ΠΛΗ 405 Τεχνητή Νοηµοσύνη
|
|
- Ανυβις Βικελίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης
2 Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan εξαγωγή πλάνων από γραφήµατα σχεδιασµού O αλγόριθµος SATPlan σχεδιασµός µέσω ικανοποιησιµότητας Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 2
3 Σήµερα Χρόνος και όροι χρονοπρογραµµατισµός εργασιών Ιεραρχία ιεραρχικά δίκτυα εργασιών Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3
4 Χρόνος και Πόροι Time and Resources
5 Ενέργειες µε ιάρκεια STRIPS δηλώνει τι κάνουν οι ενέργειες δεν δηλώνει όσο διαρκούν οι ενέργειες ή ότε εκτελούνται Χρόνος θεµελιώδη σηµασία σε πραγµατικά προβλήµατα πρέπει να λαµβάνεται υπ όψιν στο σχεδιασµό Χρονο ρογραµµατισµός εργασιών (job-shop scheduling) εργασίες που ολοκληρώνονται από ακολουθίες ενεργειών ενέργειες που έχουν διάρκεια και απαιτούν πόρους για εκτέλεση ζητούµενο: χρονοδιάγραµµα ολοκλήρωσης όλων των εργασιών ελαχιστοποίηση συνολικού χρόνου και ικανοποίηση όλων των περιορισµών Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 5
6 Συναρµολόγηση Αυτοκινήτων Αρχική κατάσταση Init( Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15) ) Στόχος Goal( Έτοιµο(C 1 ) Έτοιµο(C 2 ) ) Ενέργειες Action( ΠροσθήκηΜηχανής(e, c), Προϋποθέσεις: Μηχανή(e, c, d) Σασί(c) ΜηχανήΕντός(c), Επιδράσεις: ΜηχανήΕντός(c) ιάρκεια(d) ) Action( ΠροσθήκηΤροχών(w, c), Προϋποθέσεις: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), Επιδράσεις: ΤροχοίΕ ί(c) ιάρκεια(d) ) Action( Ε ιθεώρηση(c), Προϋποθέσεις: ΜηχανήΕντός(c) ΤροχοίΕ ί(c) Σασί(c), Επιδράσεις: Έτοιµο(c) ιάρκεια(10) ) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 6
7 Χρονοδιάγραµµα Συναρµολόγησης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 7
8 Μέθοδος Κρίσιµου Μονο ατιού (Critical Path Method CPM) Κρίσιµο µονο άτι (critical path) µονοπάτι Αρχή Τέλος µε µέγιστη διάρκεια σε πλάνο µερικής διάταξης Αλγόριθµος δυναµικού ρογραµµατισµού εύρεση βέλτιστου χρονοδιαγράµµατος νωρίτερος χρόνος έναρξης (ES) και αργότερος χρόνος έναρξης (LS) περιθώριο (slack): LS ES (=0 για τις ενέργειες στο κρίσιµο µονοπάτι) ES(Αρχή) = 0 ES(B) = max A B ES(A) + ιάρκεια(a) LS(Τέλος) = ES(Τέλος) LS(A) = min A B LS(B) - ιάρκεια(a) Πολυ λοκότητα Ο(Nb), Ν: πλήθος ενεργειών, b: µέγιστος παράγοντας διακλάδωσης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8
9 Ενέργειες µε ιάρκεια και Πόρους Πόροι (resources) αντικείµενα που δεσµεύονται κατά την εκτέλεση µιας ενέργειας αναλώσιµοι πόροι (consumable resources) επιδράσεις επαναχρησιµοποιήσιµοι πόροι (reusable resources)? Ε έκταση ανα αράστασης νέο πεδίο «Πόροι: R(k)» : απαιτούνται k µονάδες του πόρου R εκφράζει προϋπόθεση και προσωρινή επίδραση συνάθροιση (aggregation): οµαδοποίηση οµοειδών πόρων Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 9
10 Συναρµολόγηση Αυτοκινήτων µε Πόρους Init( Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15) Βαρούλκα(1) ΣταθµοίΤροχών(1) Ε ιθεωρητές(2) ) Goal( Έτοιµο(C 1 ) Έτοιµο(C 2 ) ) Action( ΠροσθήκηΜηχανής(e, c), Προϋποθέσεις: Μηχανή(e, c, d) Σασί(c) ΜηχανήΕντός(c), Επιδράσεις: ΜηχανήΕντός(c) ιάρκεια(d), Πόροι: Βαρούλκα(1) ) Action( ΠροσθήκηΤροχών(w, c), Προϋποθέσεις: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), Επιδράσεις: ΤροχοίΕ ί(c) ιάρκεια(d), Πόροι: ΣταθµοίΤροχών(1) ) Action( Ε ιθεώρηση(c), Προϋποθέσεις: ΜηχανήΕντός(c) ΤροχοίΕ ί(c), Επιδράσεις: Έτοιµο(c) ιάρκεια(10), Πόροι: Ε ιθεωρητές(1) ) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 10
11 Χρονοδιάγραµµα Συναρµολόγησης µε Πόρους Πολυ λοκότητα εύρεση βέλτιστου χρονοδιαγράµµατος: NP-δύσκολο πρόβληµα οι περιορισµοί πόρων εισάγουν πρόσθετες αλληλεπιδράσεις Αλγόριθµος ελαχίστου εριθωρίου (minimum slack) επαναληπτικός άπληστος (greedy) αλγόριθµος η ενέργεια µε το µικρότερο περιθώριο στο νωρίτερο χρόνο έναρξης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 11
12 Σχεδιασµός και Χρόνος Α λή στρατηγική διαίρεση του προβλήµατος σε διακριτά στάδια σχεδίασε πρώτα, χρονοπρογραµµάτισε µετά Σύνθετη στρατηγική έγκυρα πλάνα που οδηγούν σε καλύτερα χρονοδιαγράµµατα ενοποίηση σχεδιασµού και χρονοπρογραµµατισµού επιτεύξιµο µε επέκταση γνωστών αλγορίθµων σχεδιασµού περιορισµοί πόρων: ανάλογα µε τους αιτιολογικούς συνδέσµους ποιότητα πλάνου: χρόνος ολοκλήρωσης, όχι πλήθος ενεργειών Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12
13 Σχεδιασµός µε Ιεραρχικά ίκτυα Εργασιών Hierarchical Task Network Planning
14 Ιεραρχικός Σχεδιασµός Ιεραρχική α οσύνθεση (hierarchical decomposition) λογισµικό, κυβερνήσεις, επιχειρήσεις,... Σχεδιασµός ΗΤΝ πλάνο υψηλότερου επιπέδου: µία ενέργεια (περιγραφή του έργου) εκλέπτυνση πλάνου: αποσύνθεση εργασιών (task decomposition) τερµατισµός εκλέπτυνσης: πρωτογενείς ενέργειες (primitive actions) HTN : διαδικασία συγκεκριµενοποίησης ενός πλάνου STRIPS : διαδικασία δόµησης ενός πλάνου Σύµβαση υβριδικό σχήµα σχεδιασµού µερικής διάταξης και σχεδιασµού HTN Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 14
15 Α οσύνθεση Ενεργειών Βιβλιοθήκη λάνων (planning library) περιγραφές αποσύνθεσης ενεργειών (πιθανά, πολλαπλές) εξωτερικές προϋποθέσεις και επιδράσεις και εσωτερικές επιδράσεις Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 15
16 Παράδειγµα: Χτίσιµο Σ ιτιού Action(ΑγοράΓης, Προϋποθέσεις: Χρήµατα, Επιδράσεις: Γη Χρήµατα) Action(Λήψη ανείου, Προϋποθέσεις: ΚαλήΠίστη, Επιδράσεις: Χρήµατα Υ οθήκη) Action(ΧτίσιµοΣ ιτιού, Προϋποθέσεις: Γη, Επιδράσεις: Σ ίτι) Action(ΛήψηΆδειας, Προϋποθέσεις: Γη, Επιδράσεις: Άδεια) Action(ΠρόσληψηΕργολάβου, Επιδράσεις: Συµβόλαιο) Action(Κατασκευή, Προϋποθέσεις: Άδεια Συµβόλαιο, Επιδράσεις: Σ ίτιχτισµένο Άδεια) Action(ΠληρωµήΕργολάβου, Προϋποθέσεις: Χρήµατα Σ ίτιχτισµένο, Επιδράσεις: Χρήµατα Σ ίτι Συµβόλαιο) Decompose( ΧτίσιµοΣ ιτιού, Plan( Βήµατα: {S 1 : ΛήψηΆδειας, S 2 : ΠρόσληψηΕργολάβου, S 3 : Κατασκευή, S 4 : ΠληρωµήΕργολάβου} ιατάξεις: {Αρχή S 1 S 3 S 4 Τέλος, Αρχή S 2 S 3 }, Σύνδεσµοι: {Αρχή Γη S 1, Αρχή Χ ρή µατα S 4, S 1 Άδεια S 3, S S 2 Σ υµβό λαιο 3, S Σ πίτι Χτισµ έ νο 3 S 4, S 4 Σπί τι Τέλος, S 4 Χρή µατα Τέλος} ) ) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 16
17 Ιεραρχικός Αλγόριθµος Σχεδιασµού βασίζεται στο σχεδιασµό µερικής διάταξης (POP) δυνατότητα εκλέπτυνσης στη συνάρτηση διαδόχου Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17
18 Ιεραρχικός Αλγόριθµος Σχεδιασµού Α οσύνθεση αντικατάσταση ενέργειας µε πλάνο εκλέπτυνσης δηµιουργία νέων στιγµιοτύπων ή κοινοχρησία υποεργασιών ιάταξη επιβολή µόνο των αναγκαίων περιορισµών διάταξης για κάθε περιορισµό διάταξης χρειάζεται ο λόγος ύπαρξης Σύνδεσµοι επιδιόρθωση αιτιολογικών συνδέσµων εξωτερικές προϋποθέσεις και επιδράσεις Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 18
19 Παράδοξο: Gift of the Magi Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 19
20 υσκολία και Πολυ λοκότητα Πρόβληµα ο καθαρός σχεδιασµός HTN είναι µη αποφασίσιµος παρόλο που ο υποκείµενος χώρος είναι πεπερασµένος το πρόβληµα οφείλεται στην αναδροµικότητα της αποσύνθεσης Αντιµετώ ιση αποκλεισµός αναδροµικότητας οριοθέτηση µεγέθους πλάνων υβριδικό σχήµα: ΗΤΝ και σχεδιασµός µερικής διάταξης Πολυ λοκότητα d αποσυνθέσεις µεγέθους k ανά ενέργεια, πλάνο µε n ενέργειες ιεραρχικός: O(d n/k ) εφικτά δένδρα αποσυνθέσεων µη ιεραρχικός: O(b n ) κόστος (b: παράγοντας διακλάδωσης) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 20
21 Μελέτη Σύγγραµµα Ενότητες Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 21
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. δοµή δεδοµένων για κατασκευή ευρετικών συναρτήσεων Ο αλγόριθµος GraphPlan
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση στον Πραγµατικό Κόσµο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Γραφήµατα σχεδιασµού δοµή δεδοµένων για κατασκευή
Σχεδιασµός και δράση στον πραγµατικό κόσµο
Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Ε ανάληψη. Χρόνος και όροι. Ιεραρχία. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. χρονοπρογραµµατισµός εργασιών. ιεραρχικά δίκτυα εργασιών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός και ράση σε µη Αιτιοκρατικά Πεδία Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Χρόνος και όροι χρονοπρογραµµατισµός εργασιών
Σχεδιασµός. Planning. Το πρόβληµα τουσχεδιασµού
Σχεδιασµός Planning Το πρόβληµα τουσχεδιασµού Κλασσικός σχεδιασµός: Πλήρως παρατηρήσιµα, αιτιοκρατικά, πεπερασµένα, στατικά και διακριτά περιβάλλοντα. Ευρετική συνάρτηση Αποσυνθέσιµα προβλήµατα Σχεδόν
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Αλγόριθµοι Εκτίµησης Καθυστέρησης και
Αλγόριθµοι Εκτίµησης Καθυστέρησης και Βελτιστοποίησης Εισαγωγή Το κύριο πρόβληµα στην σχεδίαση κυκλωµάτων είναι η επίτευξη της µέγιστης απόδοσης για την δεδοµένη τεχνολογία. Μεγιστοποίηση απόδοσης: (α)
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σχεδιασµός Planning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ανακεφαλαίωση Λογικοί ράκτορες πράκτορες βασισµένοι σε γνώση Προτασιακή λογική σύνταξη
Εξελιγµένες Τεχνικές Σχεδιασµού
Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο
ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων
ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
Κεφάλαιο 4ο: Δικτυωτή Ανάλυση
Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων Θεωρείστε ένα έργο που απαιτεί τις δραστηριότητες του Πίνακα 1. Για κάθε δραστηριότητα αναγράφονται οι προαπαιτούμενες δραστηριότητες αν υπάρχουν, και οι εκτιμήσεις
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες ΘΕΜΑ 1 ο (2.5 µονάδες)
Διαχείριση Έργων Πληροφορικής
Διαχείριση Έργων Πληροφορικής Διάλεξη 8 & 9 η Project Crashing & Διαχείριση Κόστους 1 Υπολογισμός πιθανότητας 2 Τι σημαίνει αυτό? Σημαίνει ότι υπάρχει 0,7157 πιθανότητα ή 71.57% πιθανότητα να ολοκληρωθεί
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών
Επίλυση συµβολικών προβληµάτων σχεδιασµού ενεργειών Αναζήτηση στο χώρο των καταστάσεων Αναζήτηση στο χώρο των πλάνων! Γράφοι σχεδιασµού Προτασιακή λογική Γράφοι σχεδιασµού (1/2) " Ένας γράφος σχεδιασµού
Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956
Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ PROJECT MANAGEMENT
1. ΕΙΣΑΓΩΓΗ ΑΙΤΙΑ ΑΠΟΤΥΧΙΑΣ ΤΩΝ ΕΡΓΩΝ ΚΑΙ ΤΡΟΠΟΙ ΑΝΤΙΜΕΤΩΠΙΣΗΣ - Τρόποι πρόληψης της αποτυχίας Η ΣΑΝ ΔΙΕΡΓΑΣΙΑ Η ΣΗΜΑΣΙΑ ΤΗΣ ΥΠΟΣΤΗΡΙΞΗΣ ΑΠΟ ΤΗ ΔΙΟΙΚΗΣΗ ΓΙΑ ΤΗΝ ΕΠΙΤΥΧΗ ΥΛΟΠΟΙΗΣΗ ΕΡΓΟΥ Η ΕΙΣΑΓΩΓΗ ΤΗΣ ΑΝΤΙΛΗΨΗΣ
Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου
Χρονικός Προγραμματισμός Έργων Project Scheduling Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονοδιαγράμματα Έργων Διαδικασία Κτίζοντας το Πρόγραμμα Έργου 1. Κατανόηση έργου/προδιαγραφών
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs
ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση
ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης
02α Διαχείριση Έργων Λογισμικού
02α Διαχείριση Έργων Λογισμικού Τεχνολογία Λογισμικού Σχολή Hλεκτρολόγων Mηχανικών & Mηχανικών Yπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Χειμερινό εξάμηνο 2017 18 Δρ. Κώστας Σαΐδης saiko@di.uoa.gr Διαχείριση
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
ιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια
ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ «Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος CPM. Λυμένες Ασκήσεις & Παραδείγματα
Δικτυακή Αναπαράσταση Έργων (Δίκτυα ΑΟΑ και ΑΟΝ) & η Μέθοδος PM Λυμένες Ασκήσεις & Παραδείγματα Άσκηση σχεδίασης έργου με δίκτυο ΑΟΑ Σχεδιάστε το δίκτυο ΑΟΑ που ικανοποιεί του ακόλουθους περιορισμούς:
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης
Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη και Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία και είδη πρακτόρων
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση
Διοίκηση Έργων Πληροφορικής Εργαστήριο 2. Μακρή Ελένη-Λασκαρίνα
Διοίκηση Έργων Πληροφορικής Εργαστήριο 2 Μακρή Ελένη-Λασκαρίνα elmak@unipi.gr Περιεχόμενα Προγραμματισμός Έργων Δομή Ανάλυσης Εργασιών - Work breakdown structure (WBS) Χρονοπρογραμματισμός Έργων Διάγραμμα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Επεξεργασία Ερωτήσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)
Τεχνολογία Λογισμικού
Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Τεχνολογία Λογισμικού 8ο Εξάμηνο 2018 19 Εισαγωγή στη διαχείριση έργων λογισμικού Δρ. Κώστας Σαΐδης saiko@di.uoa.gr A. Διαχείριση έργου γενικά Ορισμοί Βασικές
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική
ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2007. Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών ορισµός και χαρακτηριστικά
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων
ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές Λειτουργίες
Περιγραφή Προβλημάτων
Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)
Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ
Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,
2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΟΙΚΗΣΗΣ ΕΡΓΩΝ
2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΟΙΚΗΣΗΣ ΕΡΓΩΝ 2.1 Βασικοί Ορισµοί ιοίκηση έργου είναι η διαδικασία (process) του σχεδιασµού και της διοίκησης εργασιών και αποθεµάτων, και της επικοινωνίας µεταξύ προόδου και αποτελεσµάτων.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση
Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων
Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ικανο οίηση Περιορισµών Constraint Satisfaction Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Το ική αναζήτηση αναρρίχηση λόφων προσοµοιωµένη
9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ
9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ Στο κεφάλαιο αυτό, αναλύεται πλήρως ένα τεχνικό έργο, συγκεκριµένα αυτό της κατασκευής ενός µικρού αντλιοστασίου. Για την ανάλυση του έργου χρησιµοποιείται το πακέτο λογισµικού
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
Το εσωτερικό ενός Σ Β
Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων
Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B
Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη ιοίκηση Επιχειρήσεων Πανεπιστήμιο Μακεδονίας, Ακαδημαϊκό
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος στη δεύτερη έκδοση
Πρόλογος του επιµελητή xiii Πρόλογος στην πρώτη έκδοση xv Προς τους ϕοιτητές.......................... xv Προς τους διδάσκοντες........................ xvii Ηπρώτηέκδοση........................... xviii
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού
Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 4 Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 4.1 Χρονοπρογραµµατισµός Διαστηµάτων Χρονοπρογραµµατισµός Διαστηµάτων Το πρόβληµα.
Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει.
οµηµένες τεχνικές Ο στόχος των δοµηµένων τεχνικών είναι: Υψηλής ποιότητας προγράµµατα Εύκολη τροποποίηση προγραµµάτων Απλοποιηµένα προγράµµατα Μείωση κόστους και χρόνου ανάπτυξης. Οι βασικές αρχές τους
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ανάλυση Πρώτης Τάξης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συµ ερασµός µε οσοδείκτες αναγωγή σε προτασιακό συµπερασµό Ενο οίηση απευθείας
Ο επόμενος πίνακας παρουσιάζει τις δραστηριότητες ενός έργου, τις σχέσεις μεταξύ τους, καθώς και τη διάρκειά τους σε εβδομάδες.
Το Διάγραμμα Gantt Tο πλέον χρησιμοποιούμενο εργαλείο για το χρονοπρογραμματισμό ενός έργου είναι το διάγραμμα Gantt, το οποίο αναπτύχθηκε από το Η. Grantt. To διάγραμμα Gantt αποτελεί ένα γραμμικό διάγραμμα
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟ ΟΣΗΣ & ΕΞΙΣΟΡΡΟΠΗΣΗ ΦΟΡΤΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙ ΟΣΕΩΝ ΒΑΘΜΟΣ ΠΑΡΑΛΛΗΛΙΣΜΟΥ Η υλοποίηση
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον
Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕ ΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες α) Αναφέρετε τη σειρά µε την
4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)
. Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πράκτορες και Περιβάλλοντα Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης κριτήρια νοηµοσύνης Καταβολές
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Επεξεργασία Ερωτήσεων
Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008
Προγραμματισμός έργων με σύνθετες σχέσεις διαδοχής εργασιών
Προγραμματισμός έργων με σύνθετες σχέσεις διαδοχής εργασιών Τύποι συσχετίσεων εργασιών Το βασικό πρόβλημα προγραμματισμού έργων θεωρεί την τυπική (και απλούστερη) μορφή διαδοχής (αλληλεξάρτησης) εργασιών
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΠΟΡΩΝ
ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΩΝ ΠΟΡΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. ERP Τι Είναι - Χαρακτηριστικά Οφέλη από την Εφαρµογή τους 2. Μεθοδολογική Προσέγγιση Επιλογής & Υλοποίησης Συστηµάτων ERP
Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης
Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Εισαγωγή σε VLSI 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Μανόλης Καλλίγερος (kalliger@aegean.gr)
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &
Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 43 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική στο Χρόνο Temporal robabilisic Reasoning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ΕΚΠ 43/606 Αυτόνοµοι