mιχάλης Ροβίθης, Λέκτορας τμήματος Νοσηλευτικής, ΤΕΙ Κρήτης Προγραμματισμός Διδασκαλίας Επιλογή στόχων μαθήματος Νοητός σχεδιασμός
Περιεχόμενα. Προλογικό Σημείωμα 9
Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η
Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες
ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου
ΝΗΠΙΑΓΩΓΕΙΟ ΚΟΙΝΩΝΙΚΗΣ ΜΕΡΙΜΝΑΣ ΑΓΙΩΝ ΟΜΟΛΟΓΗΤΩΝ
ΝΗΠΙΑΓΩΓΕΙΟ ΚΟΙΝΩΝΙΚΗΣ ΜΕΡΙΜΝΑΣ ΑΓΙΩΝ ΟΜΟΛΟΓΗΤΩΝ Πώς η Υ.Ε.Μ. συμβάλλει στην αναθεώρηση ή στον εμπλουτισμό των μεθοδολογικών επιλογών των εκπαιδευτικών Λεμεσός, 18 Μαΐου 2018 Ανίχνευση αναγκών σχολικής
ΕΡΩΤΗΜΑΤΑ- ΠΡΟΚΛΗΣΕΙΣ- ΠΡΟΟΠΤΙΚΕΣ
Η ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΕΜΠΕΙΡΙΑΣ ΕΦΑΜΟΓΗΣ ΤΟΥ MASCIL ΣΤΟ ΕΛΛΗΝΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ: ΕΡΩΤΗΜΑΤΑ- ΠΡΟΚΛΗΣΕΙΣ- ΠΡΟΟΠΤΙΚΕΣ MasciL και Σχολική πραγματικότητα Καλλιόπη Σιώπη, Μαθηματικός Πρότυπο ΓΕΛ Ευαγγελικής
Διάγραμμα Μαθήματος. Κωδικός Μαθήματος Τίτλος Μαθήματος Πιστωτικές Μονάδες ECTS EDUG-552 Εφαρμογές της Τεχνολογίας στην Ειδική Εκπαίδευση
Διάγραμμα Μαθήματος Κωδικός Μαθήματος Τίτλος Μαθήματος Πιστωτικές Μονάδες ECTS EDUG-552 Εφαρμογές της Τεχνολογίας στην Ειδική Εκπαίδευση 10 Προαπαιτούμενα Τμήμα Εξάμηνο Κανένα Παιδαγωγικών Σπουδών Χειμερινό/Εαρινό
Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.
Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;
ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ
ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ MATHDebate - Η Φωνή των Φοιτητών - Ψάχνοντας την Αριστεία στην Εκπαίδευση Μαθηματικών μέσω της Αύξησης των Κινήτρων για Μάθηση (project 2016-2018) mathdebate.eu Σύντομη
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall
Γιάκα Κατερίνα Κυριακοπούλ ου Βούλα Μιχαηλίδης Θωμάς Χαντόγλου Η ΤΕΧΝΟΛΟΓΙΑ ΣΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ
Γιάκα Κατερίνα Κυριακοπούλ ου Βούλα Μιχαηλίδης Θωμάς Χαντόγλου Η ΤΕΧΝΟΛΟΓΙΑ ΣΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Εισαγωγή Σήµερα, που η τεχνολογία χρησιµοποιείται ευρέως υπάρχουν αντίστοιχα τεράστιες δυνατότητες χρήσης
ΕΣΠΕΡΙΝΟ ΕΠΑΛ ΑΓΡΙΝΙΟΥ ΕΝΔΟΣΧΟΛΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Επιμορφωτής: Αρ. Παπασάββας Διπλ. Ηλεκτρολόγος Μηχανικός ΕΜΠ, Med. Εκπαίδευση ενηλίκων
ΕΣΠΕΡΙΝΟ ΕΠΑΛ ΑΓΡΙΝΙΟΥ ΕΝΔΟΣΧΟΛΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Επιμορφωτής: Αρ. Παπασάββας Διπλ. Ηλεκτρολόγος Μηχανικός ΕΜΠ, Med Εκπαίδευση ενηλίκων Χαρακτηριστικά των ενηλίκων εκπαιδευόμενων Εμπόδια στη μάθηση των ενηλίκων