Σχεδιασµός και δράση στον πραγµατικό κόσµο
|
|
- Εὐριπίδης Τρικούπη
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C2, 15)) Goal(Έτοιµο(C 1 ) Έτοιµο(C 2 )) Action(ΠροσθήκηΜηχανής(e, c), Προϋποθέσεις: Μηχανή(e, c, d ) Σασί(c) ΜηχανήΕντός(c), Επιδράσεις: ΜηχανήΕντός( c ) ιάρκεια( d )) Action(ΠροσθήκηΤροχών(w, c), Προϋποθέσεις: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), Επιδράσεις: ΤροχοίΕπί(c) ιάρκεια(d)) Action(Επιθεώρηση(c), Προϋποθέσεις: ΜηχανήΕντός(c) ΤροχοίΕπί(c) Σασί(c), Επιδράσεις: Έτοιµο(c) ιάρκεια(10)) 12-2
2 Χρονοδιάγραµµα 12-3 Μέθοδος κρίσιµου µονοπατιού Κρίσιµο µονοπάτι Νωρίτερος χρόνος έναρξης, ES Αργότερος χρόνος έναρξης, LS ES(Αρχή) = 0. ES(B) = max A B ES(A) + ιάρκεια(a). LS(Τέλος) = ES(Τέλος). LS(A) = min A B LS(B) - ιάρκεια(a) Εύρεση βέλτιστου χρονοδιαγράµµατος: Γραµµική πολυπλοκότητα 12-4
3 Ενέργειες µε διάρκεια και πόρους(1/2) Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15) Βαρούλκα(1) ΣταθµοίΤροχών(1) Επιθεωρητές(2)) Goal(Έτοιµο(C 1 ) Έτοιµο(C 2 )) Action(ΠροσθήκηΜηχανής(e, c), Προϋποθέσεις: Μηχανή(e, c, d) Σασί(c) ΜηχανήΕντός(c), Επιδράσεις: ΜηχανήΕντός(c) ιάρκεια(d), Πόροι: Βαρούλκα(1)) Action(ΠροσθήκηΤροχών(w, c), Προϋποθέσεις: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), Επιδράσεις: ΤροχοίΕπί(c) ιάρκεια(d), Πόροι: ΣταθµοίΤροχών(1)) Action(Επιθεώρηση(c), Προϋποθέσεις: ΜηχανήΕντός(c) ΤροχοίΕπί(c), Επιδράσεις: Έτοιµο(c) ιάρκεια(10), Πόροι: Επιθεωρητές(1)) 12-5 Ενέργειες µε διάρκεια και πόρους(2/2) Εύρεση βέλτιστου χρονοδιαγράµµατος: NP-δύσκολο πρόβληµα. 12-6
4 Σχεδιασµός µε ιεραρχικά δίκτυα εργασιών Hierarchical Task Network Planning Αποσύνθεση ενεργειών (1/2) Πρωτογενείς ενέργειες Βιβλιοθήκη πλάνων 12-8
5 Αποσύνθεση ενεργειών (2/2) Action(ΑγοράΓης, Προϋποθέσεις: Χρήµατα, Επιδράσεις: Γη Χρήµατα) Action(Λήψη ανείου, Προϋποθέσεις: ΚαλήΠίστη, Επιδράσεις: Χρήµατα Υποθήκη) Action(ΧτίσιµοΣπιτιού, Προϋποθέσεις: Γη, Επιδράσεις: Σπίτι) Action(ΛήψηΆδειας, Προϋποθέσεις: Γη, Επιδράσεις: Άδεια) Action(ΠρόσληψηΕργολάβου, Επιδράσεις: Συµβόλαιο) Action(Κατασκευή, Προϋποθέσεις: Άδεια Συµβόλαιο, Επιδράσεις: ΣπίτιΧτισµένο Άδεια) Action(ΠληρωµήΕργολάβου, Προϋποθέσεις: Χρήµατα ΣπίτιΧτισµένο, Επιδράσεις: Χρήµατα Σπίτι Συµβόλαιο) Decompose(ΧτίσιµοΣπιτιού, Plan(Βήµατα: {S 1 : ΛήψηΆδειας, S 2 : ΠρόσληψηΕργολάβου, S 3 : Κατασκευή, S 4 : ΠληρωµήΕργολάβου} ιατάξεις: {Αρχή S 1 S 3 S 4 Τέλος, Αρχή S 2 S 3 }, Σύνδεσµοι: {Αρχή Γη S 1, Αρχή Χ S 4, S 1 S 3, S 2 Σ S 3, S 3 S 4, S 4 Σπί Τέλος, S 4 Τέλος})) 12-9 Αλγόριθµος σχεδιασµού Βασίζεται στο σχεδιασµό µερικής διάταξης Προσοχή στους περιορισµούς διάταξης και τους αιτιολογικούς συνδέσµους
6 και ένα παράδοξο Σχεδιασµός και δράση σε µη αιτιοκρατικά πεδία Planning and acting in non-deterministic domains
7 Περιπτώσεις σχεδιασµού Φραγµένη / Μη φραγµένη απροσδιοριστία Είδη σχεδιασµού: Σχεδιασµός χωρίς αισθητήρες ή σύµµορφος σχεδιασµός Εξαναγκασµός Σχεδιασµός υπό συνθήκη ή σχεδιασµός µε ενδεχόµενα Αισθητήριες ενέργειες Παρακολούθηση εκτέλεσης και επανασχεδιασµός Συνεχής σχεδιασµός Παράδειγµα: Βάψιµο τραπεζιού και καρέκλας Σχεδιασµός υπό συνθήκη Conditional Planning
8 Πλήρως παρατηρήσιµα περιβάλλοντα µε µε αιτιοκρατικές όµως ενέργειες. ιαζευκτικές επιδράσεις Action(Αριστερά, Προϋποθέσεις: Σε, Επιδράσεις: ΣεΑ Σε ) Επιδράσεις υπό συνθήκη Action(Αναρρόφηση, Προϋποθέσεις:, Επιδράσεις: (when ΣεΑ: ΚαθαρόΑ) (when Σε : Καθαρό )) Συνδυασµός Action(Αριστερά, Προϋποθέσεις: Σε, Επιδράσεις: ΣεΑ (ΣεΑ when ΚαθαρόΑ: ΚαθαρόΑ)) Υπό συνθήκη πλάνα σε πλήρως παρατηρήσιµα περιβάλλοντα Υπό συνθήκη βήµατα if <έλεγχος> then πλάνο_α else πλάνο_β π.χ. if ΣεΑ ΚαθαρόΑ then εξιά else Αναρρόφηση Πλάνο-λύση: [Αριστερά, if ΣεΑ ΚαθαρόΑ Καθαρό then [] else Αναρρόφηση] Αφήνει βρωµιές όταν µετακινείται σε καθαρή θέση Αφήνει βρωµιές όταν εκτελείται αναρρόφηση σε καθαρό τετράγωνο 12-16
9 Κυκλικές λύσεις Πλάνα µε βρόχους [L1: Αριστερά, if Σε then L1 else if ΚαθαρόΑ then [] else Αναρρόφηση] Επιπλέον: Η µετακίνηση αριστερά δεν πετυχαίνει πάντα Μερικώς παρατηρήσιµα περιβάλλοντα Καταστάσεις πεποίθησης Καθώςοπράκτοραςφεύγει από ένα τετράγωνο, µπορεί να αφήνει πίσω του σκουπίδια
10 Περιγραφή καταστάσεων πεποίθησης Με απαρίθµηση συνόλων Εκθετικά µεγάλες περιγραφές Περιορισµένη λογική αναπαράσταση, π.χ. µόνο σύζευξη λεκτικών Σε Καθαρό Υπόθεση ανοικτού κόσµου Προτάσεις γνώσης K(Σε ) K(Καθαρό ) Υπόθεση κλειστού κόσµου για τις προτάσεις γνώσης Αισθητήριες ενέργειες Αυτόµατη αίσθηση Action(Αριστερά, Προϋποθέσεις: Σε, Επιδράσεις: K(ΣεΑ) K(Σε ) when Καθαρό : K(Καθαρό ) when ΚαθαρόΑ: K(ΚαθαρόΑ) when ΚαθαρόΑ: K( ΚαθαρόΑ)) Ενεργητική αίσθηση Action(ΈλεγξεΒροµιά, Επιδράσεις: when ΣεΑ ΚαθαρόΑ: K(ΚαθαρόΑ) when ΣεΑ ΚαθαρόΑ: K( ΚαθαρόΑ) when Σε Καθαρό : K(Καθαρό ) when Σε Καθαρό : K( Καθαρό )) 12-20
11 Παρακολούθηση εκτέλεσης και επανασχεδιασµός Execution monitoring and replanning Παρακολούθηση και επανασχεδιασµός Παρακολούθηση ενεργειών Παρακολούθηση πλάνου 12-22
12 Συνεχής σχεδιασµός Continuous planning Παράδειγµα (1/6) Αρχική κατάσταση Στόχος Επί(C, D) Επί(D, B) Αρχικό πλάνο 12-24
13 Παράδειγµα (2/6) Πριν την έναρξη εκτέλεσης του πλάνου, κάποιος µετακίνησε τον D πάνω στον Β Νέο πλάνο Παράδειγµα (3/6) Επέκταση αιτιολογικού συνδέσµου Το Επί(D,B) µπορεί να υποστηριχθεί από την αρχική κατάσταση. Η ενέργεια Μετακίνηση(D,B) δεν χρειάζεται πλέον
14 Παράδειγµα (4/6) Εκτελείται η ενέργεια Μετακίνηση(C,D), όµως αποτυγχάνει και ο κύβος C τοποθετείται πάνω στον Α Το πλάνο του πράκτορα έχει ως εξής πλέον: Παράδειγµα (5/6) Προστίθεται νέα ενέργεια στο πλάνο Οστόχοςαυτήτηφοράεπιτυγχάνεται 12-28
15 Παράδειγµα (6/6) Η ενέργεια Μετακίνηση(C,D) αφαιρείται από το πλάνο, το οποίο πλέον έχει ως εξής: Σφάλµατα πλάνου Απουσία στόχου Ανοικτές προϋποθέσεις Αιτιολογικές συγκρούσεις Πλεονάζουσες ενέργειες Μη εκτελεσθείσα ενέργεια Περιττός ιστορικός στόχος 12-30
16 Πολυπρακτορικός σχεδιασµός MultiAgent Planning Συνεργατικοί πράκτορες Η µπάλα µπορείναεπιστραφείανακριβώςέναςπαίκτηςβρίσκεται στη σωστή θέση Πράκτορες(A, B) Init(Σε(A, [Αριστερά, ΓραµµήΒάσης]) Σε(B, [ εξιά, ίχτυ]) Πλησιάζει(Μπάλλα, [ εξιά, ΓραµµήΒάσης])) Συµπαίκτης(A, B) Συµπαίκτης(B, A) Goal(Επιστράφηκε(Μπάλλα) Σε(πράκτορας, [x, ίχτυ])) Action(Χτύπηµα(πράκτορας, Μπάλλα), Προϋποθέσεις: Πλησιάζει(Μπάλλα, [x, y]) Σε(πράκτορας, [x, y]) Συµπαίκτης(πράκτορας, συµπαίκτης) Σε(συµπαίκτης, [x, y]) Επιδράσεις: Επιστράφηκε(Μπάλλα)) Action(Μετάβαση(πράκτορας, [x, y]), Προϋποθέσεις: Σε(πράκτορας, [a, b]), Επιδράσεις: Σε(πράκτορας, [x, y]) Σε(πράκτορας, [a, b])) 12-32
17 Συνδυασµένα πλάνα ύο εναλλακτικές λύσεις: Πλάνο 1: A : [Μετάβαση(A, [ εξιά, ΓραµµήΒάσης]), Χτύπηµα(A, Μπάλλα)] B : [NoOp(B), NoOp(B)]. Πλάνο 2: A : [Μετάβαση(A, [Αριστερά, ίχτυ]), NoOp(A)] B : [Μετάβαση(B, [ εξιά, ΓραµµήΒάσης]), Χτύπηµα(B, Μπάλλα)]. Ανάγκη για συντονισµό Πολυσωµατικός σχεδιασµός (1/2) Οσχεδιασµός γίνεται από κεντρικό πράκτορα. Παραδοχή: Όλες οι ενέργειες έχουν ίση διάρκεια Συνδυασµένες ενέργειες NoOp(A), Χτύπηµα(B, Μπάλλα) Πλάνο συνδυασµένων ενεργειών (Πλάνο 2): Μετάβαση(A, [Αριστερά, ίχτυ]), Μετάβαση(B, [ εξιά, ΓραµµήΒάσης]) NoOp(A), Χτύπηµα(B, Μπάλλα) Η χρήση συνδυασµένων ενεργειών είναι αναποδοτική
18 Πολυσωµατικός σχεδιασµός (2/2) Λίστα ταυτόχρονων ενεργειών: Action(Χτύπηµα(A, Μπάλλα), Ταυτόχρονα: Χτύπηµα(B, Μπάλλα) Προϋποθέσεις: Πλησιάζει(Μπάλλα, [x, y]) Σε(A, [x, y]) Επιδράσεις: Επιστράφηκε(Μπάλλα)). Action(Μεταφορά(A, ψυγείο, εδώ, εκεί), Ταυτόχρονα: Μεταφορά(B, ψυγείο, εδώ, εκεί) Προϋποθέσεις: Σε(A, εδώ) Σε(ψυγείο, εδώ) Ψυγείο(ψυγείο) Επιδράσεις: Σε(A, εκεί) Σε(ψυγείο, εκεί) Σε(A, εδώ) Σε(ψυγείο, εδώ)). Σχεδιασµός µερικής διάταξης (POP) µε νέα είδη περιορισµών Μηχανισµοί συντονισµού Ο πολυσωµατικός σχεδιασµός εκτελείται από κάθε πράκτορα, και για όλους τους πράκτορες, ξεχωριστά. Σύµβαση, π.χ. το πρώτο πλάνο Κοινωνικοί νόµοι Επικοινωνία Αναγνώριση πλάνου 12-36
19 Ανταγωνισµός Αναγνώριση άλλων πρακτόρων Αναγνώριση αλληλεπιδράσεων Αλγόριθµοι: And-Or graph search (για δυαδικά προβλήµατα) Minimax (για προβλήµατα βελτιστοποίησης) Θεωρία Παιγνίων 12-37
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση σε µη Αιτιοκρατικά Πεδία Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Χρόνος και όροι χρονοπρογραµµατισµός εργασιών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών Αναζήτηση στο χώρο των καταστάσεων Αναζήτηση στο χώρο των πλάνων! Γράφοι σχεδιασµού Προτασιακή λογική Γράφοι σχεδιασµού (1/2) " Ένας γράφος σχεδιασµού
Επίλυση προβληµάτων µε αναζήτηση
Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
Σχεδιασµός. Planning. Το πρόβληµα τουσχεδιασµού
Σχεδιασµός Planning Το πρόβληµα τουσχεδιασµού Κλασσικός σχεδιασµός: Πλήρως παρατηρήσιµα, αιτιοκρατικά, πεπερασµένα, στατικά και διακριτά περιβάλλοντα. Ευρετική συνάρτηση Αποσυνθέσιµα προβλήµατα Σχεδόν
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Εξελιγµένες Τεχνικές Σχεδιασµού
Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση
Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Ευφυείς πράκτορες. Πράκτορες και Περιβάλλοντα
Ευφυείς πράκτορες Πράκτορες και Περιβάλλοντα Πράκτορας είναι οτιδήποτε µπορεί να θεωρηθεί ότι αντιλαµβάνεται το περιβάλλον του (environment) µέσω αισθητήρων (sensors), και επενεργεί σε αυτό το περιβάλλον
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες ΘΕΜΑ 1 ο (2.5 µονάδες)
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)
ιαφάνειες παρουσίασης #11
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Τεχνητή Νοημοσύνη Ι. Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση
Τεχνητή Νοημοσύνη Ι Ενότητα 3: Επίλυση Προβλημάτων με Αναζήτηση Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Επίλυση προβλημάτων με
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 14 Στοίβες 1 / 14 Στοίβες Η στοίβα είναι μια ειδική περίπτωση γραμμικής λίστας στην οποία οι εισαγωγές
Βιβλιογραφικές και ιστορικές σηµειώσεις Ασκήσεις Προβλήµατα Ικανοποίησης Περιορισµών
Περιεχόµενα 1 Εισαγωγή... 31 1.1 Τι Είναι η Τεχνητή Νοηµοσύνη... 31 Ανθρώπινη δράση: Η προσέγγιση µε τη δοκιµασία Turing... 32 Ανθρώπινη σκέψη: Η προσέγγιση µε γνωστικά µοντέλα... 33 Ορθολογική σκέψη:
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Κεφάλαιο 13. Αβεβαιότητα. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
Κεφάλαιο 13 Αβεβαιότητα Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κυριότερες πηγές αβεβαιότητας: Αβέβαιη Γνώση Ανακριβή δεδοµένα (imprecise data).
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός
Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
Εισαγωγή στον Προγραµµατισµό. Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011
Εισαγωγή στον Προγραµµατισµό Διάλεξη 3 η : Επίλυση Προβληµάτων Χειµερινό Εξάµηνο 2011 Τελεστής σύντοµης ανάθεσης Τελεστής σύντοµης ανάθεσης (shorthand assignment operator) µεταβλητή = µεταβλητή τελεστής
ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση
ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420)
Ανάπτυξη & Σχεδίαση Λογισμικού (ΗΥ420) Διάλεξη 8: Σχεδίαση Συστήματος Σχεδίαση Συστήματος 2 Διεργασία μετατροπής του προβλήματος σε λύση. Από το Τί στο Πώς. Σχέδιο: Λεπτομερής περιγραφή της λύσης. Λύση:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕ ΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες α) Αναφέρετε τη σειρά µε την
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
Το εσωτερικό ενός Σ Β
Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΑΠO ΤΟ ΑΙΣΘΗΤO ΣΤΟ ΝΟΗΤO
ΠΕΡΙΕΧΟΜΕΝΑ Λίστα πινάκων................................................ 13 Λίστα σχηµάτων............................................... 15 Πρελούδιο...................................................
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής
ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού
Περιεχόμενα. Περιεχόμενα
Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...
Έστω συμβολοσειρά Το σύνολο FIRST περιέχει τα τερματικά σύμβολα από τα οποία αρχίζουν οι συμβολοσειρές που παράγονται από την
Βοηθητικές έννοιες (i) Σύνολα FIRST Έστω συμβολοσειρά Το σύνολο FIRST περιέχει τα τερματικά σύμβολα από τα οποία αρχίζουν οι συμβολοσειρές που παράγονται από την Αν a τότε a FIRST Αν τότε FIRST Νίκος Παπασπύρου,
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
Ο Αλγόριθµος της Simplex
Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 31 Μαΐου 2019 1 / 10 Ελάχιστα τετράγωνα
Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Value Iteration και Q- Learning για Peg Solitaire
Αυτόνομοι Πράκτορες Εργασία εξαμήνου Value Iteration και Q- Learning για Peg Solitaire Μαρίνα Μαυρίκου 2007030102 1.Εισαγωγικά για το παιχνίδι Το Peg Solitaire είναι ένα παιχνίδι το οποίο παίζεται με ένα
Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609
Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων
Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 9 ο
Γιώργος Δημητρίου Μάθημα 9 ο Ενδιάμεσος Κώδικας Απεικόνιση ανάμεσα στον αρχικό και στον τελικό κώδικα Γραμμικές αναπαραστάσεις: Ενδιάμεσος κώδικας πλησιέστερα στον τελικό ευκολότερη παραγωγή τελικού κώδικα
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός
Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Ευφυείς Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες και
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 5 υναµικός Προγραµµατισµός Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 5 1 / 49 Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ «ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ» ΗΜΕΡ.ΑΝΑΘΕΣΗΣ: Δευτέρα 21 Δεκεμβρίου 2015 ΗΜΕΡ.ΠΑΡΑΔΟΣΗΣ: Δευτέρα 25 Ιανουαρίου 2016 Διδάσκοντες:
Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.
Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη
Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e
Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης
Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Αρχιτεκτονική Μηχανής. Αποθήκευση εδοµένων
Αρχιτεκτονική Μηχανής Αποθήκευση εδοµένων Οι πράξεις AND, OR, και Αλγεβρας Boole XOR (exclusive or) της Μία απεικόνιση των πυλών AND, OR, XOR, και NOT καθώς και των τιµών εισόδου (inputs) και εξόδου (output)
Προγραμματισμός έργων με σύνθετες σχέσεις διαδοχής εργασιών
Προγραμματισμός έργων με σύνθετες σχέσεις διαδοχής εργασιών Τύποι συσχετίσεων εργασιών Το βασικό πρόβλημα προγραμματισμού έργων θεωρεί την τυπική (και απλούστερη) μορφή διαδοχής (αλληλεξάρτησης) εργασιών
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων
ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &
Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Αβεβαιότητα Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Δράση υπό αβεβαιότητα
Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη
Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21
Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1
Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή
Αριθµητική Ανάλυση 1 εκεµβρίου / 43
Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Επεξεργασία Ερωτήσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος
Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to
Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε
Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού *
ΚΕΦ.8 ΕΙ ΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Ιδιαίτερη κατηγορία των προβληµάτων ΓΠ είναι τα προβλήµατα δικτυακής ροής. Σε αυτά ανήκουν τα προβλήµατα µεταφοράς και εκχώρησης. 8. Πρόβληµα µεταφοράς Σε m πηγές (κέντρα προσφοράς)
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 2 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 43 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική στο Χρόνο Temporal robabilisic Reasoning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ΕΚΠ 43/606 Αυτόνοµοι
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Μάθηση από Παρατηρήσεις Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Μορφές μάθησης
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ίκτυα Bayes σηµασιολογία Πλεονεκτήµατα συµπαγής αναπαράσταση
Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού ( Απαντήσεις & Λύσεις Βιβλίου) 1. Σκοποί κεφαλαίου Κύκλος ανάπτυξης προγράµµατος Κατηγορίες γλωσσών προγραµµατισµού
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 17 Μέγιστη Κοινή Υπακολουθία
Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :
Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει.
οµηµένες τεχνικές Ο στόχος των δοµηµένων τεχνικών είναι: Υψηλής ποιότητας προγράµµατα Εύκολη τροποποίηση προγραµµάτων Απλοποιηµένα προγράµµατα Μείωση κόστους και χρόνου ανάπτυξης. Οι βασικές αρχές τους