Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων.
|
|
- Ανθούσα Αντωνοπούλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Συνεργάτες: Καλαμαρά Αντιγόνη Υπεύθυνος Εργαστηρίου: Ημερομηνία Διεξαγωγής : 7/4/2005 Ημερομηνία Παράδοσης : /5/2005 Σκοπός της Άσκησης:
2 Σκοπός της άσκησης αυτής είναι ο πειραματικός προσδιορισμός της ροπής αδράνειας τεσσάρων στερεών σωμάτων : ενός συμπαγούς κυλίνδρου, ενός κυλινδρικού σωλήνα, μίας σφαίρας και ενός δίσκου. Πειραματική Μέθοδος Κατά τη διεξαγωγή του πειράματος, αρχικά χρησιμοποιούμε το δυναμόμετρο για να μετρήσουμε τη δύναμη που ασκεί το ελατήριο του στροφικού ταλαντωτή με τη στροφή του σε διάφορες γωνίες. Χρησιμοποιώντας τον πίνακα των μετρήσεων, σχεδιάζουμε τη γραφική παράσταση F(φ) και υπολογίζοντας με τη γραφική μέθοδο την κλίση αυτής υπολογίζουμε την σταθερά επαναφοράς. Έπειτα, μετράμε το χρόνο που χρειάζονται τα τέσσερα στερεά για την εκτέλεση συγκεκριμένου αριθμού ταλαντώσεων, ούτως ώστε να υπολογίσουμε την περίοδο των ταλαντώσεων. Τέλος, με τη γνώση της σταθεράς επαναφοράς και της περιόδου, μπορούμε να υπολογίσουμε την ροπή αδράνειας των τεσσάρων στερεών. Πειραματική διάταξη Η πειραματική διάταξη αποτελείται από ένα στροφικό ταλαντωτή, στον οποίο τα σώματα εκτελούν ταλαντώσεις γύρω από ένα κατακόρυφο άξονα, ενώ για τη δημιουργία ροπής επαναφοράς χρησιμοποιείται ένα σπειροειδές ελατήριο. Για τη μέτρηση της σταθεράς επαναφοράς του ελατηρίου χρησιμοποιείται ένα δυναμόμετρο και ένας μοχλοβραχίονας μήκους 6,00±0,03 cm (για την άσκηση μετρήσιμης ροπής στο ελατήριο). Επίσης έχουμε τέσσερα στερεά, την ροπή αδράνειας των οποίων θέλουμε να μετρήσουμε. Ακόμα χρησιμοποιούμε ένα ψηφιακό χρονόμετρο χειρός για τη μέτρηση των περιόδων περιστροφής των σωμάτων. Επεξεργασία Δεδομένων Τα χαρακτηριστικά των στερεών είναι : Κυκλικός δίσκος : M = 252g ± 0,5g, R = 1,09mm ± 0,5mm, d = 12mm ± 0,2mm Συμπαγής Κύλινδρος : M = 378g ± 0,5g, R = 0,50mm ± 0,5mm Κυλινδρικός Σωλήνας : M = 365g ± 0,5g, R = 50mm ± 0,5mm Σφαίρα : M = 660g ± 0,5g, R = 69mm ± 0,5mm Έλεγχος της γραμμικότητας και βαθμονόμηση του ελατηρίου Στον παρακάτω πίνακα φαίνονται οι μετρήσεις της δύναμης που ασκεί το σπειροειδές ελατήριο στο δυναμόμετρο. F (N) φ
3 0, , , , , , , , Από αυτές τις μετρήσεις, σχεδιάζουμε τη γραφική παράσταση που δείχνει τη σχέση μεταξύ δύναμης του ελατήριου και γωνίας περιστροφής. Παρατηρούμε ότι η σχέση αυτή είναι γραμμική, οπότε υπολογίζουμε με τη γραφική μέθοδο την κλίση της ευθείας καθώς και το σφάλμα της. Για τον υπολογισμό της κλίσης και του σφάλματος επιλέγουμε τα σημεία Α(2π, 2.16), Β(0, -0.20), Γ(2π, 2.12) Δ(0, -0.28), Ε(2π, 2.32), Ζ(0, -0.14) Έτσι, υπολογίζουμε την κλίση ως β = yβ-yα / xβ-xα και προκύπτει β = 0,375 ± 0,005 N/rad. Το σφάλμα προκύπτει από τη σχέση δβ = ½ (β2- β1), όπου β1 = yδ-yγ / xδ-xγ, β2 = yζ-yε / xζ-xε. Όμως ισχύει ότι φ = D FL. Οπότε η κλίση β που υπολογίσαμε αντιστοιχεί στο πηλίκο D/L. Συνεπώς D = β.l Άρα D = 2,25 x 10-2 m.n/rad. Για το σφάλμα του D θα πρέπει να χρησιμοποιήσουμε την εξίσωση οπότε θα έχουμε δd = 0,17 x 10-2 m.n/rad Συνεπώς D = (2,25 ± 0,17) x 10-2 m.n/rad Υπολογισμός της ροπής αδράνειας των σωμάτων Κατά τη διεξαγωγή του πειράματος, μετρήθηκε ο χρόνος για 5 και 10 ταλαντώσεις κάθε σώματος. Από το χρόνο αυτό υπολογίσαμε την περίοδο ταλάντωσης κάθε σώματος. Από την παραδοχή ότι οι ταλαντώσεις κάθε σώματος είναι απλές αρμονικές και ότι οι απώλειες ενέργειας είναι μηδενικές, προκύπτει η σχέση η οποία συνδέει την περίοδο ταλάντωσης, την κατευθύνουσα ροπή και τη ροπή αδράνειας του κάθε σώματος, καθώς και η σχέση που δίνει το σφάλμα της ροπής αδράνειας.
4 Κυκλικός Δίσκος Για τον κυκλικό δίσκο γνωρίζουμε ότι M = 252g ± 0,5g, R=1,09mm ± 0,5mm, d = 12mm ± 0,2mm. Η θεωρητική ροπή αδράνειας δίνεται από τη σχέση Ι δ-θ =1/2 Μ R 2 οπότε από με αντικατάσταση έχουμε Ι δ-θ = kg.m 2 Ακόμα δι δ-θ = 10-5 kg.m 2, οπότε Ι δ-θ = ± 10-5 kg.m 2. t(sec) N T(sec) Ti - Tμ (Τi-T) 2 14, ,402 0,067 0,004 13, ,394-0,013 0,000 14, ,405 0,097 0,009 13, ,385-0,103 0,011 13, ,398 0,027 0,001 13, ,388-0,073 0,005 Έτσι, έχουμε Τμ = 1,395 sec σ = (Σ(Τi-T) 2 /5) = 0,07sec και καθώς δτ = σ/ 6, έχουμε δτ = 0,03sec Για την πειραματικά μετρούμενη ροπή αδράνειας του δίσκου ισχύει Ι δ-π = 0,0010 kg.m 2 και δι δ-π = 0,00008 kg.m 2, συνεπώς Ι δ-π = 0,0010 ± 0,00008 kg.m 2 Συμπαγής Κύλινδρος Για τον συμπαγή κύλινδρο γνωρίζουμε ότι R = 0,50 mm ± 0,5mm και M =378g ± 0,5g Η θεωρητική ροπή αδράνειας δίνεται από τη σχέση Ι Κ-θ =1/2 Μ R 2 Με αντικατάσταση των δεδομένων σε αυτήν, έχουμε = kg.m 2 Για το σφάλμα έχουμε δι Κ-θ = 10-5 kg.m 2, οπότε Ι Κ-θ = ± 10-5 kg.m 2. t(sec) N T Ti - Tμ (Ti - Tμ)^2 7, ,751 0,072 0,005 7, ,746 0,022 0,000 7, ,744 0,002 0,000 3,75 5 0,750 0,062 0,004 3,68 5 0,736-0,078 0,006 3,68 5 0,736-0,078 0,006
5 Έτσι, έχουμε Τμ = 0,744 sec σ = (Σ(Τi-T) 2 /5) = 0,06sec και καθώς δτ = σ/ 6, έχουμε δτ = 0,02sec Για την πειραματικά μετρούμενη ροπή αδράνειας του συμπαγούς κυλίνδρου ισχύει Ι Κ-π = 0,00042 kg.m 2 και δι Κ-π = 0,00004 kg.m 2, συνεπώς Ι Κ-π = 0,00042 ± 0,00004 kg.m 2 Κυλινδρικός Σωλήνας Για τον κυλινδρικό σωλήνα γνωρίζουμε ότι R = 50mm ± 0,5mm και M = 365g ± 0,5g Η θεωρητική ροπή αδράνειας δίνεται από τη σχέση Ι Σ-θ = Μ R 2 οπότε με αντικατάσταση έχουμε Ι Σ-θ = kg.m 2 Για το σφάλμα έχουμε δι Σ-θ = 2 x 10-5 kg.m 2, οπότε Ι Σ-θ = ± 2 x 10-5 kg.m 2. t(sec) N T Ti - Tμ (Ti - Tμ)^2 10, ,085 0,050 0,002 5,29 5 1,058-0,220 0,048 10, ,090 0,100 0,010 5,44 5 1,088 0,080 0,006 10, ,091 0,110 0,012 5,34 5 1,068-0,120 0,014 Έτσι, έχουμε Τμ = 1,080 sec σ = (Σ(Τi-T) 2 /5) = 0,13sec και καθώς δτ = σ/ 6, έχουμε δτ = 0,05 sec Για την πειραματικά μετρούμενη ροπή αδράνειας του συμπαγούς κυλίνδρου ισχύει Ι Σ-π = 0,00066 kg.m 2 και δι Σ-π = 0,00008 kg.m 2, συνεπώς Ι Σ-π = 0,00066 ± 0,00008 kg.m 2 Σφαίρα Για τη σφαίρα γνωρίζουμε ότι R = 69mm ± 0,5mm και M = 660g ± 0,5g. Η θεωρητική ροπή αδράνειας δίνεται από τη σχέση Ι Φ-θ = 2/5 Μ R 2 οπότε με αντικατάσταση έχουμε Ι Φ-θ = kg.m 2 Για το σφάλμα έχουμε δι Σ-θ = 2 x 10-5 kg.m 2, οπότε Ι Φ-θ = ± 4 x 10-6 kg.m 2.
6 t(sec) N T Ti - Tμ (Ti - Tμ)^2 12, ,295-0,002 0,000 6,35 5 1,270-0,252 0,063 6,41 5 1,282-0,132 0,017 13, ,301 0,058 0,003 13, ,313 0,178 0,032 6,55 5 1,310 0,148 0,022 Έτσι, έχουμε Τμ = 1,295 sec σ = (Σ(Τi-T) 2 /5) = 0,16sec και καθώς δτ = σ/ 6, έχουμε δτ = 0,67sec Για την πειραματικά μετρούμενη ροπή αδράνειας του συμπαγούς κυλίνδρου ισχύει Ι Φ-π = 0,00095 kg.m 2 και δι Φ-π = 0,00008 kg.m 2, συνεπώς Ι Φ-π = 0,0010 ± 0,0001 kg.m 2 Συμπεράσματα και σχολιασμός των αποτελεσμάτων Παρατηρούμε ότι σε όλους τους υπολογισμούς έχουμε μία σταθερή απόκλιση της πειραματικής από τη θεωρητικά αναμενόμενη τιμή της τάξης του 13%. Αυτό σημαίνει ότι κάποιο σταθερό σφάλμα υπεισέρχεται μονίμως στους υπολογισμούς μας. Αυτό πιθανόν να οφείλεται στη λάθος βαθμονόμηση του δυναμόμετρου κατά το 1 ο σκέλος του πειράματος. Αυτό οφείλεται, αφ ενός μεν στην παραδοχή μας ότι η δυναμική ενέργεια διατηρείται κατά την ταλάντωση (τα σώματα δηλαδή εκτελούν αμείωτη ταλάντωση) αλλά και στην παραδοχή μας της πλήρους γραμμικότητας της σχέσης μεταξύ δύναμης και γωνίας. Στα περισσότερα υλικά υπάρχει μία σχεδόν γραμμική σχέση μέχρι ένα σημείο κατά την θλίψη ή τον εφελκυσμό τους.
Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΝΙΚΑΙΑΣ ΠΕΙΡΑΙΑ. Φύλλο εργασίας
Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΤΑΞΗ ΤΜΗΜΑ... ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΚΥΛΙΝΔΡΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ. ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΟΥ Στόχοι: Να μετρήσετε τη ροπή αδράνειας στερεού σώματος
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/m του ηλεκτρονίου.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 0910404 Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/ του ηλεκτρονίου. Συνεργάτες: Καίνιχ Αλέξανδρος
Διαβάστε περισσότεραΆσκηση 5 Υπολογισμός της σταθεράς ελατηρίου
Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: από την κλίση της (πειραματικής) ευθείας
Διαβάστε περισσότεραΥπολογισμός της σταθεράς του ελατηρίου
Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 9 Χαρτογράφηση Ηλεκτρικού Πεδίου.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 090404 Εργαστηριακή Άσκηση 9 Χαρτογράφηση Ηλεκτρικού Πεδίου. Συνεργάτες: Καλαμαρά Αντιγόνη
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ
ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,
Διαβάστε περισσότεραΆσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος
Άσκηση 9 Μελέτη στροφικής κίνησης στερεού σώματος Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: ο πειραματικός υπολογισμός της ροπής αδράνειας ενός στερεού και η σύγκριση της πειραματικής τιμής με τη
Διαβάστε περισσότεραΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ Προκριματικός διαγωνισμός για την 17 η EUSO 2019 στην Φυσική Σάββατο 08/12/2018 Ονοματεπώνυμα μελών ομάδας 1) 2) 3) Σχολείο: 1 Εισαγωγή ΥΠΟΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Βασιλεία Ι. Σινάνογλου Ειρήνη Φ. Στρατή Παναγιώτης Ζουμπουλάκης Σωτήρης Μπρατάκος Εξώφυλλο Εργαστηριακό Τμήμα (ημέρα ώρα)
Διαβάστε περισσότερα% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ
ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΚΕΡΑΤΣΙΝΙ
Διαβάστε περισσότεραΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με
Διαβάστε περισσότεραΜεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:
Άσκηση Μ Σπειροειδές ελατήριο Νόμος του Hooe και εξίσωση δυνάμεων Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooe: Οι ελαστικές τάσεις και οι παραμορφώσεις
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 10 ΑΠΡΙΛΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΦΥΣΙΗ Γ ΛΥΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΩΝ ΣΠΟΥΔΩΝ 10 ΑΠΡΙΛΙΟΥ 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 24 ΑΠΡΙΛΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ΑΠΡΙΛΙΟΥ 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
Διαβάστε περισσότεραΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο
Διαβάστε περισσότεραΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή
Διαβάστε περισσότεραΘέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-
Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραPhysics by Chris Simopoulos. Η μάζα m χάνει την επαφή της όταν F=0 A 2. 2 Δεκτή η τιμή με το θετικό πρόσημο (δεύτερο τεταρτημόριο) 5 rad 5.
. ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ ΕΝΕΡΓΕΙΑ ΤΑΛΑΝΤΩΣΗΣ ΛΥΣΕΙΣ. ( ) (f) 8 ) (f ), / sec γ) Τυχαία Θέση: F F B F F B D F B F g D () Η μάζα χάνει την επαφή της όταν F= () g D g. rad / sec U U U U U U U g (f ) D Δεκτή
Διαβάστε περισσότερα2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:
Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί
Διαβάστε περισσότεραΘέματα Παγκύπριων Εξετάσεων
Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που
Διαβάστε περισσότεραΑ Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ
Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΥΝΤΕΛΕΣΤΗΣ ΙΞΩΔΟΥΣ Κατά την κίνηση των υγρών, εκτός από την υδροστατική πίεση που ενεργεί κάθετα σε όλη την επιφάνεια, έχουμε και
Διαβάστε περισσότεραΤίτλος Μαθήματος: Εργαστήριο Φυσικής Ι
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Εργαστηριακές Ασκήσεις Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:
Διαβάστε περισσότεραΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ Φύλλο εργασίας Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων μέσω του ΣΣΛ-Α και για διαφορετικές μάζες, ο μαθητής: καλείται να κατανοήσει
Διαβάστε περισσότεραΠροσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο
Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο Κορδάς Γιώργος Φυσικός MSc. ΕΚΦΕ Ρόδου Ιανουάριος 011 Εισαγωγή Η ροπή αδράνειας ενός σώματος στην περιστροφική κίνηση παίζει παρόμοιο
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΟνοματεπώνυμο Φοιτητή. Εργαστηριακό Τμήμα Π.χ. Δευτέρα
Ονοματεπώνυμο Φοιτητή Εργαστηριακό Τμήμα Π.χ. Δευτέρα 11 00 13 00 Ομάδα Π.χ. 1A Πειραματική άσκηση Ελεύθερη πτώση Ημερομηνία Εκτέλεσης Άσκησης... / / 2015 Ημερομηνία παράδοσης εργαστ.αναφοράς... / / 2015
Διαβάστε περισσότεραΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:..
1 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:.. Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων
Διαβάστε περισσότερα1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ
1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m
Διαβάστε περισσότεραΌργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων
Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο
Διαβάστε περισσότεραΚεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές
Διαβάστε περισσότεραΆσκηση Σ1 Άμεσες μετρήσεις σφάλματα
Συμπλήρωμα Σ1.ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Άσκηση Σ1 Άμεσες μετρήσεις σφάλματα (Αφορά το 1ο εργαστήριο. Η αντίστοιχη θεωρία είναι στις σελίδες 13-20 του βιβλίου ενώ εδώ βλέπεις το πειραματικό μέρος επειδή δεν υπάρχει
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΣΥΡΜΑΤΟΣ
14 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ και ΝΕΑΣ ΙΩΝΙΑΣ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 05 Δεκεμβρίου 2015 Μαθητές Σχολείο 1. 2. 3. ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΦΥΣΙΚΗΣ ΜΕΤΡΗΣΗ ΤΗΣ ΔΙΑΜΕΤΡΟΥ ΚΥΛΙΝΔΡΙΚΟΥ
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο
Διαβάστε περισσότεραΑ u. u cm. = ω 1 + α cm. cm cm
ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ
Διαβάστε περισσότερα5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει
Διαβάστε περισσότερα2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραA4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ
Διαβάστε περισσότεραΛογισμικό Ανάλυσης Βίντεο Tracker
Λογισμικό Ανάλυσης Βίντεο Tracker Μοντελοποίηση της Απλής Αρμονικής Ταλάντωσης Βασίλης Νούσης Υπ. ΕΚΦΕ Θεσπρωτίας Μοντέλα και Μοντελοποίηση Απλοποιημένες/εξιδανικευμένες αναπαραστάσεις ενός φυσικού συστήματος.
Διαβάστε περισσότεραΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης
ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΠροσδιορισμός της σταθεράς ενός ελατηρίου.
Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.
Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ. ΘΕΜΑ Β Β1. Σωστή απάντηση είναι η γ. Ο αριθμός των υπερβολών ενισχυτικής συμβολής που τέμνουν την
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 2 ΦΥΓΟΚΕΝΤΡΟΣ ΔΥΝΑΜΗ Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία Διεξαγωγής: 05/12/11 Ημερομηνία Παράδοσης:
Διαβάστε περισσότεραΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Ι Γ Α dw d dx W = x σνθ = ( x σνθ ) P = σνθ dt dt dt P = σνθ 3 A 4 Δ (στην απάντηση β) πρέπει να προσθέσουμε την αύξηση
Διαβάστε περισσότεραmu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός
Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.
Διαβάστε περισσότεραβ. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2
1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).
Διαβάστε περισσότεραΚεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Τοαπλόεκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές
Διαβάστε περισσότεραΤοπικός Μαθητικός Διαγωνισμός EUSO
Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΠερί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΑΡΑΣΚΕΥΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 018 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Διαβάστε περισσότερα1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση
Ονοµατεπώνυµο: µήµα: Επιµέλεια: Παναγιώτης Παζούλης Φυσική Γ Λυκείου θετικής εχνολογικής Κατεύθυνσης 1 η Εργαστηριακή Άσκηση: Απλή Αρµονική αλάντωση Α) Εισαγωγικές έννοιες. Περιοδική κίνηση ονοµάζεται
Διαβάστε περισσότεραα. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.
Διαβάστε περισσότεραΜΕΛΕΤΗ ΕΛΑΤΗΡΙΩΝ. Α. Μελέτη του νόμου του Hooke
Σκοπός της άσκησης Σε αυτή την άσκηση θα μελετήσουμε την συμπεριφορά ελατηρίων. Θα μελετηθεί ο νόμος του Hooke και θα χρησιμοποιηθεί αυτός ώστε να προσδιοριστεί η σταθερά του ελατηρίου. Η σταθερά του ελατηρίου
Διαβάστε περισσότεραΥπολογισμός της σταθεράς του ελατηρίου
ΑΣΚΗΣΗ 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός είναι ο υπολογισμός της σταθεράς k ενός ελατηρίου. Θα γίνει με δύο τρόπους: Από το νόμο του Hooke F = k x, βρίσκοντας την κλίση μιας πειραματικής
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Προσδιορισµός ρο ής αδράνειας κυλίνδρου ή σφαίρας ου κυλίεται χωρίς ολίσθηση σε κεκλιµένο ε ί εδο Στόχοι 1. Σχεδιασμός και συναρμολόγηση απλών πειραματικών διατάξεων,
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 27/05/2014 ΩΡΑ ΕΝΑΡΞΗΣ:
Διαβάστε περισσότεραΕνδεικτική λύση του πειραματικού θέματος που τέθηκε στην «Διεθνή Ολυμπιάδα Φυσικής 2004»
Ενδεικτική λύση του πειραματικού θέματος που τέθηκε στην «Διεθνή Ολυμπιάδα Φυσικής 004» ΜΕΡΟΣ Α Γινόμενο της μάζας της θέσης της μπάλλας (mxl) (4.0 μόρια). Προτείνετε αιτιολογήστε, με τη χρήση εξισώσεων,
Διαβάστε περισσότερα1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
Διαβάστε περισσότεραΤο παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.
ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ
Διαβάστε περισσότεραΕ ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς
Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση
Διαβάστε περισσότεραΥπολογισμός της σταθεράς ελατηρίου
Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή
Διαβάστε περισσότερα1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες
Διαβάστε περισσότεραΜέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
Διαβάστε περισσότερα4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014
4 Αρμονικές Ταλαντώσεις γενικά 7/9/4 Περιοδικά φαινόμενα Περιοδικά φαινόμενα Περίοδος Συχνότητα Γωνιακή συχνότητα Ταλαντώσεις Απλή αρμονική ταλάντωση Περιοδικό φαινόμενο Περιοδικά φαινόμενα ονομάζονται
Διαβάστε περισσότερα, g 10 m / s, / 2, / 2, Απάντηση
Φυσική κατεύθυνσης Στη διάταξη του διπλανού σχήματος η ράβδος Σ 1 είναι ομογενής, έχει μάζα 1 =0,3kg, μήκος (ΑΓ) = l = 0,8 και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα κάθετο
Διαβάστε περισσότεραΓ Λυκείου Σελ. 1 από 9
ΟΔΗΓΙΕΣ: 1. Εκτός αν η εκφώνηση ορίζει διαφορετικά, οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί μαζί με τις εκφωνήσεις.. Η επεξεργασία των θεμάτων θα
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ
ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας
Διαβάστε περισσότεραΕργαστηριακή Άσκηση. Εξαναγκασμένη Ταλάντωση Πακτωμένης Δοκού
Εργαστηριακή Άσκηση Εξαναγκασμένη Ταλάντωση Πακτωμένης Δοκού 1.Σκοπός Σκοπός της άσκησης είναι η μελέτη των εξαναγκασμένων μηχανικών ταλαντώσεων ενός κλασικού συστήματος πακτωμένης δοκού στο ένα άκρο.
Διαβάστε περισσότεραΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική περίοδος 04-5 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 06-04-05 Διάρκεια: ώρες Ύλη: Όλη η ύλη Καθηγητής: Ονοματεπώνυμο: ΘΕΜΑ Α Στις
Διαβάστε περισσότεραΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης
Διαβάστε περισσότερα11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ 11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός της άσκησης Σκοπός της άσκησης είναι να μελετηθεί η φυσική εκροή του νερού από στόμιο
Διαβάστε περισσότεραγ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
Διαβάστε περισσότεραΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ
1 η θεματική ενότητα: Εφαρμογές του εκπαιδευτικού λογισμικού IP 2005 ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα δραστηριότητας: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Μάθημα και Τάξη στην Φυσική Γενικής Παιδείας Β Λυκείου οποία
Διαβάστε περισσότεραΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ.
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές εκπαιδεύονται επάνω στη χρήση
Διαβάστε περισσότεραΟμαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Να επιλέξετε την σωστή απάντηση στις παρακάτω προτάσεις: 1. Σε μια φθίνουσα ταλάντωση,
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ ΑΣΚΗΣΗ Ένα αντικείμενο εκτελεί απλή αρμονική κίνηση με πλάτος 4, cm και συχνότητα 4, Hz, και τη χρονική στιγμή t= περνά από το σημείο ισορροπίας και κινείται προς τα δεξιά. Γράψτε
Διαβάστε περισσότεραΜέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς
Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.
Διαβάστε περισσότερα