Εξελιγµένες Τεχνικές Σχεδιασµού
|
|
- Ιωάννα Αναγνώστου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
2 Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο γράφος σχεδιασµού αποτελείται από αριθµηµένα επίπεδα κόµβων Κόµβοι των γεγονότων ή προτάσεων (fact nodes ή proposition nodes), στα άρτια επίπεδα. Κόµβοι των ενεργειών (action nodes), στα περιττά επίπεδα Επαναλαµβανόµενη εναλλαγή δύο φάσεων: Επέκταση του γράφου (graph expansion). Εξαγωγή λύσης (solution extraction). Οι ακµές συνδέουν: Τα γεγονότα ενός επιπέδου µε τις ενέργειες του επόµενου επιπέδου που τα έχουν ως προϋποθέσεις. Τις ενέργειες ενός επιπέδου µε τα γεγονότα των λιστών προσθήκης αυτών στο επόµενο επίπεδο. Ενέργειες διατήρησης Συµβολίζονται µε noop (no-operator) 0 2i 2i+1 2i+2 Τεχνητή Νοηµοσύνη, B' Έκδοση 2
3 Σχέσεις Αµοιβαίου Αποκλεισµού Μια σχέση αµοιβαίου αποκλεισµού αναφέρεται πάντα σε δύο κόµβους του ίδιου επιπέδου και δηλώνει ότι αυτοί δεν µπορούν να βρίσκονται ταυτόχρονα στο ίδιο έγκυρο πλάνο. ύο γεγονότα στο επίπεδο i είναι αµοιβαία αποκλειόµενα, εάν όλες οι ενέργειες στο επίπεδο i-1, συµπεριλαµβανοµένων των ενεργειών noop, που επιτυγχάνουν αυτά τα γεγονότα είναι µεταξύ τους αµοιβαίως αποκλειόµενες (ασύµβατη υποστήριξη inconsistent support). Τεχνητή Νοηµοσύνη, B' Έκδοση 3
4 Β Α Α Β Παράδειγµα Αρχική κατάσταση Τελική κατάσταση clear(b) clear(b) clear(b) on(b,a) move-b-from-a-to-table on(b,a) move-b-from-table-to-a on(a,table) on(b,a) move-b-from-a-to-table on(a,table) clear(a) on(a,table) clear(a) move-a-from-table-to-b on(b,table) on(b,table) on(a,b) Τεχνητή Νοηµοσύνη, B' Έκδοση 4
5 Σχεδιασµός Βασισµένος σε Γράφους Εξαγωγή λύσης Ξεκινά µόλις σε κάποιο επίπεδο γεγονότων i εµφανιστούν όλα τα γεγονότα των στόχων, χωρίς καµιά σχέση αµοιβαίου αποκλεισµού µεταξύ τους. Τα γεγονότα των στόχων πρέπει να υποστηριχθούν από µη αµοιβαία αποκλειόµενες ενέργειες του προηγούµενου επιπέδου. Αναδροµικά, οι προϋποθέσεις των ενεργειών αυτών πρέπει να υποστηριχθούν από µη αµοιβαία αποκλειόµενες ενέργειες του προηγούµενού τους επιπέδου, µέχρι να φθάσουµε στο πρώτο επίπεδο. Εάν δεν βρεθεί τέτοιο πλάνο, ο γράφος επεκτείνεται κατά 2 ακόµη επίπεδα και η διαδικασία επαναλαµβάνεται. Συνθήκη τερµατισµού είναι η εύρεση δύο εντελώς ίδιων επιπέδων γεγονότων. Τεχνητή Νοηµοσύνη, B' Έκδοση 5
6 Σχεδιασµός µε Ικανοποίηση Προτάσεων Πρόβληµα Κωδικοποίηση Επίλυση Αποκωδικοποίηση Υπόθεση σχετικά µε τον αριθµό των βηµάτων του πλάνου-λύσης. Κωδικοποίηση σαν πρόβληµα ικανοποίησης προτάσεων σε µορφή σύζευξης διαζεύξεων (conjunctive normal form, CNF). Επίλυση µε στοχαστικές ή συστηµατικές µεθόδους. Εάν δεν βρεθεί λύση, επαναλαµβάνεται η διαδικασία για µεγαλύτερο αριθµό βηµάτων. Τεχνητή Νοηµοσύνη, B' Έκδοση 6
7 Σχεδιασµός µε Ικανοποίηση Προτάσεων Κωδικοποίηση (1/2) Η σύζευξη των γεγονότων της αρχικής κατάστασης πρέπει να αληθεύει. on(b,a) 0 on(a,table) 0 clear(b) 0 Η σύζευξη των γεγονότων των στόχων πρέπει επίσης να αληθεύει. on(a,b) 4 on(b,table) 4 clear(a) 4 Οι ενέργειες συνεπάγονται τις προϋποθέσεις τους και τα αποτελέσµατά τους. move-a-from-table-to-b 3 on(a,table) 2 clear(a) 2 clear(b) 2 on(a,b) 4 clear(a) 4 on(a,table) 4 clear(b) 4 ή ισοδύναµα σε µορφή CNF ( move-a-from-table-to-b 3 on(a,table) 2 ) ( move-a-from-table-to-b 3 clear(a) 2 ) ( move-a-from-table-to-b 3 clear(b) 2 ) ( move-a-from-table-to-b 3 on(a,b) 4 ) ( move-a-from-table-to-b 3 clear A) 4 ) ( move-a-from-table-to-b 3 on(a,table) 4 ) ( move-a-from-table-to-b 3 clear(b) 4 ) Τεχνητή Νοηµοσύνη, B' Έκδοση 7
8 Σχεδιασµός µε Ικανοποίηση Προτάσεων Κωδικοποίηση (2/2) Ενέργειες ενός επιπέδου που είναι αµοιβαία αποκλειόµενες µεταξύ τους δεν µπορούν να εκτελεστούν ταυτόχρονα. move-a-from-table-to-b 3 move-β-from-table-to-α 3 Κάθε γεγονός ενός επιπέδου (εκτός του επιπέδου 0) συνεπάγεται τη διάζευξη όλων των ενεργειών του προηγούµενου επιπέδου που το επιτυγχάνουν (συµπεριλαµβανοµένων των ενεργειών διατήρησης). on(b,a) 4 move-b-from-table-to-a 3 (noop on(b,a)) 3 ή ισοδύναµα σε µορφή CNF on(b,a) 4 move-b-from-table-to-a 3 (noop on(b,a)) 3 Τεχνητή Νοηµοσύνη, B' Έκδοση 8
9 Σχεδιασµός µε Ικανοποίηση Προτάσεων Συστηµατική Επίλυση Προβληµάτων Αλγόριθµος DPLL (CNF έκφραση φ) Εάν η φ είναι κενή, επέστρεψε αληθές, αλλιώς εάν υπάρχει πρόταση στη φ που να αποτιµάται ψευδής, επέστρεψε ψευδές, αλλιώς εάν υπάρχει µια καθαρή µεταβλητή Χ στη φ, επέστρεψε DPLL(φ(Χ)), αλλιώς εάν υπάρχει µια µοναδιαία πρόταση {Χ} στη φ, επέστρεψε DPLL(φ(Χ)), αλλιώς επέλεξε µια µεταβλητή Χ που εµφανίζεται στη φ, Εάν DPLL(φ(Χ))=αληθές, επέστρεψε αληθές, αλλιώς επέστρεψε DPLL(φ( Χ)). Τεχνητή Νοηµοσύνη, B' Έκδοση 9
10 Σχεδιασµός µε Ικανοποίηση Προτάσεων Στοχαστική Επίλυση Προβληµάτων Αλγόριθµος GSAT (CNF έκφραση φ, integer: N restarts, N flips ) Από i=1 µέχρι i=n restarts Έστω Α µια τυχαία ανάθεση τιµών σε όλες τις µεταβλητές της φ. Από j=1 µέχρι i=n flips Εάν η ανάθεση A ικανοποιεί την φ, επέστρεψε αληθές Αλλιώς Έστω X η µεταβλητή εκείνη της φ, της οποίας η αντιστροφή της τιµής δίνει το µεγαλύτερο αριθµό ικανοποιηµένων προτάσεων στην πρόταση φ (σε περίπτωση ύπαρξης πολλών τέτοιων µεταβλητών, επέλεξε µια τυχαία) Τροποποίησε την Α, αντιστρέφοντας την τιµή της µεταβλητής Χ. Επέστρεψε ψευδές. Τεχνητή Νοηµοσύνη, B' Έκδοση 10
11 Άλλες Εξελιγµένες Τεχνικές Σχεδιασµού Εφαρµογή Ικανοποίησης Περιορισµών στο σχεδιασµό Αναπαράσταση προβληµάτων σχεδιασµού ως προβλήµατα Ελέγχου Μοντέλων Μαρκοβιανές ιαδικασίες Απόφασης Επίλυση προβληµάτων σχεδιασµού µε αβεβαιότητα (uncertainty) Τεχνητή Νοηµοσύνη, B' Έκδοση 11
12 Σχεδιασµός σε Ιεραρχικά ίκτυα ιεργασιών Hierarchical Task Network Planning-HTN Κατηγορία σχεδιασµού µε τις περισσότερες πρακτικές εφαρµογές. Επιχειρείται η εύρεση πλάνου µε ζητούµενο την επίτευξη µιας ανώτερου επιπέδου διεργασίας (high level task) Βασική ιδέα: Ιεραρχική αποδόµηση της αρχικής διεργασίας στόχου σε απλούστερες µέχρις ότου ο σχεδιαστής να καταλήξει σε άµεσα εκτελέσιµες διεργασίες. Μέθοδος σχεδιασµού: Αποδοµεί µια διεργασία σε ένα σύνολο από απλούστερες του αµέσως κατώτερου επιπέδου, οι οποίες είναι µερικώς διατεταγµένες. Επιτυγχάνεται η κωδικοποίηση γνώσης για την εύρεση πλάνου που χρησιµοποιείται από ανθρώπους ειδικούς Πλεονέκτηµα: Σηµαντικά αποδοτικότερη λύση του προβλήµατος σχεδιασµού Μειονέκτηµα: Ανάγκη για κωδικοποίηση των µεθόδων Ιεραρχικοί σχεδιαστές: SHOP, JSHOP, SHOP2 Τεχνητή Νοηµοσύνη, B' Έκδοση 12
13 Παράδειγµα Αποδόµησης ιεργασιών ιεργασία transport(p1,loc1,loc2) Μέθοδος move_by_air(p1,loc1,loc2) move_by_truck(p1,loc1,loc2)... to_airport(p1,loc1,air1) ιεργασίες επόµενου επιπέδου fly(p1,air1,air2) from_airport(p1,air2,loc2) Πρόβληµα µετακίνησης φορτίου p1 από µια τοποθεσία loc1 σε µια τοποθεσία loc2 Το ζητούµενο είναι µια διεργασία transport(p1,loc1,loc2) H επίτευξη της transport(p1,loc1,loc2) µπορεί να πραγµατοποιηθεί µε τη µεταφορά του φορτίου αεροπορικώς move_by_air(p1,loc1,loc2) ή οδικώς move_by_truck(p1,loc1,loc2) Τεχνητή Νοηµοσύνη, B' Έκδοση 13
Σχεδιασµός Ενεργειών
Σχεδιασµός Ενεργειών! Σχεδιασµός είναι η εύρεση µιας ακολουθίας ενεργειών, οι οποίες αν εφαρµοσθούν σε µια δεδοµένη αρχική κατάσταση, προκαλούν την επίτευξη προκαθορισµένων στόχων. # Μεταφορά φορτίων #
Σχεδιασµός Ενεργειών
Σχεδιασµός Ενεργειών Σχεδιασµός είναι η εύρεση µιας ακολουθίας ενεργειών, οι οποίες αν εφαρµοσθούν σε µια δεδοµένη αρχική κατάσταση, προκαλούν την επίτευξη προκαθορισµένων στόχων. Μεταφορά φορτίων Πλοήγηση
ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ
ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών Αναζήτηση στο χώρο των καταστάσεων Αναζήτηση στο χώρο των πλάνων! Γράφοι σχεδιασµού Προτασιακή λογική Γράφοι σχεδιασµού (1/2) " Ένας γράφος σχεδιασµού
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές
Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση
Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Δομή Επανάληψης Δομές Επανάληψης Οι δομές επανάληψης χρησιμοποιούνται στις περιπτώσεις όπου μια συγκεκριμένη ακολουθία εντολών πρέπει να εκτελεστεί
Ενδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
Εισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο
Εισαγωγή - Βασικές έννοιες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Αλγόριθμος Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη
Πρόταση. Αληθείς Προτάσεις
Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.
ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
Σχεδιασµός και δράση στον πραγµατικό κόσµο
Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W
Σχεδιασµός. Planning. Το πρόβληµα τουσχεδιασµού
Σχεδιασµός Planning Το πρόβληµα τουσχεδιασµού Κλασσικός σχεδιασµός: Πλήρως παρατηρήσιµα, αιτιοκρατικά, πεπερασµένα, στατικά και διακριτά περιβάλλοντα. Ευρετική συνάρτηση Αποσυνθέσιµα προβλήµατα Σχεδόν
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
ΚΕΦΑΛΑΙΟ 15 Βασικές Αρχές και Τεχνικές Σχεδιασµού
ΚΕΦΑΛΑΙΟ 15 Βασικές Αρχές και Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Ενεργειών (Planning) Προβλήµατα σχεδιασµού
ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της
ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση Γνώσης Η περιγραφή ενός προβλήματος σε συνδυασμό με τους τελετές
2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και
Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά.
AeppAcademy.com facebook.com/aeppacademy Γεια. Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. Καλή Ανάγνωση & Καλή Επιτυχία
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Μάθηµα 1 Ο ρόλος του ΛΣ Υλικό Υπολογιστικό σύστηµα Λειτουργικό σύστηµα Λογισµικό Προγράµµατα εφαρµογής Στόχοι του ΛΣ Χρήστες ιευκόλυνση των χρηστών ιευκόλυνση
Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΜΗΜΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: 05/01/2012 Θέμα 1 ο Α1) Να γράψετε στο τετράδιό σας τους αριθμούς 1 έως και 4 και δίπλα τα γράμματα Σ ή Λ, ανάλογα
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)
Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραφήµατα (Grphs) http://tos.it.tith.gr/~mos/thing_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grph) Oρισμός 1: Έστω το µη
Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει.
οµηµένες τεχνικές Ο στόχος των δοµηµένων τεχνικών είναι: Υψηλής ποιότητας προγράµµατα Εύκολη τροποποίηση προγραµµάτων Απλοποιηµένα προγράµµατα Μείωση κόστους και χρόνου ανάπτυξης. Οι βασικές αρχές τους
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Προγραµµατιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης
A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα. το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη.
ΘΕΜΑ 1 ο A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη. 1. Η συνθήκη Χ = Α_Μ (Χ) είναι πάντα αληθής, για
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αβεβαιότητα Με τον όρο αβεβαιότητα (uncertainty) εννοείται η έλλειψη ακριβούς
Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1
Αµοιβαίοςαποκλεισµός Εισαγωγή Συγκεντρωτική προσέγγιση Κατανεµηµένη προσέγγιση Αλγόριθµος Lamport Αλγόριθµος Ricart-Agrawala Προσέγγιση µεταβίβασης σκυτάλης Αλγόριθµος LeLann Αλγόριθµος Raymond Αλγόριθµος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
ιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
Κεφάλαιο 4 : Λογική και Κυκλώματα
Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Επαναληπτικές Διαδικασίες
Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
Περιγραφή Προβλημάτων
Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ
ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος
Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Σχεδιασμός & Χρονοπρογραμματισμός Ενεργειών
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Σχεδιασμός & Χρονοπρογραμματισμός Ενεργειών Χειμερινό Εξάμηνο 2006-2007 Κεφάλαιο 2 Αναπαράσταση Προβλημάτων Σχεδιασμού
ΕΚΦΩΝΗΣΕΙΣ & ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΘ ΑΝΑ ΚΕΦΑΛΑΙΟ ΚΑΙ ΠΑΡΑΓΡΑΦΟ
ΕΚΦΩΝΗΣΕΙΣ & ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΘ ΑΝΑ ΚΕΦΑΛΑΙΟ ΚΑΙ ΠΑΡΑΓΡΑΦΟ [μέχρι τη ομή Επιλογής] Περιεχόμενα >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/... 2 ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ... 2 ΤΥΠΟΥ Β2: ΑΝΤΙΣΤΟΙΧΙΣΗΣ... 2 >ΕΝΟΤΗΤΑ 2/ΚΕΦ.2.1/...
Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ
Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο
Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Μέθοδοι Σχεδίασης κίνησης
Μέθοδοι Σχεδίασης κίνησης Τασούδης Σταύρος Ο προγραμματισμός τροχιάς(trajectory planning) είναι η κίνηση από το σημείο Α προς το σημείο Β αποφεύγοντας τις συγκρούσεις με την πάροδο του χρόνου. Αυτό μπορεί
Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1
Εκλογήαρχηγού Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου Κατανεµηµένα Συστήµατα 06- Εισαγωγή Πρόβληµα: επιλογή µίας διεργασίας από το σύνολο εν αρκεί να αυτοανακηρυχθεί
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 9 Απριλίου 2009 1 / 0 Παραδείγµατα γράφων
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Αδιέξοδα Ανάθεση Πόρων (Deadlocks Resource Allocation)
Αδιέξοδα Ανάθεση Πόρων (Deadlocks Resource Allocation) Εισαγωγή Μοντέλο συστήματος Χαρακτηρισμός και ορισμός κατάστασης αδιεξόδου Μέθοδοι χειρισμού αδιεξόδων Αποτροπή αδιεξόδου (Deadlock Prevention) Αποφυγή
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Ατοµική ιπλωµατική Εργασία ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΙ ΠΡΟΤΑΣΙΑΚΩΝ ΕΠΙΛΥΤΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΡΑΣΗΣ. Ελένη Προξένου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Ατοµική ιπλωµατική Εργασία ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΙ ΠΡΟΤΑΣΙΑΚΩΝ ΕΠΙΛΥΤΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΡΑΣΗΣ Ελένη Προξένου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μάιος 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 2 : Αλγόριθμοι Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού
Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους
Page 1 of 10 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2018-19 Οι ασκήσεις της ομάδας αυτής πρέπει
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και τον αντίστοιχο χαρακτηρισμό ( Σ - σωστό, Λ - λάθος)
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ Α.Ε.Π.Π ΘΕΜΑ Α Α1 Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και τον αντίστοιχο χαρακτηρισμό ( Σ - σωστό, Λ - λάθος) 1. Αν οι δείκτης rear μιας ουράς υλοποιημένης με πίνακα
Ψευδοκώδικας. November 7, 2011
Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε
Προβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Πρόβλημα 29 / σελίδα 28
Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους
Χαράλαμπος Κοπτίδης ΠΕΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
Ατομική Διπλωματική Εργασία LAMSAT: ΕΝΟΠΟΙΗΣΗ ΕΥΡΕΤΙΚΉΣ ΚΑΙ ΠΡΟΤΑΣΙΑΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΔΡΑΣΗΣ Χαράλαμπος Κοπτίδης ΠΕΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΕΚΕΜΒΡΙΟΣ 2011 ΠΑΝΕΠΙΣΤΗΜΙΟ
Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
Κεφάλαιο 6 ο Εισαγωγή στον Προγραμματισμό 1
Κεφάλαιο 6 ο Εισαγωγή στον Προγραμματισμό 1 Ποιες γλώσσες αναφέρονται ως φυσικές και ποιες ως τεχνητές; Ως φυσικές γλώσσες αναφέρονται εκείνες οι οποίες χρησιμοποιούνται για την επικοινωνία μεταξύ ανθρώπων,
ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη:
ΕΝΟΤΗΤΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Κεφάλαιο 1.1. Επιστήμη των Υπολογιστών >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/ ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ GI_V_EIY_0_19373 Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις