Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
|
|
- Ἀνδρέας Λαιμός
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2 Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας έχεικέρας ο συμπέρασμα: έχει Κέρας 6 έχεικέρας Μαγικός) Μαγικός ο συμπέρασμα : Μαγικός Όσον αφορά στο αν είναι μυθικός δεν μπορούμε να συμπεράνουμε ούτε το ότι είναι ούτε το ότι δεν είναι μυθικός. Αυτο γιατί ΚΒ={1( Μυθικός Αθάνατος), 2(Μυθικός Αθάνατος), 3(Μυθικός Θηλαστικό), 4( Αθάνατος έχεικέρας), 5( Θηλαστικό έχεικέρας), 6( έχεικέρας Μαγικός) } 1 Μυθικός Αθάνατος 2 Μυθικός Αθάνατος Αν θεωρήσω το Μυθικός = Τ, τότε το όχι Μυθικός θα είναι F. Τότε για να είναι Τ η 1( γιατί ότι έχει η ΚΒ είναι Τ), θα πρέπει το Αθάνατος να είναι Τ. Αν πάμε στη 2, τότε το Αθάνατος που είπαμε πριν θα είναι Τ, συνεπώς το Αθάνατος θα είναι F, άρα το Μυθικός θα είναι Τ. Αν πάλι θεωρήσω το Μυθικός = F, τότε το Αθάνατος θα είναι F, το Αθάνατος θα είναι Τ και το Μυθικός θα είναι F. Επιπλέον, αν το Μυθικός = Τ, τότε μεκέρας=τ, Μαγικός =Τ, Αθάνατος=Τ και Θηλαστικό= F. Αν πάλι, το Μυθικός = F, τότε μεκέρας=τ, Μαγικός =Τ, Αθάνατος=Τ και Θηλαστικό= Τ. Β. Αποδείξτε τους παρακάτω ισχυρισμούς: 1. α είναι έγκυρη αν και μόνο αν Αληθές =α 2. Για κάθε α, Ψευδές = α 3. α = β αν και μόνο αν η πρόταση (α=>β) είναι έγκυρη 4. α = β αν και μόνο αν (α & ~β) είναι ικανοποιήσιμη Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης). 1. α είναι έγκυρη αν και μόνο αν Αληθές =α Αν α είναι έγκυρη, τότε είναι αληθής σε κάθε μοντέλο. Άρα είναι αληθής για όλα τα μοντέλα του Αληθές. 2
3 2. Για κάθε α, Ψευδές = α Το Ψευδές δεν ισχύει σε κανένα μοντέλο. Άρα το α ισχύει σε κάθε μοντέλο που ισχύει το Ψευδές. 3. α = β αν και μόνο αν η πρόταση (α=>β) είναι έγκυρη Ισοδυναμούν στον ισχυρισμό ότι δεν υπάρχει κανένα μοντέλο στο οποίο το α είναι αληθές και το β είναι ψευδές, δηλαδή κανένα μοντέλο στο οποίο η α=>β είναι ψευδής. 4. α = β αν και μόνο αν (α & ~β) είναι ικανοποιήσιμη Στο μάθημα είπατε ότι μπορούμε κατευθείαν να αποδείξουμε ότι α = β αν και μόνο αν (α & ~β) ΔΕΝ είναι ικανοποιήσιμη. Το β δε γίνεται να είναι και β=τ και β=τ παράλληλα. Ισοδυναμούν στο ότι α και β έχουν την ίδια αληθή τιμή σε κάθε μοντέλο. Δ. Μετατρέψτε τις ακόλουθες προτάσεις σε συζευκτική κανονική μορφή σ1: Α <=> (Β Ε) σ2: Ε => Δ σ3: Ψ & Φ => ~Β σ4: Ε => Β σ5: Β => Φ σ6: Β => Ψ σ1: Α <=> (Β Ε) Α (Β Ε) σ2: Ε => Δ σ3: Ψ &Φ => ~Β σ4: Ε => Β σ5: Β => Φ σ6: Β => Ψ Σ (Α=>(Β Ε)) ((Β Ε)=>Α) Ε Δ (Ψ Φ)=> Β Ε Β Β Φ Β Ψ ( Α (Β Ε)) ( (Β Ε) Α) ( (Ψ Φ)) Β Α ( Α (Β Ε)) (( Β Ε) Α) ( Ψ Φ) Β Ε ( Α (Β Ε)) ((Α Β) (Α Ε)) Ψ Φ Β ( Α Β Ε) (Α Β) (Α Ε) Τ ( Α Β Ε),(Α Β), (Α Ε) Ε Δ Ψ Φ Β Ε Β Β Φ Β Ψ 3
4 Γ. Χρησιμοποιήστε τον κανόνα της ανάλυσης για να δείξετε ότι η πρόταση (~Α & ~Β) είναι λογικό συμπέρασμα των προτάσεων της παρακάτω άσκησης. ΚΒ={( Α Β Ε), (Α Β), (Α Ε), ( Ε Δ), ( Ψ Φ Β), ( Ε Β), ( Β Φ),( Β Ψ)} Φ= Α Β Φ = ( ( Α Β)), το οποίο ύστερα από ΣΑΕΤ γίνεται Α Β ΚΒ ={1( Α Β Ε), 2(Α Β), 3(Α Ε), 4( Ε Δ), 5( Ψ Φ Β), 6( Ε Β), 7( Β Φ),8( Β Ψ), 9(Α Β)} Κανόνας Ανάλυσης 1 Α Β Ε 5 Ψ Φ Β 11 Β 9 Α Β 8 Β Ψ 13 Β Β Ε 12 Φ Β Ø 6 Ε Β 7 Β Φ Β 13 Β Από 11 και 13 καταλήγω σε άτοπο. Άρα το Φ δεν είναι λογικό συμπέρασμα των προτάσεων της Δ. Που σημαίνει ότι το Φ είναι παντού Τ, δηλαδή το φ είναι λογικό συμπέρασμα των προτάσεων της Δ. Ε. Δείξτε την εφαρμογή της DPLL στη σύζευξη των παραπάνω προτάσεων Ο DPLL αλγόριθμος λειτουργεί ως εξής 1. ορίζω τις προτάσεις με σύζευξη ανάμεσά τους ( Α Β Ε) (Α Β) (Α Ε) ( Ε Δ) ( Ψ Φ Β) ( Ε Β) ( Β Φ) ( Β Ψ) 2. Επιλέγω ένα σύμβολο και το ορίζω True ή False Θα επιλέξω το πρώτο σύμβολο, το Α και θα το θέσω ως True, A=True 3. Όσες παρενθέσεις περιέχουν το Α (όχι το Α), θα διαγραφούν, οπότε μένουν οι εξής 4. ( Α Β Ε) ( Ε Δ) ( Ψ Φ Β) ( Ε Β) ( Β Φ) ( Β Ψ) Το γράφω πιο όμορφα ( Α Β Ε) ( Ε Δ) ( Ψ Φ Β) ( Ε Β) ( Β Φ) ( Β Ψ) 5. Τώρα θα διαγράψω το Α από τις παρενθέσεις που το περιέχουν ( Β Ε) ( Ε Δ) ( Ψ Φ Β) ( Ε Β) ( Β Φ) ( Β Ψ). το γράφω πιο όμορφα (Β Ε) ( Ε Δ) ( Ψ Φ Β) ( Ε Β) ( Β Φ) ( Β Ψ) 6. Επιλέγω άλλο σύμβολο. Tώρα θα επιλέξω το Β=True. Σβήνω τις παρενθέσεις που έχουν Β. ( Ε Δ) ( Ψ Φ Β) ( Β Φ) ( Β Ψ) πιο όμορφα, θα γίνει ( Ε Δ) ( Ψ Φ Β) ( Β Φ) ( Β Ψ) 7. Διαγράφω το Β ( Ε Δ) ( Ψ Φ) (Φ) (Ψ) 8. Επιλέγω Ψ=True ( Ε Δ) ( Ψ Φ) (Φ) 9. Διαγράφω το Ψ ( Ε Δ) ( Φ) (Φ) 4
5 10. Επιλέγω Φ=True ( Ε Δ) ( Φ) 11. Διαγράφω το Φ ( Ε Δ) 12. Επιλέγω Ε=True ( Ε Δ) Δεν έχω πρόταση με Ε 13. Διαγράφω το Ε 14. (Δ) Άρα Δ= True ΣΤ. Αυτή η άσκηση εξετάζει τη σχέση μεταξύ συνεπαγωγών και clauses (διαζεύξεις λεκτικών). Δείξτε ότι η πρόταση (~α 1 ~α 2 ~α 3...~α μ β ) είναι λογικά ισοδύναμη με την πρόταση συνεπαγωγής (α 1 & α 2 & α 3 &...α μ )=>β. (α 1 α 2 α 3... α μ )=>β Από απαλοιφή συνεπαγωγής γίνεται (α 1 α 2 α 3... α μ ) β Από De Morgan θα γίνει ( α 1 α 2 α 3... α μ ) β Δείξτε ότι κάθε clause μπορεί να γραφεί στη μορφή (α 1 & α 2 & α 3 &...α μ )=>(β 1 β 2 β 3...β κ ). Μια βάση γνώσης από τέτοιες προτάσεις είναι σε μορφή Kowalski. Μια διαζευκτική πρόταση μπορεί να έχει θετικά και αρνητικά λεκτικά. Έστω τα αρνητικά λεκτικά είναι της μορφής ( α 1, α 2, α 3,..., α μ ) και τα θετικά είναι τα (β 1,β 2,...,β κ ), όπου α,β σύμβολα. Τότε η διαζευκτική πρόταση μπορεί να γραφτεί ως εξής: α 1 α 2 α 3... α μ β 1 β 2... β κ Βάσει της σχέσης που αποδείξαμε στο α ερώτημα, η παραπάνω σχέση μπορεί να γραφεί ως α 1 α 2 α 3... α μ β 1 β 2... β κ (α 1 α 2 α 3... α μ )=>( β 1 β 2... β κ ) Διατυπώστε τον κανόνα της ανάλυσης για προτάσεις σε μορφή Kowalski. p 1.p j p n1 => r 1.r n2 s 1. s n3 => q 1 q k.q n p 1.p j-1 p j+1 p n1 s 1. s n3 => r 1.r n2 q 1 q k-1 q k +1...q n4 θεωρώ ότι p j = q k ΒΙΒΛΙΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΗΤΗΣ ΝΟΗΜΟΣΥΝΗΣ, ΚΑΘΗΓΗΤΗΣ ΓΕΩΡΓΙΟΣ ΒΟΥΡΟΣ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ, ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ, STUART RUSSEL-PETER NORVIG, ΕΚΔΟΣΕΙΣ ΚΛΕΙΔΑΡΙΘΜΟΣ, ΔΕΥΤΕΡΗ ΑΜΕΡΙΚΑΝΙΚΗ ΕΚΔΟΣΗ ΙΝΤΕΡΝΕΤ 5
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΕπανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Διαβάστε περισσότεραΑσκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.
ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε
Διαβάστε περισσότεραΚανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Διαβάστε περισσότεραΛογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότερα4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Διαβάστε περισσότερα1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότεραΥπολογιστική Λογική και Λογικός Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Διαβάστε περισσότεραΛογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Τελική εξέταση Ιούλιος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ
ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΠροτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΛογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΠρόταση. Αληθείς Προτάσεις
Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο
Διαβάστε περισσότεραΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015
Διαβάστε περισσότεραAsk seic Majhmatik c Logik c 2
Ask seic Majhmatik c Logik c 2 1. Να δειχτεί με πίνακες αλήθειας ότι οι παρακάτω προτάσεις είναι λογικά ισοδύναμες. (αʹ) (A B) και A B. (βʹ) A (B C) και (A B) (A C). (γʹ) A B και B A. (δʹ) A B και B A.
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διαβάστε περισσότεραΕπίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΛογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα(d) 2 2 => 4 : OXI (Η προτασιακή λογική δεν περιλαμβάνει για άτομα καθαρούς αριθμούς)
Συμβολισμοί: Χρησιμοποιούμε για την άρνηση, για σύζευξη, για διάζευξη, => για συνεπαγωγή,
Διαβάστε περισσότεραΕ ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΜαθηματική Λογική και Απόδειξη
Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο
Διαβάστε περισσότεραΑσκήσεις μελέτης της 11 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
Διαβάστε περισσότερα, για κάθε n N. και P είναι αριθμήσιμα.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2016 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότεραΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της
ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Διαβάστε περισσότεραΚεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτέμβριος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότεραΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Διαβάστε περισσότεραΣημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
Διαβάστε περισσότεραΛογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
Διαβάστε περισσότερα9.1 Προτασιακή Λογική
ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)
ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Διαβάστε περισσότεραΛύσεις 1 ης Σειράς Ασκήσεων
Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t)
Διαβάστε περισσότεραΑσκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη
Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής ΤΕ (ΤΕΙ Ηπείρου) Τυφλή αναζήτηση Δίνεται το ακόλουθο κατευθυνόμενο γράφημα 1. Ο κόμβος αφετηρία είναι ο Α και ο κόμβος
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Διαβάστε περισσότεραHY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
Διαβάστε περισσότεραΕισαγωγή στις Βάσεις Δεδομζνων II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΑναπαράσταση Γνώσης µε Λογική. Προτασιακή Λογική
Αναπαράσταση Γνώσης µε Λογική Προτασιακή Λογική 1 Αναπαράσταση Γνώσης µε Λογική n Πράκτορες Βασισµένοι στη Γνώση (Knowledge-based agents) n Ένα παράδειγµα: Wumpus world n Γενικά για Λογική n Προτασιακή
Διαβάστε περισσότεραp p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q
Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων
Διαβάστε περισσότεραΛύσεις 1 ης Σειράς Ασκήσεων
Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 Έστω οι ατομικές προτάσεις A 1 = H Αντιγόνη κέρδισε τον αγώνα, A 3 = H Αντιγόνη πήρε την τρίτη θέση, Β 2 = Ο Βίκτορας πήρε την δεύτερη θέση, Γ 3 = Ο Γιάννης πήρε την
Διαβάστε περισσότεραΠροτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)
Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)
Διαβάστε περισσότεραΚατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18
Διαβάστε περισσότεραΑσκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2015 Σελ. 1 από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότερα4.3 Ορθότητα και Πληρότητα
4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί
Διαβάστε περισσότεραΕυχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου.
Ευχαριστίες Θα ήθελα να ευχαριστήσω τον καθηγητή μου, Δρ Γιάννη Δημόπουλο, ο οποίος ήταν ο επιβλέπον καθηγητής της διπλωματικής αυτής εργασίας και με βοήθησε ώστε να ολοκληρωθεί με επιτυχία. Επίσης θα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα
ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο
Διαβάστε περισσότεραΣτοιχεία προτασιακής λογικής
Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο
Διαβάστε περισσότεραΣ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου.
Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Η προσέγγιση των εννοιών αυτών θα γίνει με τη βοήθεια απλών παραδειγμάτων,
Διαβάστε περισσότεραΠεριεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότερα1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα
Θέμα Α Α1. Θεωρήστε τον παρακάτω ισχυρισμό: 1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα 018-19 «Για κάθε ζεύγος πραγματικών συναρτήσεων,g :, 0 ή g 0» ισχύει ότι g 0 αν και μόνο αν α) Να χαρακτηρίσετε
Διαβάστε περισσότεραΚεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
Διαβάστε περισσότεραHY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
Διαβάστε περισσότεραx < y ή x = y ή y < x.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με
Διαβάστε περισσότεραΠληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:
1 Επικοινωνία: spzygouris@gmail.com 2 Ποιοι είναι οι τελεστές σύγκρισης; Απάντηση Οι τελεστές σύγκρισης είναι: Ίσον = Διάφορο Μικρότερο < Μικρότεροήίσο Μεγαλύτερο > Μεγαλύτερο ή ίσο Που χρησιμοποιούνται
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Διαβάστε περισσότερα2 ο Διαγώνισμα Ύλη: Συναρτήσεις
ο Διαγώνισμα 08-9 Ύλη: Συναρτήσεις Θέμα Α Α. Θεωρήστε τον παρακάτω ισχυρισμό: «Αν μια συνάρτηση : είναι - τότε είναι και γνησίως μονότονη.» α) Να χαρακτηρίσετε τον ισχυρισμό γράφοντας στο τετράδιό σας
Διαβάστε περισσότερα