Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá"

Transcript

1 Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, Êáñëüâáóé, ÓÜìïò 1 Âáóéêïß Ïñéóìïß êáé Ïñïëïãßá óôù ãñüöçìá G(V, E). íá åðéêáëýðôïí (spanning) õðïãñüöçìá üðïõ üëåò ïé êïñõöýò Ý ïõí âáèìü ìéêñüôåñï Þ ßóï ôïõ k ïíïìüæåôáé k-ðáñüãïíôáò ôïõ G (k-factor). íáò k-ðáñüãïíôáò ïíïìüæåôáé ôýëåéïò (perfect) üôáí üëåò ïé êïñõöýò Ý ïõí âáèìü áêñéâþò k. Ïé ðéï óçìáíôéêïß ðáñüãïíôåò åíüò ãñáöþìáôïò åßíáé ïé 1-ðáñÜãïíôåò êáé ïé 2-ðáñÜãïíôåò. Ìéá äéáìýñéóç ôùí êïñõöþí ôïõ G óå áðëïýò êýêëïõò êáé áðëü ìïíïðüôéá óõíéóôü Ýíáí 2-ðáñÜãïíôá. Ìéá äéáìýñéóç ôùí êïñõöþí ôïõ G óå êýêëïõò óõíéóôü Ýíáí ôýëåéï 2-ðáñÜãïíôá. íáò êýêëïò Hamilton áðïôåëåß Ýíáí ôýëåéï 2-ðáñÜãïíôá (êáé ìüëéóôá óõíåêôéêü). Áíôßóôñïöá, êüèå óõíåêôéêüò ôýëåéïò 2-ðáñÜãïíôáò åíüò ãñáöþìáôïò åßíáé êýêëïò Hamilton. ÅðïìÝíùò, ï õðïëïãéóìüò ôïõ ôýëåéïõ 2-ðáñÜãïíôá ìå ôïí åëü éóôï áñéèìü êýêëùí/óõíåêôéêþí óõíéóôùóþí áðïôåëåß éóïäýíáìï ðñüâëçìá ìå ôï íá áðïöáíèïýìå áí Ýíá ãñüöçìá Ý åé êýêëï Hamilton. Ïé 1-ðáñÜãïíôåò ôïõ G ïíïìüæïíôáé ôáéñéüóìáôá (matchings). Éóïäýíáìá, Ýíá õðïóýíïëï áêìþí M E ïíïìüæåôáé ôáßñéáóìá ôïõ G üôáí êüèå êïñõöþ åöüðôåôáé óå ìßá ôï ðïëý áêìþ ôïõ M (ìå áðëü ëüãéá, ïé áêìýò ôïõ M äåí Ý ïõí êïéíü Üêñá). Èá ëýìå üôé ìéá êïñõöþ ðïõ åöüðôåôáé óå áêìþ ôïõ M Ý åé ôáßñé Þ åßíáé ôáéñéáóìýíç (matched) óôï M. Ìéá êïñõöþ ðïõ äåí Ý åé ôáßñé èá ëýìå üôé åßíáé åëåýèåñç (free) óôï M. ÔÝëåéá, ÌÝãéóôá, êáé ÌåãéóôïôéêÜ ÔáéñéÜóìáôá. íá ôáßñéáóìá ïíïìüæåôáé ôýëåéï (perfect matching) üôáí üëåò ïé êïñõöýò Ý ïõí ôáßñé óôï M. íá ôáßñéáóìá ïíïìüæåôáé ìýãéóôï (maximum matching) áí äåí õðüñ åé ôáßñéáóìá ìå ìåãáëýôåñï áñéèìü áêìþí. ÊÜèå ôýëåéï ôáßñéáóìá åßíáé ìýãéóôï, áëëü ôï áíôßóôñïöï äåí éó ýåé (íá äþóåôå óõãêåêñéìýíá ðáñáäåßãìáôá). íá ôáßñéáóìá M ïíïìüæåôáé ìåãéóôïôéêü (maximal) áí äåí õðüñ åé áêìþ óôï E \ M (äçë. åêôüò M) ðïõ íá Ý åé åëåýèåñåò êïñõöýò óáí Üêñá. Ðñüôáóç 1. íá ôáßñéáóìá M åßíáé ìåãéóôïôéêü áí êáé ìüíï áí ïé åëåýèåñåò êïñõöýò óôï M áðïôåëïýí Ýíá óýíïëï áíåîáñôçóßáò. Áðüäåéîç. ìåóç óõíýðåéá ôïõ ïñéóìïý ôïõ ìåãéóôïôéêïý ôáéñéüóìáôïò. Ç Ðñüôáóç 1 ðñïôåßíåé ôïí áêüëïõèï áðëü áëãüñéèìï ãéá ôïí õðïëïãéóìü åíüò ìåãéóôïôéêïý ôáéñéüóìáôïò. ÎåêéíÜìå ìå Ýíá ïðïéïäþðïôå ôáßñéáóìá (ð.. êåíü óýíïëï áêìþí). Åíüóù ïé åëåýèåñåò êïñõöýò ôïõ ôñý ïíôïò ôáéñéüóìáôïò äåí áðïôåëïýí óýíïëï áíåîáñôçóßáò, ðñïóèýôïõìå ìéá áêìþ ìå åëåýèåñá Üêñá óôï ôáßñéáóìá. ¼ôáí ïëïêëçñùèåß ï áëãüñéèìïò, Ý ïõìå Ýíá ìåãéóôïôéêü ôáßñéáóìá.

2 ÅíáëëáêôéêÜ êáé ÅðáõîçôéêÜ ÌïíïðÜôéá. óôù M ôáßñéáóìá óôï ãñüöçìá G(V, E). íá ìïíïðüôé ôïõ G ôïõ ïðïßïõ ïé áêìýò åíáëëüóóïíôáé óôá óýíïëá E \ M êáé M ïíïìüæåôáé åíáëëáêôéêü (alternating) ìïíïðüôé ãéá ôï M. íá åíáëëáêôéêü ìïíïðüôé ìå Üêñá åëåýèåñåò êïñõöýò ïíïìüæåôáé åðáõîçôéêü (augmenting) ìïíïðüôé ãéá ôï M. óôù p Ýíá åðáõîçôéêü ìïíïðüôé ãéá ôï M. ïé áêìýò ôïõ p ðïõ äåí áíþêïõí óôï M äåí Ý ïõí êïéíü Üêñá, ãéáôß ïé áêìýò ôïõ p \ M êáé ôïõ M åíáëëüóóïíôáé. ÅðïìÝíùò, ïé áêìýò ôïõ p \ M áðïôåëïýí ôáßñéáóìá êáé êáëýðôïõí üëåò ôéò êïñõöýò ôïõ p. Ïé áêìýò ôïõ p \ M åßíáé êáôü ìßá ðåñéóóüôåñåò áðü ôéò áêìýò ôïõ p M, ãéáôß ôá äýï Üêñá ôïõ p åßíáé åëåýèåñåò êïñõöýò. Ïé ôáéñéáóìýíåò êïñõöýò óôï M \ (p M) åßíáé äéáöïñåôéêýò áðü ôéò ôáéñéáóìýíåò êïñõöýò óôï p \ M, áöïý ôï M \ (p M) áðïôåëåßôáé áðü ôéò áêìýò ôïõ M ðïõ äåí áíþêïõí óôï p. Óõíåðþò, ôï óýíïëï (M \ (p M)) (p \ M) áðïôåëåß ôáßñéáóìá óôï G êáé Ý åé M + 1 áêìýò (äçëáäþ ìßá áêìþ ðåñéóóüôåñç áðü ôï M). Áðü ôï ãåãïíüò áõôü ðñïýñ åôáé ç ïíïìáóßá ôïõ åðáõîçôéêïý ìïíïðáôéïý. Ðáñáôçñïýìå üôé ôï óýíïëï (M \(p M)) (p\m) ôáõôßæåôáé ìå ôï óýíïëï (M p)\(m p). Ôï ôåëåõôáßï áðïôåëåß ôç ëåãüìåíç óõììåôñéêþ äéáöïñü ôùí óõíüëùí M êáé p. Õðåíèõìßæïõìå üôé ç óõììåôñéêþ äéáöïñü ôùí óõíüëùí M êáé p óõìâïëßæåôáé ìå M p êáé áðïôåëåßôáé áðü üëá ôá äéáöïñåôéêü óôïé åßá ôùí äýï óõíüëùí. ÊáôáëÞãïõìå ëïéðüí óôï áêüëïõèï óõìðýñáóìá. Ðñüôáóç 2. Ãéá êüèå ôáßñéáóìá M êáé êüèå åðáõîçôéêü ìïíïðüôé p ãéá ôï M, ôï M p áðïôåëåß ôáßñéáóìá ìå M + 1 áêìýò. 2 áñáêôçñéóìüò ÌÝãéóôùí ÔáéñéáóìÜôùí Èåþñçìá 1 (Èåþñçìá ôïõ Berge). íá ôáßñéáóìá M åßíáé ìýãéóôï áí êáé ìüíï áí äåí õðüñ åé åðáõîçôéêü ìïíïðüôé ãéá ôï M. Áðüäåéîç. óôù M ôáßñéáóìá óôï ãñüöçìá G(V, E). Éóïäýíáìá, èá áðïäåßîïõìå üôé ôï M äåí åßíáé ìýãéóôï áí êáé ìüíï áí õðüñ åé åðáõîçôéêü ìïíïðüôé ãéá ôï M (áíôéèåôï-áíôéóôñïöþ). Áí õðüñ åé åðáõîçôéêü ìïíïðüôé p ãéá ôï M, Ý ïõìå Þäç áðïäåßîåé (Ðñüôáóç 2) üôé ôï M p áðïôåëåß ôáßñéáóìá ìå ìéá áêìþ ðåñéóóüôåñç áðü ôï M. Óõíåðþò, ôï M äåí åßíáé ìýãéóôï. Ãéá ôï áíôßóôñïöï, Ýóôù üôé ôï M äåí åßíáé ìýãéóôï êáé Ýóôù Ýíá ìýãéóôï ôáßñéáóìá M ãéá ôï ãñüöçìá G(V, E). Åî' ïñéóìïý åßíáé M > M (äçë. ôï M Ý åé ðåñéóóüôåñåò áêìýò áðü ôï M). Óôï õðïãñüöçìá G(V, M M ), êüèå êïñõöþ Ý åé âáèìü ìéêñüôåñï Þ ßóï ôïõ 2. ÄçëáäÞ, ôï M M åßíáé Ýíáò 2-ðáñÜãïíôáò ôïõ G. ñá ôï G(V, M M ) áðïôåëåßôáé áðü (áðëïýò) êýêëïõò êáé (áðëü) ìïíïðüôéá óôá ïðïßá ïé áêìýò ôïõ M åíáëëüóóïíôáé ìå ôéò áêìýò ôïõ M (åðåéäþ êáé ôá M êáé M åßíáé ôáéñéüóìáôá). Ðáñáôçñïýìå üôé êüèå êýêëïò óôï G(V, M M ) Ý åé ßäéï áñéèìü áêìþí áðü ôï M êáé ôï M êáé üôé ìüíï Ýíá ìïíïðüôé ìðïñåß íá Ý åé ðåñéóóüôåñåò áêìýò áðü êüðïéï áðü ôá äýï ôáéñéüóìáôá. ÅðåéäÞ ëïéðüí ôï M Ý åé ðåñéóóüôåñåò áêìýò áðü ôï M, ôï G(V, M M ) ðñýðåé íá ðåñéý åé ìïíïðüôé p óôï ïðïßï ïé áêìýò ôïõ M íá åßíáé ðåñéóóüôåñåò áðü ôéò áêìýò ôïõ M. Áöïý óôï p åíáëëüóóïíôáé ïé áêìýò ôùí M êáé M, ï ìüíïò ôñüðïò íá óõìâåß áõôü åßíáé ïé áñ éêþ êáé ôåëéêþ áêìþ ôïõ p íá áíþêïõí óôï M. ÅðïìÝíùò, ïé áêìýò ôïõ p åíáëëüóóïíôáé óôá E \M êáé M, êáé ôá Üêñá ôïõ p åßíáé åëåýèåñá óôï M. ñá ôï p åßíáé åðáõîçôéêü ìïíïðüôé ãéá ôï M óôï ãñüöçìá G. 2

3 Ôï Èåþñçìá ôïõ Berge ðñïôåßíåé ôçí áêüëïõèç ìåèïäïëïãßá õðïëïãéóìïý åíüò ìýãéóôïõ ôáéñéüóìáôïò: ÎåêéíÜìå ìå Ýíá ïðïéïäþðïôå ôáßñéáóìá (ð.. ôï êåíü óýíïëï áêìþí Þ Ýíá ìåãéóôïôéêü ôáßñéáóìá). óôù M ôï ôñý ïí ôáßñéáóìá óå êüèå âþìá ôïõ áëãüñéèìïõ. Åíüóù ôï M äåí åßíáé ìýãéóôï ôáßñéáóìá, âñßóêïõìå Ýíá åðáõîçôéêü ìïíïðüôé p (ôï Èåþñçìá 1 åããõüôáé ôçí ýðáñîç åðáõîçôéêïý ìïíïðáôéïý). Áíôéêáèéóôïýìå ôï ôñý ïí ôáßñéáóìá ìå ôï M p, ðïõ åßíáé ôáßñéáóìá êáé Ý åé ìéá áêìþ ðáñáðüíù. ¼ôáí ç ðáñáðüíù äéáäéêáóßá ïëïêëçñùèåß, Ý ïõìå Ýíá ìýãéóôï ôáßñéáóìá. Äõóôõ þò, ç áðüäåéîç ôïõ ÈåùñÞìáôïò ôïõ Berge äåí åßíáé êáôáóêåõáóôéêþ áöïý äåí ðåñéãñüöåé ðùò ìðïñïýìå íá õðïëïãßóïõìå Ýíá åðáõîçôéêü ìïíïðüôé ãéá Ýíá ôáßñéáóìá ðïõ äåí åßíáé ìýãéóôï. 3 ÔÝëåéá ÔáéñéÜóìáôá óå ÄéìåñÞ ÃñáöÞìáôá Óå áõôþ ôçí åíüôçôá, èá áðïäåßîïõìå ôï Èåþñçìá ôïõ Hall ðïõ áñáêôçñßæåé ôá ôýëåéá ôáéñéüóìáôá óå äéìåñþ ãñáöþìáôá ìå ßäéï áñéèìü êïñõöþí óôá äýï ìýñç. Ç áðüäåéîç ôïõ ÈåùñÞìáôïò ôïõ Hall åßíáé êáôáóêåõáóôéêþ êáé åðéôñýðåé íá õðïëïãßóïõìå Ýíá ôýëåéï ôáßñéáóìá Þ íá ðéóôïðïéþóïõìå üôé äåí õðüñ åé. Ãéá ôç äéáôýðùóç ôïõ ÈåùñÞìáôïò ôïõ Hall, ñåéáæüìáóôå ôïí áêüëïõèï óõìâïëéóìü. óôù ãñüöçìá G(V, E), êáé Ýóôù S V Ýíá õðïóýíïëï êïñõöþí ôïõ. Óõìâïëßæïõìå ìå Γ (S) ôï óýíïëï ôùí êïñõöþí ðïõ óõíäýïíôáé ìå êïñõöýò óôï S. ÔõðéêÜ, Γ (S) = {v V : u S, {u, v} E}. Ôï óýíïëï Γ (S) ïíïìüæåôáé ãåéôïíéü ôïõ S. óôù M Ýíá ôáßñéáóìá óôï äéìåñýò ãñüöçìá G(X, Y, E), êáé Ýóôù S Ýíá õðïóýíïëï êïñõöþí ôïõ X (áíôßóôïé á ôïõ Y ) ðïõ åßíáé ôáéñéáóìýíåò óôï M. Óõìâïëßæïõìå ìå M(S) ôï óýíïëï ôùí êïñõöþí ôïõ Y (áíôßóôïé á ôïõ X) ðïõ óõíäýïíôáé ìå ôéò êïñõöýò ôïõ S áðü ôéò áêìýò ôïõ M (äçë. ôá ``ôáßñéá'' ôùí êïñõöþí ôïõ S óôï M). Áöïý êüèå êïñõöþ ôïõ S Ý åé ôáßñé óôï M, åßíáé M(S) = S. Èåþñçìá 2 (Èåþñçìá ôïõ Hall). óôù äéìåñýò ãñüöçìá G(X, Y, E) ìå X = Y. Ôï ãñüöçìá G Ý åé ôýëåéï ôáßñéáóìá áí êáé ìüíï áí ãéá êüèå S X, Γ (S) S. Áðüäåéîç. óôù M ôýëåéï ôáßñéáóìá óôï G. Ãéá êüèå S X, åßíáé M(S) = S åðåéäþ ôï M åßíáé ôýëåéï êáé üëåò ïé êïñõöýò ôïõ S åßíáé ôáéñéáóìýíåò. Ï áñéèìüò üëùí ôùí ãåéôüíùí ôïõ S äåí ìðïñåß íá åßíáé ìéêñüôåñïò áðü M(S). ÔõðéêÜ, Γ (S) S üðùò áðáéôåß ôï èåþñçìá. Ãéá ôï áíôßóôñïöï, Ýóôù äéìåñýò ãñüöçìá G(X, Y, E) ìå X = Y ãéá ôï ïðïßï éó ýåé üôé S X, Γ (S) S. Ãéá íá êáôáëþîïõìå óå Üôïðï, õðïèýôïõìå üôé ôï G äåí Ý åé ôýëåéï ôáßñéáóìá. óôù ëïéðüí M Ýíá ìýãéóôï ôáßñéáóìá ôïõ G, ôï ïðïßï áðü ôçí õðüèåóç ðïõ êüíáìå äåí åßíáé ôýëåéï. óôù w X ìéá åëåýèåñç êïñõöþ óôï M. Áöïý X = Y, õðüñ åé ôïõëü éóôïí ìßá åëåýèåñç êïñõöþ óôï Y. Èá êáôáëþîïõìå óå Üôïðï êáôáóêåõüæïíôáò åðáõîçôéêü ìïíïðüôé ãéá ôï M ðïõ îåêéíüåé áðü ôç w êáé êáôáëþãåé óå åëåýèåñç êïñõöþ ôïõ Y. Áõôü âñßóêåôáé óå áíôßöáóç ìå ôçí õðüèåóç üôé ôï M åßíáé ìýãéóôï (âë. Èåþñçìá 1). Èá ðåñéãñüøïõìå ôç äéáäéêáóßá êáôáóêåõþò ôïõ åðáõîçôéêïý ìïíïðáôéïý. Áñ éêü Ýóôù Y 0 =. Ç äéáäéêáóßá åîåëßóåôáé óå öüóåéò ðïõ áñéèìïýíôáé ìå ôï äåßêôç i = 0, 1, 2,.... Ç äéáäéêáóßá ïëïêëçñþíåôáé óôç öüóç i áí ôï Y i ðåñéý åé åëåýèåñç êïñõöþ. ÄéáöïñåôéêÜ óõíå ßæåé óôçí åðüìåíç öüóç èýôïíôáò X i+1 = M(Y i ) {w} êáé Y i+1 = Γ (X i+1 ). 3

4 Ðáñáôçñïýìå üôé ãéá íá äçìéïõñãþóïõìå ôï X i+1 ñçóéìïðïéïýìå áêìýò ôïõ M êáé üôé ïé êïñõöýò ðïõ åìöáíßæïíôáé ðñþôç öïñü óôï Y i+1 óõíäýïíôáé ìå áõôýò ôïõ X i+1 ìå áêìýò åêôüò ôïõ M. Ðáñáôçñïýìå åðßóçò üôé ï ìïíáäéêüò ôñüðïò íá ïëïêëçñùèåß áõôþ ç äéáäéêáóßá åßíáé íá êáôáëþîïõìå óå åëåýèåñç êïñõöþ ôïõ Y. Èá äåßîïõìå üôé áõôþ ç äéáäéêáóßá äåí ìðïñåß íá óõíå ßæåôáé ãéá ðüíôá. óôù y i = Y i êáé x i = X i ïé ðëçèüñéèìïé ôùí óõíüëùí Y i êáé X i óå êüèå öüóç. Áñ éêü åßíáé y 0 = 0 êáé x 1 = 1. Ï ðëçèüñéèìïò ôïõ óõíüëïõ Y i áõîüíåôáé üôáí ôï Y i äåí ðåñéý åé åëåýèåñåò êïñõöýò. Áñ éêü, y 0 = 0. Ãéá êüèå öüóç i, i = 0, 1,..., åßíáé x i+1 = y i + 1 åðåéäþ X i+1 = M(Y i ) {w}. Õðåíèõìßæïõìå üôé M(Y i ) = Y i åðåéäþ ôï Y i äåí ðåñéý åé åëåýèåñåò êïñõöýò êáé üôé ôï w åßíáé åëåýèåñç êïñõöþ (Üñá äåí áíþêåé óôï M(Y i )). Åðßóçò, åßíáé y i+1 x i+1 = y i + 1 > y i ãéáôß Y i+1 = Γ (X i+1 ) êáé éó ýåé üôé Γ (S) S ãéá êüèå S X. Áöïý ôï óýíïëï Y i ìåãáëþíåé óå êüèå öüóç êáé ôï Y åßíáé ðåðåñáóìýíï, ç ðáñáðüíù äéáäéêáóßá èá ïëïêëçñùèåß êáôáëþãïíôáò óå ìéá åëåýèåñç êïñõöþ v Y. Ïëïêëçñþíïõìå ôçí áðüäåéîç äåß íïíôáò üôé ôï ìïíïðüôé áðü ôçí w óôç v áðïôåëåß Ýíá åíáëëáêôéêü ìïíïðüôé, Üñá êáé Ýíá åðáõîçôéêü ìïíïðüôé áöïý Ý åé äýï åëåýèåñá Üêñá. Ç ðáñáðüíù äéáäéêáóßá äçìéïõñãåß Ýíá äýíôñï åíáëëáêôéêþí ìïíïðáôéþí 1 ìå ñßæá (åðßðåäï 0) ôçí êïñõöþ w, óôï ðñþôï åðßðåäï ôéò êïñõöýò ôïõ Y 1, óôï äåýôåñï åðßðåäï ôéò êïñõöýò ôïõ M(Y 1 ), óôï ôñßôï åðßðåäï ôéò êïñõöýò ôïõ Y 2 \Y 1, óôï ôýôáñôï åðßðåäï ôçò êïñõöýò ôïõ M(Y 2 \Y 1 ), êáé ãåíéêü, óôï åðßðåäï 2i 1 ôéò êïñõöýò ôïõ Y i \ ( i 1 j=1 Y j) (äçëáäþ ôéò êïñõöýò ôïõ Y ðïõ åìöáíßóôçêáí ãéá ðñþôç öïñü óôï Y i ) êáé óôï åðßðåäï 2i ôéò êïñõöýò ôïõ M(Y i ( i 1 j=1 Y j)) (äçëáäþ ôá ``ôáßñéá'' ôùí íýùí êïñõöþí ôïõ Y i ). ¼ëá ôá ìïíïðüôéá óå áõôü ôï äýíôñï åßíáé åíáëëáêôéêü ãéáôß ïé áêìýò áðü ôï åðßðåäï 2(i 1) óôï åðßðåäï 2i 1 äåí áíþêïõí óôï M êáé ïé áêìýò áðü ôï åðßðåäï 2i 1 óôï åðßðåäï 2i áíþêïõí óôï M. ïõìå áðïäåßîåé üôé ôï äýíôñï áõôü óõíå ßæåé íá ìåãáëþíåé (äçë. óå êüèå öüóç ðñïóôßèåíôáé íýåò êïñõöýò óôï Y i ) ìý ñé íá öôüóïõìå óå ìéá åëåýèåñç êïñõöþ v Y. ¼ìùò ôï ìïíïðüôé áðü ôç w X óôç v Y åßíáé åíáëëáêôéêü êáé Ý åé åëåýèåñá Üêñá. ñá åßíáé åðáõîçôéêü ìïíïðüôé ãéá ôï M. Áõôü åßíáé Üôïðï áöïý õðïèýóáìå üôé ôï M åßíáé Ýíá ìýãéóôï ôáßñéáóìá. ÅðéóÞìáíóç. Ìå ôïí ßäéï áêñéâþò ôñüðï, ìðïñïýìå íá áðïäåßîïõìå ôçí áêüëïõèç ðéï ãåíéêþ ìïñöþ ôïõ ÈåùñÞìáôïò ôïõ Hall ðïõ éó ýåé ãéá äéìåñþ ãñáöþìáôá ìå äéáöïñåôéêü áñéèìü êïñõöþí óôá äýï ìýñç. óôù äéìåñýò ãñüöçìá G(X, Y, E). íá ôáßñéáóìá ïíïìüæåôáé X-ôÝëåéï (X-perfect) áí äåí áöþíåé êáìßá êïñõöþ ôïõ X åëåýèåñç. Ç ãåíéêþ ìïñöþ ôïõ ÈåùñÞìáôïò ôïõ Hall åßíáé: íá äéìåñýò ãñüöçìá G(X, Y, E) Ý åé X-ôÝëåéï ôáßñéáóìá áí êáé ìüíï áí ãéá êüèå S X, Γ (S) S. Ðáñáôçñïýìå üôé ç áðüäåéîç ôïõ ÈåùñÞìáôïò ôïõ Hall åßíáé êáôáóêåõáóôéêþ. óôù G(X, Y, E) äéìåñýò ìå X = Y. ÎåêéíÜìå ìå Ýíá ïðïéáäþðïôå ôáßñéáóìá óôï G(X, Y, E) (ð.. Ýíá ìåãéóôïôéêü ôáßñéáóìá). óôù M ôï ôñý ïí ôáßñéáóìá. Åíüóù ôï M äåí åßíáé ôýëåéï, 1 Ôï äýíôñï áõôü åßíáé ãíùóôü êáé óáí äýíôñï åíáëëáêôéêþí ìïíïðáôéþí ôïõ M ìå ñßæá ôï w. ÊáôáóêåõÜæåôáé ìå ÁíáæÞôçóç Ðñþôá óå ÐëÜôïò (îåêéíþíôáò áðü åëåýèåñç êïñõöþ w X) óôï êáôåõèõíüìåíï ãñüöçìá ðïõ ðñïêýðôåé áí ðñïóáíáôïëßóïõìå ôéò áêìýò ðïõ äåí åßíáé óôï M áðü ôï X óôï Y, êáé ôéò áêìýò óôï M áðü ôï Y óôï X. 4

5 åöáñìüæïõìå ôçí ðáñáðüíù äéáäéêáóßá îåêéíþíôáò áðü åëåýèåñç êïñõöþ w X. Áí âñïýìå Ýíá åðáõîçôéêü ìïíïðüôé p, áíôéêáèéóôïýìå ôï ôñý ïí ôáßñéáóìá ìå ôï M p, ôï ïðïßï Ý åé ìéá áêìþ ðáñáðüíù, êáé óõíå ßæïõìå. Áí óå êüèå öüóç âñßóêïõìå åðáõîçôéêü ìïíïðüôé, èá êáôáëþîïõìå óå Ýíá ôýëåéï ôáßñéáóìá. Áõôü öõóéêü ``ðéóôïðïéåß'' ôçí éäéüôçôá üôé ôï ãñüöçìá Ý åé ôýëåéï ôáßñéáóìá. Áí óå êüðïéá äåí âñïýìå åðáõîçôéêü ìïíïðüôé, êáôáëþãïõìå óå óýíïëï Y i ðïõ äåí ðåñéý åé åëåýèåñç êïñõöþ êáé Ý åé Γ (M(Y i ) {w}) = Y i (ïðüôå äåí åìöáíßæïíôáé íýåò êïñõöýò óôçí åðüìåíç öüóç). Åíôïðßæïõìå ëïéðüí Ýíá óýíïëï S = M(Y i ) {w} ìå Γ (S) < S. Áðü ôï Èåþñçìá ôïõ Hall, ôï óýíïëï áõôü áðïôåëåß ``ðéóôïðïéçôéêü'' üôé ôï ãñüöçìá äåí Ý åé ôýëåéï ôáßñéáóìá. 5

Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò

Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email:

Διαβάστε περισσότερα

Èåùñßá ÃñáöçìÜôùí: Åðéêáëýðôïíôá ÄÝíôñá

Èåùñßá ÃñáöçìÜôùí: Åðéêáëýðôïíôá ÄÝíôñá Èåùñßá ÃñáöçìÜôùí: Åðéêáëýðôïíôá ÄÝíôñá ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email: fotakis@aegean.gr 1 Ïñéóìüò êáé

Διαβάστε περισσότερα

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôá Üñôéá óôïé åßá êáôáëáìâüíïõí ôéò ôåëåõôáßåò

Διαβάστε περισσότερα

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôï óôïé åßï âñßóêåôáé óå êüðïéá áðü ôéò

Διαβάστε περισσότερα

Èåùñßá ÃñáöçìÜôùí: ÄÝíôñá

Èåùñßá ÃñáöçìÜôùí: ÄÝíôñá Èåùñßá ÃñáöçìÜôùí: ÄÝíôñá ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email: fotakis@aegean.gr 1 Ïñéóìüò íá ãñüöçìá ùñßò êýêëïõò

Διαβάστε περισσότερα

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) 44 ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) Óå äéüöïñåò öõóéêýò åöáñìïãýò õðüñ ïõí ìåãýèç ôá ïðïßá ìðïñïýí íá áñáêôçñéóèïýí ìüíï ìå Ýíá áñéèìü. ÔÝôïéá ìåãýèç, üðùò ãéá ðáñüäåéãìá, ç èåñìïêñáóßá

Διαβάστε περισσότερα

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim 3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x (i) f(x, y) = sin 1 2 (x + y) (ii) f(x, y) = y 2 + 3 (iii) f(x, y, z) = 25 x 2 y 2 z 2 (iv) f(x, y, z) = z +ln(1 x 2 y 2 ) 3.2 (i) óôù f(x, y, z) =

Διαβάστε περισσότερα

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ 28 ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ 3.1 ÅéóáãùãÞ Ãéá êüèå ôåôñáãùíéêü ðßíáêá A áíôéóôïé åß Ýíáò ðñáãìáôéêüò áñéèìüò ï ïðïßïò êáëåßôáé ïñßæïõóá êáé óõíþèùò óõìâïëßæåôáé ìå A Þ det(a). ÌåôáèÝóåéò: Ìéá áðåéêüíéóç ôïõ

Διαβάστε περισσότερα

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Çëßáò Ê. Óôáõñüðïõëïò Ïêôþâñéïò 006 1 Áóõìðôùôéêïß Óõìâïëéóìïß ÎåêéíÜìå äéáôõðþíïíôáò ôïõò ïñéóìïýò ôùí ðýíôå ãíùóôþí áóõìðôùôéêþí óõìâïëéóìþí: Ïñéóìüò

Διαβάστε περισσότερα

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ñþóôïò ÊïíáîÞò, A.M. 200416 ìðë 30-06-2005 óêçóç 1. óôù R N n ; n 1. ËÝìå üôé ç R åßíáé "áñéèìçôéêþ" áí õðüñ åé ôýðïò ö(x 1 ; : : : ; x n ) ôçò Ã1 èá ôýôïéïò ðïõ

Διαβάστε περισσότερα

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Συντακτική ανάλυση (μέρος 3ον) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 55 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.1 ÅéóáãùãÞ Ïñéóìüò: íá óýíïëï V êáëåßôáé äéáíõóìáôéêüò þñïò Þ ãñáììéêüò þñïò ðüíù óôïí IR áí (á) ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç,

Διαβάστε περισσότερα

Ramsey's Theory or something like that.

Ramsey's Theory or something like that. Ramsey's Theory or something like that. ÌÜñèá, ÄçìÞôñçò, ÓôÝöáíïò 30 Íïåìâñßïõ 2005 Complete disorder is impossible T.S.Motzikin 1 ÅéóáãùãÞ. To 1930 o Ramsey[10] äçìïóßåõóå Ýíá Üñèñï ðüíù óå Ýíá ðñüâëçìá

Διαβάστε περισσότερα

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï 5. ÐÑÏÏÄÏÉ 7 5. ÁñéèìçôéêÞ ðñüïäïò Á ÏìÜäá. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï á = 7 êáé äéáöïñü ù = 3. Óõíåðþò

Διαβάστε περισσότερα

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ . Äßíåôáé ç óõíüñôçóç : [, + ) R óõíå Þò óôï äéüóôçìá [,+ ) êáé ðáñáãùãßóéìç óôï äéüóôçìá (,+ ), ãéá ôçí ïðïßá éó ýåé ( ) = α. óôù üôé õðüñ åé κî R, þóôå íá éó ýåé ( ) κ ãéá êüèå Î (,+ ). Íá äåßîåôå üôé

Διαβάστε περισσότερα

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò Áíôþíçò Ïéêïíüìïõ aeconom@math.uoa.gr ÌáÀïõ óêçóç (Ross, Exer. 4.8) Áí E[X] êáé V ar[x] 5 íá âñåßôå. E[( + X) ],. V ar[4 + X]. óêçóç (Ross, Exer. 4.64)

Διαβάστε περισσότερα

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.) ÔÅÉ ËÜñéóáò, ÔìÞìá Ìç áíïëïãßáò ÌáèçìáôéêÜ ÉI, ÅîÝôáóç Ðåñéüäïõ Éïõíßïõ 24/6/21 ÄéäÜóêùí: Á éëëýáò Óõíåöáêüðïõëïò 1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) (3x 2 + 6xy 2 )dx + (6x 2 y + 4y 3 )dy = 2. Íá

Διαβάστε περισσότερα

Ìáèáßíïõìå ôéò áðïäåßîåéò

Ìáèáßíïõìå ôéò áðïäåßîåéò 50. Βήµα ο Μαθαίνουµε τις αποδείξεις ã) Ùò ðñïò ôçí áñ Þ ôùí áîüíùí, áí êáé ìüíï áí Ý ïõí áíôßèåôåò óõíôåôáãìýíåò. ÄçëáäÞ: á = á êáé â = â ÂÞìá Ìáèáßíïõìå ôéò áðïäåßîåéò ä) Ùò ðñïò ôç äé ïôüìï ôçò çò êáé

Διαβάστε περισσότερα

Íá èõìçèïýìå ôç èåùñßá...

Íá èõìçèïýìå ôç èåùñßá... ÇËÅÊÔÑÉÊÏ ÐÅÄÉÏ Íá èõìçèïýìå ôç èåùñßá....1 Ôé ïíïìüæïõìå çëåêôñéêü ðåäßï; Çëåêôñéêü ðåäßï ïíïìüæïõìå ôïí þñï ìýóá óôïí ïðïßï áí âñåèåß Ýíá çëåêôñéêü öïñôßï èá äå èåß äýíáìç. Ãéá íá åîåôüóïõìå áí óå êüðïéï

Διαβάστε περισσότερα

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. 55 16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. A ÌÝñïò 1. Íá êáôáóêåõüóåéò óôï Function Probe ôç ãñáöéêþ ðáñüóôáóç ôçò y=çìx. Óôïí ïñéæüíôéï Üîïíá íá ïñßóåéò êëßìáêá áðü ôï -4ð

Διαβάστε περισσότερα

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ. ÌÁÈÇÌÁÔÉÊÁ ÃÅÍÉÊÇÓ ÐÁÉÄÅÉÁÓ Ã ËÕÊÅÉÏÕ È Å Ì Á 1 ï 3 ï Ä É Á Ã Ù Í É Ó Ì Á á êéçôü êéåßôáé ðüù óôï Üîïá x~x. Ç èýóç ôïõ êüèå ñïéêþ óôéãìþ t äßåôáé áðü ôç 3 óõüñôçóç x(t) = t 1t + 60t + 1, üðïõ ôï t ìåôñéýôáé

Διαβάστε περισσότερα

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr 2.1 i) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = 2 + t)i + 1 2t)j + 3tk ôýìíåé ôï åðßðåäï xz. ii) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = ti + 1 + 2t)j 3tk ôýìíåé

Διαβάστε περισσότερα

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ 66 ÊåöÜëáéï 3 ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ 3.1 ÅéóáãùãÞ óôù üôé S åßíáé Ýíá óýíïëï áðü óçìåßá óôïí n äéüóôáôï þñï. Ìéá óõíüñôçóç (ðïõ ïñßæåôáé óôï S) åßíáé ìéá ó Ýóç ç ïðïßá ó åôßæåé êüèå óôïé åßï ôïõ

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αποδεικτικό Σύστημα Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò

Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò Áããåëßíá ÂéäÜëç åðéâëýðùí êáèçãçôþò: ÃéÜííçò Ìïó ïâüêçò Q 13 Éïõíßïõ, 2009 ÄïìÞ äéðëùìáôéêþò åñãáóßáò 1o êåö. ÅéóáãùãÞ óôá óõíå Þ êëüóìáôá 2ï êåö. Ëßãç

Διαβάστε περισσότερα

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÐÁÑÁÑÔÇÌÁ Â 464 ÅÊÙÓ 000 - Ó ÏËÉÁ ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ Â.1 ÁÓÕÌÌÅÔÑÏ ÓÕÓÔÇÌÁ Η N / ( 0. + 0.1 η) 0.6 ν ν, η 3, η > 3...

Διαβάστε περισσότερα

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ Εικονογράφηση ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Ï ðéï ìåãüëïò êáé ï ðéï óçìáíôéêüò ðáéäáãùãéêüò êáíüíáò äåí åßíáé ôï íá

Διαβάστε περισσότερα

1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç

1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç 1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç 7 1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç Åñþ ôçóç 1 Ðïéïé áñéèìïß ïíïìüæïíôáé öõóéêïß; Ðþò ôïõò óõìâïëßæïõìå êáé ðþò ùñßæïíôáé;

Διαβάστε περισσότερα

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT ÊåöÜëáéï 7 ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT 7. Áêïëïõèßåò ¼ðùò êáé ãéá ôïõò ðñáãìáôéêïýò áñéèìïýò, ìéá (Üðåéñç) áêïëïõèßá ìðïñåß íá èåùñçèåß ùò óõíüñôçóç ìå ðåäßï ïñéóìïý ôïõò èåôéêïýò áêýñáéïõò. ÄçëáäÞ, ìéá

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 7: Οριακή Τιμή Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Ç íýá Ýííïéá ôïõ ýðíïõ!

Ç íýá Ýííïéá ôïõ ýðíïõ! ΑΞΕΣΟΥΑΡ Ç íýá Ýííïéá ôïõ ýðíïõ! ÅããõÜôáé ôçí áóöüëåéá êáé õãåßá ôïõ ìùñïý êáôü ôç äéüñêåéá ôïõ ýðíïõ! AP 1270638 Õðüóôñùìá Aerosleep, : 61,00 AP 125060 ÊÜëõììá Aerosleep, : 15,30 ÁóöáëÞò, ðüíôá áñêåôüò

Διαβάστε περισσότερα

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí B i o f l o n Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí Ç åôáéñåßá Aflex, ç ïðïßá éäñýèçêå ôï 1973, Þôáí ç ðñþôç ðïõ ó åäßáóå ôïí åýêáìðôï óùëþíá PTFE ãéá ôç ìåôáöïñü çìéêþí õãñþí ðñßí áðü 35 ñüíéá. Ï åëéêïåéäþò

Διαβάστε περισσότερα

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá. ÌÅÈÏÄÏËÏÃÉÁ Ãéá Ýíá óþìá ðïõ åêôåëåß åõèýãñáììç ïìáëü ìåôáâáëëüìåíç êßíçóç éó ýïõí ïé ôýðïé: õ=õ ï +á. t x=õ. ï t+ át. ÅÜí ôï óþìá îåêéíüåé áðü ôçí çñåìßá, äçëáäþ ç áñ éêþ ôá ýôçôá åßíáé õ ï =0, ôüôå ïé

Διαβάστε περισσότερα

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá ÌÜèçìá 4 SPLINES 4.1 ÓõíÜñôçóç spline 4.1.1 Ïñéóìïß êáé ó åôéêü èåùñþìáôá Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôùí ðïëõùíýìùí ðáñåìâïëþò, äçëáäþ ðïëõùíýìùí ðïõ óõíýðéðôáí

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αναδρομικές Συναρτήσεις Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Estimation Theory Exercises*

Estimation Theory Exercises* Estimation Theory Exercises* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@math.uoa.gr December 22, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô. ÐáðáúùÜííïõ, ôéò óçìåéþóåéò

Διαβάστε περισσότερα

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X V X A B+24 AEROGRAMÌI Ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò Å öáßíïíôáé óôï ðáñáêüôù ó Þìá. Áíôßóôïé á, ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò ÂÔ öáßíïíôáé óôï Ó Þìá Å. Ãéá ôïí ðñïóäéïñéóìü ôçò ðáñáããåëßáò

Διαβάστε περισσότερα

ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò

ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò Ç åðßëõóç áíáäñïìéêþí åîéóþóåùí åßíáé Ýíá áðïëýôùò áðáñáßôçôï åñãáëåßï ãéá ôçí åýñåóç åêöñüóåùí ðïõ ðåñéãñüöïõí ôçí ðïëõðëïêüôçôá ðïëëþí áëëü êáé âáóéêþí áëãïñßèìùí. Ãåíéêþò,

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Χημεία Θετικής Κατεύθυνσης 2o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1.1. ÓùóôÞ áðüíôçóç åßíáé ç Ä. ΘΕΜΑ 1ο 1.2. ñçóéìïðïéïýìå ôçí êáôáíïìþ ôùí çëåêôñïíßùí óå áôïìéêü ôñï éáêü óýìöùíá

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 8: Συνέχεια Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ ÌÜèçìá 7 ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ Óôï ìüèçìá áõôü èá äïèåß ç Ýííïéá ôïõ ïñßïõ ìéáò ðñáãìáôéêþò óõíüñôçóçò ìå ôñüðï ðñïóáñìïóìýíï óôéò áðáéôþóåéò ôùí äéáöüñùí åöáñìïãþí, ðïõ áðáéôïýíôáé óôçí åðéóôþìç ôïõ.

Διαβάστε περισσότερα

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá 1.1 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí Express Ýêäïóç ôïõ SQL Server... 3 1.2 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí åãêáôüóôáóç... 3 2.1 ÅãêáôÜóôáóç Microsoft SQL Server 2008R2 Express Edition... 4 2.1 Åíåñãïðïßçóç ôïõ

Διαβάστε περισσότερα

Áíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ

Áíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ ÔÏ ÅÑÃÏ ÓÕà ÑÇÌÁÔÏÄÏÔÅÉÔÁÉ ÁÐÏ ÔÏ ÅÕÑÙÐÁÉÊÏ ÊÏÉÍÙÍÉÊÏ ÔÁÌÅÉÏ ÊÁÉ ÁÐÏ ÅÈÍÉÊÏÕÓ ÐÏÑÏÕÓ Áíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ Ðáíåðéóôçìßïõ Áèçíþí ìå Ýìöáóç óôçí ÐëçñïöïñéêÞ,

Διαβάστε περισσότερα

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á. ÐÁÑÁÑÔÇÌÁÔÁ 76 77 ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ f( (Á. üôáí ãéá êüèå êáíïíéêü ïñèïãþíéï ôáíõóôþ Q éó

Διαβάστε περισσότερα

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας

Τυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Τυπικές Γλώσσες (μέρος 1ο) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Åîéóþóåéò 1ïõ âáèìïý

Åîéóþóåéò 1ïõ âáèìïý algevra-a-lykeiou-kef-07-08.qxd 9/8/00 9:00 Page 00 7 Åîéóþóåéò ïõ âáèìïý Ç åîßóùóç áx + â = 0 áx = â (ìå á 0) (ìå á = â = 0) â Ý åé áêñéâþò ìßá ëýóç, ôç x =. á áëçèåýåé ãéá êüèå ðñáãìáôéêü áñéèìü x (ôáõôüôçôá

Διαβάστε περισσότερα

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß ÌÜèçìá 8 ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÏñéáêÞ ôéìþ óõíüñôçóçò, äßíïíôáé ðåñéëçðôéêü ïé âáóéêüôåñïé ïñéóìïß êáé èåùñþìáôá ðïõ áíáöýñïíôáé óôç óõíý åéá ìéáò ðñáãìáôéêþò óõíüñôçóçò, åíþ ï

Διαβάστε περισσότερα

ÌÜèçìá 10ï: ÁËÃÏÑÉÈÌÏÉ ÄÅÍÄÑÙÍ

ÌÜèçìá 10ï: ÁËÃÏÑÉÈÌÏÉ ÄÅÍÄÑÙÍ ÌÜèçìá 0ï: ÁËÃÏÑÉÈÌÏÉ ÄÅÍÄÑÙÍ Ç ðëçèþñá ôùí äåíäñéêþí äïìþí åßíáé ãíùóôþ áðü ôï ìüèçìá ôùí Äïìþí ÄåäïìÝíùí. Óôï ìüèçìá áõôü èá ðñïóåããßóïõìå êáé ðüëé ìåñéêýò äïìýò äýíäñùí ìå óêïðü ìßá ôõðéêüôåñç áíüëõóç

Διαβάστε περισσότερα

Chi-Square Goodness-of-Fit Test*

Chi-Square Goodness-of-Fit Test* Chi-Square Goodness-of-Fit Test* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@mathuoagr February 6, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô ÐáðáúùÜííïõ êáé ôá âéâëßá

Διαβάστε περισσότερα

ÏñãÜíùóç ÐñïãñÜììáôïò

ÏñãÜíùóç ÐñïãñÜììáôïò ÊåöÜëáéï 4 ÏñãÜíùóç ÐñïãñÜììáôïò Åðéäéùêüìåíïé óôü ïé: ¼ôáí ïëïêëçñþóåôå ôç ìåëýôç áõôïý ôïõ êåöáëáßïõ, èá åßóôå éêáíïß: é íá ðåñéãñüöåôå ôéò åíôïëýò ðïõ ñçóéìïðïéïýíôáé óôá õðïðñïãñüììáôá êáé óôï êýñéï

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΚΥΠΡΟΥ ΜΑΣ 121- ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 27 Μαΐου 2002 (Εαρινό εξάμηνο 2002) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΡ ΦΟΙΤΗΤΙΚΗΣ ΤΑΥΤΟΤΗΤΟΣ ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

Διαβάστε περισσότερα

4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò

4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò 4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò Óôéò áóêþóåéò ìå åðßäñáóç óôç èýóç ìéáò éóïññïðßáò ãßíåôáé áíáöïñü óå ðåñéóóüôåñåò áðü ìßá èýóåéò éóïññïðßáò. Ïé èýóåéò éóïññïðßáò åßíáé äéáäï

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 11: Διανυσματική Συνάρτηση Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ

ÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ Ενότητα 5 Μάθημα 38 Ο κύκλος 1. Ná êáôáíïþóïõí ôçí Ýííïéá ôïõ êýêëïõ. 2. Ná ìüèïõí íá ñùôïýí êáé íá áðáíôïýí ó åôéêü ìå ôïí êýêëï. 1. Íá ðáßîïõí êáé íá ôñáãïõäþóïõí ôï «Ãýñù-ãýñù üëïé» êáé «To ìáíôçëüêé».

Διαβάστε περισσότερα

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ). ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ F 661 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 72 28 Éáíïõáñßïõ 2002 ÁÐÏÖÁÓÅÉÓ Áñéè. Ä14/48529 ãêñéóç Ôéìïëïãßïõ Åñãáóôçñéáêþí êáé åðß Ôüðïõ Äïêéìþí ôïõ ÊÅÄÅ. OI ÕÐÏÕÑÃÏÉ

Διαβάστε περισσότερα

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ ÕÐÏÕÑÃÅÉÏ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ÏÉÊÏÍÏÌÉÊÙÍ ÃÅÍÉÊÇ ÄÉÅÕÈÕÍÓÇ ÄÇÌÏÓÉÁÓ ÐÅÑÉÏÕÓÉÁÓ & ÅÈÍÉÊÙÍ ÊËÇÑÏÄÏÔÇÌÁÔÙÍ ÄÉÅÕÈÕÍÓÇ ÔÅ ÍÉÊÙÍ ÕÐÇÑÅÓÉÙÍ & ÓÔÅÃÁÓÇÓ ÔÌÇÌÁ ÁÍÔÉÊÅÉÌÅÍÉÊÏÕ ÐÑÏÓÄÉÏÑÉÓÌÏÕ ÖÏÑÏËÏÃÇÔÅÁÓ ÁÎÉÁÓ ÁÊÉÍÇÔÙÍ

Διαβάστε περισσότερα

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç Ενότητα 6 Μάθημα 45 Πρώτος-τελευταίος 1. Íá êáôáíïþóïõí ôéò Ýííïéåò ðñþôïò êáé ôåëåõôáßïò. 2. Ná ìüèïõí íá ñùôïýí êáé íá áðáíôïýí ó åôéêü ìå ôï ñüíï êáé ôç äéáäï Þ ãåãïíüôùí. 1. Íá áêïýóïõí ôï ðáñáìýèé

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

5Ô Ô ÚÓÔ. ðüóï 15 ðüóï 1/ ðüóï 2/ ðüóï 4/ ðüóï ðüóï ðüóï. 13 ðüóï 33 ðüóï ðüóï ðüóï. ðüóï 26 ðüóï 2XA ðüóï 3XA ¼ëïé ðüóï

5Ô Ô ÚÓÔ. ðüóï 15 ðüóï 1/ ðüóï 2/ ðüóï 4/ ðüóï ðüóï ðüóï. 13 ðüóï 33 ðüóï ðüóï ðüóï. ðüóï 26 ðüóï 2XA ðüóï 3XA ¼ëïé ðüóï 5Ô Ô ÚÓÔ ª ıëùòó Bã ÎÏÔ ¼ëïé óôçí ðñþôç / K 2 Ìïßñáóå ï  3 Q 10 6 2 6 J 8 7 6 3 5 7 2 / 10 8 5 4 / A J 9 7 3 A 9 7 3 K J 5 6 Q 4 6 K 10 5 A Q 9 3 5 J 10 5 4 / Q 6 3 3 8 4 3 6 A 9 5 2 5 K 8 6 ðüóï 15 ðüóï

Διαβάστε περισσότερα

F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 5551 ÔÅÕ ÏÓ ÔÅÔÁÑÔÏ Áñ. Öýëëïõ 647 7 Áõãïýóôïõ 2001 ÐÅÑÉÅ ÏÌÅÍÁ ÁÐÏÖÁÓÅÉÓ Ôñïðïðïßçóç åãêåêñéìýíïõ ó åäßïõ ðüëçò ÄÞìïõ Çñáêëåßïõ, óôçí ðïëåïäïìéêþ åíüôçôá

Διαβάστε περισσότερα

ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009

ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009 ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009 Ïíïìáôåðþíõìï : Á.Ì : ÈÝìá 1: Âáèìüò [ ] ÈÝìá 2: Âáèìüò [ ] ÈÝìá 3: Âáèìüò [ ] ÈÝìá 4: Âáèìüò [ ] èñïéóìá

Διαβάστε περισσότερα

ÐïëëÝò åôáéñßåò ðñïóöýñïõí õðçñåóßåò

ÐïëëÝò åôáéñßåò ðñïóöýñïõí õðçñåóßåò Ferral Ferral Της Πηνελόπης Λεονταρά Σήμανση CE: Πως γίνεται ο έλεγχος της παραγωγικής Ï êáèïñéóìüò ôïõ åëýã ïõ ðáñáãùãþò óå Ýíá êáôáóêåõáóôéêü óýìöùíá ìå ôéò ôå íéêýò ðñïäéáãñáöýò ãéá ôá êïõöþìáôá, óôçí

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 3523 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 252 28 Öåâñïõáñßïõ 2002 ÁÐÏÖÁÓÅÉÓ Áñéè. 19306/Ã2 ÐñïãñÜììáôá Óðïõäþí Ôå íéêþí Åðáããåëìáôéêþí Åêðáéäåõôçñßùí (Ô.Å.Å.).

Διαβάστε περισσότερα

ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í.

ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í. ÌÅÈÏÄÏËÏÃÉÁ Ç äýíáìç áëëçëåðßäñáóçò äýï çëåêôñéêþí öïñôßùí ìðïñåß íá õðïëïãéóôåß ìå âüóç ôïí íüìï ôïõ Coulomb. Óôï ðáñüäåéãìá ìáò âñßóêåôáé ç óõíéóôáìýíç äýíáìç ðïõ åíåñãåß óôï öïñôßï q áðü äýï Üëëá öïñôßá

Διαβάστε περισσότερα

Union of Pure and Applied Chemistry).

Union of Pure and Applied Chemistry). .5 Ç ãëþóóá ôçò çìåßáò Ãñáö çìéêþí ôýðùí êáé åéóáãùã óôçí ïíïìáôïëïãßá ôùí áíüñãáíùí åíþóåùí..5.1 ÃåíéêÜ. Ç çìåßá Ý åé ôç äéê ôçò äéåèí ãëþóóá, ç ïðïßá êáèïñßæåôáé áðü êáíüíåò ðïõ Ý ïõí ðñïôáèåß êáé ðñïôåßíïíôáé

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα : Αόριστο Ολοκλήρωμα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï ÊåöÜëáéï 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï óôù ç ôñéüäá (a, b, c). Ôï óýíïëï ôùí ôñéüäùí êáëåßôáé 3-äéÜóôáôïò þñïò êáé óõìâïëßæåôáé ìå IR 3. Åéäéêüôåñá ç ôñéüäá (a, b, c) ïñßæåé

Διαβάστε περισσότερα

ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ

ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ ÐáíåðéóôÞìéï ÊñÞôçò, ÔìÞìá Ìáèçìáôéêþí Èåùñßá Äáêôõëßùí êáé Modules (M ) ÅîÝôáóç Éïõíßïõ 010 ÅîåôáóôÞò: ÄçìÞôñéïò ÍôáÞò ÁÐÁÍÔÇÓÅÉÓ ÄÏÈÅÍÔÙÍ ÈÅÌÁÔÙÍ ÈÅÌÁ 1ï Âë. èåþñçìá.5.0 (óôéò óçìåéþóåéò). ÈÅÌÁ ï Âë.

Διαβάστε περισσότερα

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 30 ÊåöÜëáéï 2 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 2.1 ÅéóáãùãÞ ¼ðùò êáé óôïí IR 2, Ýôóé êáé óôïí IR 3 ìðïñïýìå íá ïñßóïõìå ìéá êáìðýëç ðáñáìåôñéêü. ÄçëáäÞ, íá Ý åé ôç ìïñöþ x = x(t), y = y(t), z = z(t), üðïõ t åßíáé

Διαβάστε περισσότερα

ÈÅÌÁ 1ï. ÈÅÌÁ 2ï. ÈÅÌÁ 3ï. Óåë. 1 ÃÕÌÍÁÓÉÏ ÈÅÌÁÔÁ ÃÑÁÐÔÙÍ ÅÎÅÔÁÓÅÙÍ ÐÅÑÉÏÄÏÕ ÌÁÚÏÕ-ÉÏÕÍÉÏÕ Ó ÏËÉÊÏ ÅÔÏÓ ÔÁÎÇ: Â ÌÁÈÇÌÁ: ÖÕÓÉÊÇ ÅÉÓÇÃÇÔÇÓ:

ÈÅÌÁ 1ï. ÈÅÌÁ 2ï. ÈÅÌÁ 3ï. Óåë. 1 ÃÕÌÍÁÓÉÏ ÈÅÌÁÔÁ ÃÑÁÐÔÙÍ ÅÎÅÔÁÓÅÙÍ ÐÅÑÉÏÄÏÕ ÌÁÚÏÕ-ÉÏÕÍÉÏÕ Ó ÏËÉÊÏ ÅÔÏÓ ÔÁÎÇ: Â ÌÁÈÇÌÁ: ÖÕÓÉÊÇ ÅÉÓÇÃÇÔÇÓ: ÃÕÌÍÁÓÉÏ ÈÅÌÁÔÁ ÃÑÁÐÔÙÍ ÅÎÅÔÁÓÅÙÍ ÐÅÑÉÏÄÏÕ ÌÁÚÏÕ-ÉÏÕÍÉÏÕ Ó ÏËÉÊÏ ÅÔÏÓ ÔÁÎÇ: Â ÌÁÈÇÌÁ: ÖÕÓÉÊÇ ÅÉÓÇÃÇÔÇÓ: Çì/íßá: ÈÅÌÁ 1ï Äýï áõôïêßíçôá Á êáé Â êéíïýíôáé ìå ìýóåò ôá ýôçôåò 60km/h êáé 90km/h êáé äéáíýïõí

Διαβάστε περισσότερα

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

Cel animation. ÅöáñìïãÝò ðïëõìýóùí ÅöáñìïãÝò ðïëõìýóùí Cel animation Ç ôå íéêþ áõôþ óõíßóôáôáé óôçí êáôáóêåõþ ðïëëþí ó åäßùí ðïõ äéáöýñïõí ìåôáîý ôïõò óå óõãêåêñéìýíá óçìåßá. Ôá ó Ýäéá áõôü åíáëëüóóïíôáé ôï Ýíá ìåôü ôï Üëëï äßíïíôáò ôçí

Διαβάστε περισσότερα

ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ ÁÐÁÉÔÇÓÅÙÍ ÕÐÇÑÅÓÉÙÍ. Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ

ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ ÁÐÁÉÔÇÓÅÙÍ ÕÐÇÑÅÓÉÙÍ. Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ 138 Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ 10 ÌÏÍÔÅËÏ ÁÐÏÔÉÌÇÓÇÓ ÔÙÍ ÁÐÁÉÔÇÓÅÙÍ 11 ÔÏÌÅÉÓ ÅÖÁÑÌÏÃÇÓ ÔÙÍ ÕÐÇÑÅÓÉÙÍ 139

Διαβάστε περισσότερα

ÄåóìåõìÝíç ðéèáíüôçôá êáé áíåîáñôçóßá ÁóêÞóåéò

ÄåóìåõìÝíç ðéèáíüôçôá êáé áíåîáñôçóßá ÁóêÞóåéò ÄåóìåõìÝíç ðéèáíüôçôá êáé áíåîáñôçóßá ÁóêÞóåéò Áíôþíçò Ïéêïíüìïõ aeconom@math.uoa.gr 9 Ìáñôßïõ 010 óêçóç 1 (Ross, Exer. 3.9): Èåùñïýìå 3 êüëðåò. Ç êüëðç Á ðåñéý åé ëåõêü êáé 4 êüêêéíá óöáéñßäéá, ç êüëðç

Διαβάστε περισσότερα

ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο.

ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο. ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο Τελικό Πρόγραμμα Β Χειρουργική και Γαστρεντερολογική κλινική, Ναυτικού Νοσοκομείου

Διαβάστε περισσότερα

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ ÌÜèçìá 5 ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 5.1 ÅéóáãùãÞ Óôï ìüèçìá áõôü èá äïèïýí ïé âáóéêüôåñåò Ýííïéåò ôùí ìéãáäéêþí óõíáñôþóåùí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá ôïõ ìáèþìáôïò

Διαβάστε περισσότερα

ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá

ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá ÓÔÁÔÉÊÏÓ ÇËÅÊÔÑÉÓÌÏÓ Ðåñéå üìåíá Íüìïò ôïõ Coulomb Çëåêôñéêü Ðåäßï - íôáóç ÄõíáìéêÝò ÃñáììÝò Äõíáìéêü - ÄéáöïñÜ Äõíáìéêïý ÐõêíùôÝò ÃéÜííçò Ãáúóßäçò - ÅÊÖÅ ßïõ Äéáôýðùóç ôïõ Íüìïõ F F - F r F Ç HëåêôñïóôáôéêÞ

Διαβάστε περισσότερα

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ Åðéìïñöùôéêü Ðñüãñáììá Ãéá ôïõò Åêðáéäåõôéêïýò-Ìáèçìáôéêïýò óôï Ìáèçìáôéêü ôìþìá ôïõ Ðáíåðéóôçìßïõ Áèçíþí êáôü ôçí ðåñßïäï Äåêåìâñßïõ 2000-Éïõíßïõ 200 ìå Õðåýèõíï ôïí êáèçãçôþ Ð. ÓôñÜíôæáëï ÅÑÃÁÓÉÁ ÃÉÁ

Διαβάστε περισσότερα

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ .1 Ç Ýííïéá ôçò óõíüñôçóçò 55.1 H Ýííïéá ôçò óõíüñôçóçò Åñþ ôçóç 1 Ôé ëýãåôáé óõíüñôçóç; ÁðÜíôçóç Ç ó Ýóç åêåßíç ðïõ êüèå ôéìþ ôçò ìåôáâëçôþò x, áíôéóôïé ßæåôáé óå ìéá ìüíï ôéìþ ôçò ìåôáâëçôþò y ëýãåôáé

Διαβάστε περισσότερα

ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ

ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ ΔΗΜΟΣ: ΣΕΡΙΦΟΣ ΣΕΡΙΦΟΥ ΓΑΛΑΝΗΣ ΟΙΚΙΣΜΟΣ: ΠΑΡΑΔΟΣΙΑΚΟΣ ÏÉÊÉÓÌÏÓ ÐÑÏÓÏ Ç: ÄåäïìÝíïõ üôé ðñüêåéôáé ãéá ðáñáäïóéáêü ïéêéóìü, ãéá ôïí õðïëïãéóìü ôçò áîßáò ôùí áêéíþôùí äåí åöáñìüæïíôáé ïé óõíôåëåóôýò ðñüóïøçò:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΣΠΟΥ ΩΝ ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ /ΝΣΗ ΣΠΟΥ ΩΝ Π.Ε.

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΣΠΟΥ ΩΝ ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ /ΝΣΗ ΣΠΟΥ ΩΝ Π.Ε. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΣΠΟΥ ΩΝ ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ /ΝΣΗ ΣΠΟΥ ΩΝ Π.Ε. Τµήµα Α Αν. Παπανδρέου 37 151 80 Μαρούσι Πληροφορίες: Ρ. Γεωργακόπουλος

Διαβάστε περισσότερα

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò ÌÜèçìá 2 ÓÅÉÑÅÓ 2. Áêïëïõèßåò áñéèìþí Êñßíåôáé óêüðéìï íá äïèåß ðåñéëçðôéêü ðñéí áðü ôç ìåëýôç ôùí óåéñþí ç Ýííïéá ôçò áêïëïõèßáò áñéèìþí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ - ΜΑΘΗΜΑ 1 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΠΥΚΝΟΤΗΤΕΣ ΠΕΤΡΩΜΑΤΩΝ- ΟΡΥΚΤΩΝ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ - ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΣΤΡΕΠΤΟΣ ΖΥΓΟΣ- ΕΚΚΡΕΜΕΣ

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 6: Γραμμική Άλγεβρα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ . ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Μιγαδικές Συναρτήσεις Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ

11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ . ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών

Διαβάστε περισσότερα

ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô

ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô 11544 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) 11545 ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåôáé

Διαβάστε περισσότερα

1ï ÊñéôÞñéï Áîéïëüãçóçò

1ï ÊñéôÞñéï Áîéïëüãçóçò 1ï ÊñéôÞñéï Áîéïëüãçóçò óå üëç ôçí ýëç ÖõóéêÞò. à ôüîç ÊáèçãçôÞò: ¼íïìá: Âáèìüò: ÈÅÌÁ 1ï Åéê. 1 A. -2ìC ç Á êáé +2ìC ç  -1ìC ç Á êáé -1ìC ç  -9ìC ç Á êáé -9ìC ç  D. +1ìC ç Á êáé +1ìC ç  ÅðéëÝîôå ôç

Διαβάστε περισσότερα

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ ÌÜèçìá 18 ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ 18.1 ÅéóáãùãÞ 1 Óôï ìüèçìá áõôü äßíïíôáé ïé âáóéêýò Ýííïéåò ôïõ Äéáíõóìáôéêïý Äéáöïñéêïý Ëïãéóìïý, ðïõ åßíáé ó åôéêýò ìå ôéò âáèìùôýò Þ ôéò äéáíõóìáôéêýò óõíáñôþóåéò

Διαβάστε περισσότερα

10.1 (ÕÐÏ)ÏÑÈÏÈÅÔÅÓ ÊÁÉ ÓÕÍÈÅÔÉÊÅÓ ÓÅÉÑÅÓ

10.1 (ÕÐÏ)ÏÑÈÏÈÅÔÅÓ ÊÁÉ ÓÕÍÈÅÔÉÊÅÓ ÓÅÉÑÅÓ 10.1 (õðï)ïñèïèåôåò êáé óõíèåôéêåò óåéñåò 381 10.1 (ÕÐÏ)ÏÑÈÏÈÅÔÅÓ ÊÁÉ ÓÕÍÈÅÔÉÊÅÓ ÓÅÉÑÅÓ 10.1.1 Ïñéóìüò. óôù ( ) ìéá ïìüäá êáé Ýóôù v Áò õðïèýóïõìå üôé õößóôáôáé ìéá ðåðåñáóìýíç áêïëïõèßá õðïïìüäùí ( )

Διαβάστε περισσότερα

Ειρήνη Καµαράτου-Γιαλλούση, 2009. Ðñþôç Ýêäïóç: Σεπτέµβριος 2009 ÉSBN 978-960-453-616-0

Ειρήνη Καµαράτου-Γιαλλούση, 2009. Ðñþôç Ýêäïóç: Σεπτέµβριος 2009 ÉSBN 978-960-453-616-0 TÉÔËÏÓ ÂÉÂËÉÏÕ: Ο Πονηρούλης ÓÕÃÃÑÁÖÅÁÓ: Ειρήνη Καµαράτου-Γιαλλούση ΕΠΙΜΕΛΕΙΑ ΙΟΡΘΩΣΗ ÊÅÉÌÅÍÏÕ: Χρυσούλα Τσιρούκη ÅÉÊÏÍÏÃÑÁÖÇÓÇ ΕΞΩΦΥΛΛΟ: ιονύσης Καραβίας ÇËÅÊÔÑÏÍÉÊÇ ÓÅËÉÄÏÐÏÉÇÓÇ: Ελένη Σταυροπούλου EÊÔÕÐÙÓÇ:

Διαβάστε περισσότερα

ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ

ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ ÌÜèçìá 3 ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ 3.1 ÅéóáãùãÞ Åßíáé ãíùóôü üôé óôá äéüöïñá ðñïâëþìáôá ôùí åöáñìïãþí ôéò ðåñéóóüôåñåò öïñýò ðáñïõóéüæïíôáé óõíáñôþóåéò ðïõ ðåñéãñüöïíôáé áðü ðïëýðëïêïõò ôýðïõò, äçëáäþ ôýðïõò

Διαβάστε περισσότερα

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 6935 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 432 17 Áðñéëßïõ 2001 ÁÐÏÖÁÓÅÉÓ Áñéè. 91496 Áíþôáôá ¼ñéá ÕðïëåéììÜôùí, MRLs, Öõôïðñïóôáôåõôéêþí Ðñïúüíôùí åðß êáé åíôüò

Διαβάστε περισσότερα

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας. ΕΞ. ΕΠΕΙΓΟΝ ΕΓΚΥΚΛΙΟΣ 5 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αθήνα, 23 Φεβρουαρίου 2005 ΥΠΟΥΡΓΕΙΟ ΠΕ.ΧΩ..Ε. Αρ.Πρωτ. 17α/10/22/ΦΝ 437 ΓΕΝΙΚΗ ΓΡΑΜ. ΗΜΟΣΙΩΝ ΕΡΓΩΝ ΓΕΝ. /ΝΣΗ ΙΟΙΚΗΣΗΣ & ΠΡΟΓ/ΤΟΣ /ΝΣΗ ΝΟΜΟΘΕΤΙΚΟΥ ΣΥΝΤ/ΣΜΟΥ &

Διαβάστε περισσότερα

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç ÌÜèçìá 0 ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ 0. ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ïé êõñéüôåñïé êáíüíåò ïëïêëþñùóçò, ðïõ êýñéá åìöáíßæïíôáé óôéò ôå íïëïãéêýò åöáñìïãýò. Äéåõêñéíßæåôáé üôé áêïëïõèþíôáò ìßá áõóôçñü

Διαβάστε περισσότερα

ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé

ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé Íéêüëáò ÊÜñáëçò Á/Ì : 91442 ÔìÞìá 1ï 28 Óåðôåìâñßïõ, 26 1 ìåóåò ÌÝèïäïé 1.1 Åñþôçìá 1 ñçóéìïðïéþíôáò ôçí gauss.m êáé ôçí herm5.m,

Διαβάστε περισσότερα

Κίνδυνοι στο facebook WebQuest Description Grade Level Curriculum Keywords

Κίνδυνοι στο facebook WebQuest Description Grade Level Curriculum Keywords &#922&#943&#957&#948&#965&#957&#959&#953 &#963&#964&#959 facebook WebQuest Description: &#932&#959 Facebook &#949&#943&#957&#945&#953 &#941&#957&#945&#962 &#953&#963&#964&#959&#967&#974&#961&#959&#962

Διαβάστε περισσότερα

Αποκαλύπτουµε το µυστικό υπερόπλο του Μεσαίωνα

Αποκαλύπτουµε το µυστικό υπερόπλο του Μεσαίωνα ΣΗΜΕΙΑ-ΚΛΕΙΔΙΑ 1 Στον Ατλαντικό Κώδικα ο Λεονάρντο Ντα Βίντσι έκρυψε τις οδηγίες για την κατασκευή µιας στρατιάς από ροµπότ. 2 Η ανακάλυψη ανήκει στην οµάδα του Μάριο Ταντέι. Προηγουµένως πιστευόταν ότι

Διαβάστε περισσότερα

Artwork Package GK Issue 2.0

Artwork Package GK Issue 2.0 ,QWXLW\Œ/RGJLQJ Artwork Package 585-310-739GK Issue 2.0 &RPFRGH October 1997 Copyright 1997, Lucent Technologies All Rights Reserved Printed in U.S.A. v ± º Ÿ «¼± Ÿ³µ² ³ ² ³ «µ² ²µ º³²¼³ µ ž»²± ²ž± ¼³²

Διαβάστε περισσότερα