Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí
|
|
- Ζαχαρίας Αποστολίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí Çëßáò Ê. Óôáõñüðïõëïò Ïêôþâñéïò Áóõìðôùôéêïß Óõìâïëéóìïß ÎåêéíÜìå äéáôõðþíïíôáò ôïõò ïñéóìïýò ôùí ðýíôå ãíùóôþí áóõìðôùôéêþí óõìâïëéóìþí: Ïñéóìüò 1.1 ÄåäïìÝíçò ìéáò óõíüñôçóçò áðü ôï óýíïëï ôùí èåôéêþí áêåñáßùí óôï óýíïëï ôùí èåôéêþí áêåñáßùí, ïñßæïõìå ùò O() ôï óýíïëï ôùí óõíáñôþóåùí O() = { : õðüñ ïõí èåôéêýò óôáèåñýò c êáé n 0 Ýôóé þóôå 0 c ãéá êüèå n n 0 }: ÃñÜöïõìå = O() ãéá íá äçëþóïõìå üôé ç óõíüñôçóç áíþêåé óôï óýíïëï O(). Óå áõôþ ôçí ðåñßðôùóç ç óõíüñôçóç áðïôåëåß Ýíá áóõìðôùôéêü Üíù öñüãìá, ü é áðáñáßôçôá áõóôçñü, ãéá ôçí. Ìå Üëëá ëüãéá, ï ñõèìüò áýîçóçò ôçò åßíáé ìéêñüôåñïò Þ ôï ðïëý ßäéïò ìå ôï ñõèìü áýîçóçò ôçò. Ãéá ðáñüäåéãìá, áò èåùñþóïõìå ïðïéáäþðïôå ðïëõùíõìéêþ óõíüñôçóç ôçò ìïñöþò n +n+; > 0; ; 0. ïõìå üôé n + n + n + n + n = ( + + )n = cn ; ãéá êüèå n n 0 = 1. Óõíåðþò n + n + = O(n ). Ùóôüóï, éó ýåé üôé n + n + = O(n 3 ) Þ áêüìá êáé n + n + = O(n k ); k. Åßíáé åýêïëï íá äïýìå üôé áí = O(), ôüôå n c, ãéá êüðïéá èåôéêþ óôáèåñü c, êáé áíôßóôñïöá. ñá ìå ñþóç ïñßùí ìðïñïýìå íá Ý ïõìå Ýíáí åíáëëáêôéêü ïñéóìü ãéá ôï óýíïëï O() áëëü êáé ãéá ôçí åýñåóç åíüò áóõìðôùôéêïý Üíù öñüãìáôïò ìéáò óõíüñôçóçò. Ïñéóìüò 1. ÄåäïìÝíçò ìéáò óõíüñôçóçò áðü ôï óýíïëï ôùí èåôéêþí áêåñáßùí óôï óýíïëï ôùí èåôéêþí áêåñáßùí, ïñßæïõìå ùò Ù() ôï óýíïëï ôùí óõíáñôþóåùí Ù() = { : õðüñ ïõí èåôéêýò óôáèåñýò c êáé n 0 Ýôóé þóôå 0 c ãéá êüèå n n 0 }: ÃñÜöïõìå = Ù() ãéá íá äçëþóïõìå üôé ç óõíüñôçóç áíþêåé óôï óýíïëï Ù(). Óå áõôþ ôçí ðåñßðôùóç ç óõíüñôçóç áðïôåëåß Ýíá áóõìðôùôéêü êüôù öñüãìá, ü é áðáñáßôçôá áõóôçñü, ãéá ôçí. Ìå Üëëá ëüãéá, ï ñõèìüò áýîçóçò ôçò åßíáé ßäéïò Þ ìåãáëýôåñïò áðü ôï ñõèìü áýîçóçò ôçò. 1
2 Ãéá ðáñüäåéãìá, ãéá ôç óõíüñôçóç n +n+; > 0; ; 0, éó ýåé üôé n +n+ n ; ãéá êüèå n n 0 = 1. Óõíåðþò n + n + = Ω(n ). Åðßóçò, n + n + = Ω(n) Þ áêüìá êáé n + n + = Ω(1). Áí = Ù(), ôüôå n c, ãéá êüðïéá èåôéêþ óôáèåñü c, êáé áíôßóôñïöá. ñá, üðùò êáé óôçí ðñïçãïýìåíç ðåñßðôùóç, ìå ñþóç ïñßùí ìðïñïýìå íá Ý ïõìå Ýíáí åíáëëáêôéêü ïñéóìü ãéá ôï óýíïëï Ù() áëëü êáé ãéá ôçí åýñåóç åíüò áóõìðôùôéêïý êüôù öñüãìáôïò ìéáò óõíüñôçóçò. Ïñéóìüò 1.3 ÄåäïìÝíçò ìéáò óõíüñôçóçò áðü ôï óýíïëï ôùí èåôéêþí áêåñáßùí óôï óýíïëï ôùí èåôéêþí áêåñáßùí, ïñßæïõìå ùò È() ôï óýíïëï ôùí óõíáñôþóåùí È() = { : õðüñ ïõí èåôéêýò óôáèåñýò c 1 ; c êáé n 0 Ýôóé þóôå 0 c 1 c ãéá êüèå n n 0 }: ÃñÜöïõìå = È() ãéá íá äçëþóïõìå üôé ç óõíüñôçóç áíþêåé óôï óýíïëï È(). Óå áõôþ ôçí ðåñßðôùóç ç óõíüñôçóç áðïôåëåß Ýíá áóõìðôùôéêü Üíù êáé êüôù öñüãìá ãéá ôçí, äçëáäþ ï ñõèìüò áýîçóçò ôçò åßíáé ßäéïò ìå ôï ñõèìü áýîçóçò ôçò. Ìå ñþóç ôùí ðáñáðüíù ïñéóìþí ìðïñïýìå åýêïëá íá áðïäåßîïõìå ôçí áêüëïõèç ðñüôáóç: Èåþñçìá 1.1 Ãéá êüèå æåýãïò óõíáñôþóåùí êáé È() éó ýåé üôé = È() áí êáé ìüíï áí = O() êáé = Ù(). ôóé, ãéá ôç óõíüñôçóç n + n + ; > 0; ; 0, Ý ïõìå üôé n + n + = Θ(n ). Óôçí ðåñßðôùóç ðïõ = È() Ý ïõìå üôé n c 1 êáé n c, ãéá êüðïéåò èåôéêýò óôáèåñýò c 1 êáé c, êáé áíôßóôñïöá. Áò äïýìå áêüìá Ýíá ðáñüäåéãìá: Èá áðïäåßîïõìå üôé 1 n 3n = Θ(n ). Áõôü ðñïêýðôåé 1 åýêïëá áðü ôïí õðïëïãéóìü ôïõ ïñßïõ n 3n = 1 : ÅíáëëáêôéêÜ, ìðïñïýìå íá ñçóéìïðïéþóïõìå ôïí ïñéóìü: Èá ðñýðåé íá ðñïóäéïñßóïõìå èåôéêýò óôáèåñýò c 1 ; c êáé n 0 ôýôïéåò þóôå íá éó ýåé c 1 n 1 n 3n c n ãéá êüèå n n 0. Äéáéñþíôáò ôá ìýëç ôçò áíéóüôçôáò ìå n ðñïêýðôåé üôé c n c : Ìðïñïýìå åýêïëá íá äïýìå üôé 1 3 n 1 ãéá êüèå n 1. ÈÝôïõìå ëïéðüí c = 1= êáé n 0 = 1 (ç ôéìþ ôïõ n 0 ßóùò áëëüîåé êáôü ôïí ðñïóäéïñéóìü ôïõ c 1 ). Ãéá ôïí õðïëïãéóìü ôïõ c 1, õðïëïãßæïõìå ôï áñéóôåñü ìýñïò ôçò áíéóüôçôáò ãéá äéüöïñåò ôéìýò ôïõ n: ãéá n = 1, c = 5 1 ãéá n =, c = 1 ãéá n = 3, c = 1 3
3 ãéá n = 4, c = 1 4 ãéá n = 5, c = 1 6 ãéá n = 6, c = 0 ãéá n = 7, c = 1 14 ãéá n = 8, c = 1 8 ãéá n = 9, c = 1 6 Åßíáé öáíåñü üôé ãéá n 7, 1= n, óõíåðþò èýôïõìå c 1 = 1=14 êáé n 0 = 7 (äçëáäþ ôåëéêü n 0 = max{1; 7}). Õðïëïãßóáìå, ëïéðüí, èåôéêýò óôáèåñýò c 1 = 1=14; c = 1= êáé n 0 = 7; Ýôóé þóôå c 1 n 1 n 3n c n ãéá êüèå n n 0. ñá 1 n 3n = Θ(n ). Ïñßæïõìå óôç óõíý åéá ôïõò ïñéóìïýò äõï áóèåíýóôåñùí áóõìðôùôéêþí óõìâïëéóìþí (áóèåíýóôåñïé ìå ôçí Ýííïéá üôé äåí ðáñý ïõí áõóôçñü áóõìðôùôéêü öñüãìáôá): Ïñéóìüò 1.4 ÄåäïìÝíçò ìéáò óõíüñôçóçò áðü ôï óýíïëï ôùí èåôéêþí áêåñáßùí óôï óýíïëï ôùí èåôéêþí áêåñáßùí, ïñßæïõìå ùò o() ôï óýíïëï ôùí óõíáñôþóåùí o() = { : ãéá êüèå èåôéêþ óôáèåñü c õðüñ åé èåôéêþ óôáèåñü n 0 Ýôóé þóôå 0 < c ãéá êüèå n n 0 }: Ïñéóìüò 1.5 ÄåäïìÝíçò ìéáò óõíüñôçóçò áðü ôï óýíïëï ôùí èåôéêþí áêåñáßùí óôï óýíïëï ôùí èåôéêþí áêåñáßùí, ïñßæïõìå ùò ù() ôï óýíïëï ôùí óõíáñôþóåùí ù() = { : ãéá êüèå èåôéêþ óôáèåñü c õðüñ åé èåôéêþ óôáèåñü n 0 Ýôóé þóôå 0 c < ãéá êüèå n n 0 }: Áí = ï() ôüôå ç óõíüñôçóç åßíáé Ýíá áóèåíýò (ìç áõóôçñü) áóõìðôùôéêü Üíù öñüãìá ôçò. Åíþ, áí = Ï() ôüôå ç óõíüñôçóç ìðïñåß íá åßíáé Ýíá áõóôçñü áóõìðôùôéêü Üíù öñüãìá ôçò. Ç äéáöïñü áõôþ ïöåßëåôáé óôïõò ïñéóìïýò ôùí áóõìðôùôéêþí óõìâïëéóìþí Ï() êáé ï(). Óôïí ïñéóìü ôïõ Ï() áðáéôåßôáé ç ýðáñîç êüðïéáò èåôéêþò óôáèåñüò c ãéá íá éó ýåé ç áíéóüôçôá c åíþ óôïí ïñéóìü ôïõ ï() áðáéôåßôáé ç áíéóüôçôá c íá éó ýåé ãéá êüèå èåôéêþ óôáèåñü c. ÊáôÜ óõíýðåéá, áí = ï(), ôüôå n = 0, äçëáäþ, ï ñõèìüò áýîçóçò ôçò åßíáé ìéêñüôåñïò áðü ôï ñõèìü áýîçóçò ôçò. Ãéá ðáñüäåéãìá, n = Ï(n ), n ï(n ), êáé n = ï(n 3 ). Áíôßóôïé ïò åßíáé ï óõëëïãéóìüò óôçí ðåñßðôùóç ôùí áóõìðôùôéêü êüôù öñáãìüôùí Ù() êáé ù(). Áí = ù(), ôüôå n =, äçëáäþ ï ñõèìüò áýîçóçò ôçò åßíáé ìåãáëýôåñïò áðü ôï ñõèìü áýîçóçò ôçò. Óôçí áíüëõóç áëãïñßèìùí óôü ïò ìáò åßíáé íá ðñïóäéïñßóïõìå áõóôçñü öñüãìáôá ãéá ôï ðëþèïò ôùí âçìüôùí ðïõ åêôåëåß Ýíáò áëãüñéèìïò. Áí, ãéá ðáñüäåéãìá, ôï ðëþèïò ôùí âçìüôùí åíüò áëãïñßèìïõ äßíåôå áðü ôç óõíüñôçóç T (n) = n 1, ôüôå ìðïñïýìå åýêïëá íá äéáðéóôþóïõìå üôé éó ýïõí ôá áêüëïõèá: 3
4 Ô(n) o(n), äçë. ç óõíüñôçóç = n äåí åßíáé Üíù öñüãìá ôçò T (n), T (n) = o(n ), äçë. ç óõíüñôçóç = n åßíáé Üíù öñüãìá ôçò T (n) áëëü ü é áõóôçñü, Ô(n) = O(n), äçë. ç óõíüñôçóç = n åßíáé Ýíá áõóôçñü Üíù öñüãìá ôçò T (n), Ô(n) = O(n ), äçë. áõóôçñü, êáé ç óõíüñôçóç = n åßíáé Üíù öñüãìá ôçò T (n) áëëü ü é Ô(n) = È(n), äçë. ç óõíüñôçóç = n åßíáé Ýíá áõóôçñü êüôù êáé Üíù öñüãìá ôçò T (n). Áò äïýìå áêüìá Ýíá ðáñüäåéãìá: Ýóôù üôé èýëïõìå íá óõãêñßíïõìå ôïõò ñõèìïýò áýîçóçò ôùí óõíáñôþóåùí n+k êáé n + k n k, üðïõ k 3 óôáèåñü. Õðïëïãßæïõìå ôï üñéï l n+k = n n + k n k = : : : = k 8: Ôá óõìðåñüóìáôá ðïõ ðñïêýðôïõí åßíáé ôá åîþò: n+k o( n + k n k ), áöïý l 0, n+k ù( n + k n k ), áöïý l, n+k = Ù( n + k n k ), áöïý n+k = k ( n + k n k ) ( k 1)( n + k n k ) ãéá ìåãüëåò ôéìýò ôïõ n, n+k = Ï( n + k n k ), áöïý n+k = k ( n + k n k ) ( k + 1)( n + k n k ) ãéá ìåãüëåò ôéìýò ôïõ n, n+k = È( n + k n k ), áöïý ( k 1)( n + k n k ) n+k ( k + 1)( n + k n k ) ãéá ìåãüëåò ôéìýò ôïõ n. Åßíáé öáíåñü ðùò ç ñþóç ïñßùí êüíåé ðéï åýêïëï ôïí õðïëïãéóìü ôçò áóõìðôùôéêþò óõìðåñéöïñüò ìéáò óõíüñôçóçò. Ôá ðñïçãïýìåíá óõíïøßæïíôáé óôïí ðáñáêüôù ðßíáêá: Óõìâïëéóìüò Åñìçíßá n f=g f = O(g) ç f áõîüíåé ôï ðïëý üóï ç g f = Ω(g) ç f áõîüíåé ôïõëü éóôïí üóï ç g 0 f = Θ(g) ç f áõîüíåé ðåñßðïõ üóï ç g 0; f = o(g) ç f áõîüíåé ðéï áñãü áðü ôçí g = 0 f =!(g) ç f áõîüíåé ðéï ãñþãïñá áðü ôçí g = 4
5 Éåñáñ ßá ÓõíáñôÞóåùí ñçóéìïðïéþíôáò ôïõò ðáñáðüíù áóõìðôùôéêïýò óõìâïëéóìïýò ìðïñïýìå íá óõãêñßíïõìå óõíáñôþóåéò ìåôáîý ôïõò êáé íá ôéò éåñáñ ßóïõìå óýìöùíá ìå ôçí áóõìðôùôéêþ ôïõò óõìðåñéöïñü. Ãéá ôç óýãêñéóç èá ñçóéìïðïéþóïõìå üñéá. ôóé, áí n áí n áí n = 1 ôüôå ; (1) < 1 ôüôå ; êáé () > 1 ôüôå : (3) Óôçí ðñþôç ðåñßðôùóç ç åßíáé áóõìðôùôéêü ßóç ìå ôçí, óôç äåýôåñç ðåñßðôùóç ç åßíáé áóõìðôùôéêü ìéêñüôåñç áðü ôçí êáé óôçí ôñßôç ðåñßðôùóç ç åßíáé áóõìðôùôéêü ìåãáëýôåñç áðü ôçí. Áò äïýìå Ýíá ðáñüäåéãìá: Ýóôù üôé èýëïõìå íá éåñáñ ßóïõìå ôéò óõíáñôþóåéò log n, n log n êáé n. ïõìå üôé log n log n = 0; ïðüôå log n n log n. Åðßóçò, log n = 0; Üñá êáé log n n. Ôé ó Ýóç Ý åé üìùò ç n log n ìå ôçí n; Ôçí áðüíôçóç äßíåé ï õðïëïãéóìüò ôïõ ïñßïõ n log n = ; ïðüôå n n log n. ñá log n n n log n: Óçìåßùóç: Ôá ðáñáðüíù üñéá ìðïñïýí åýêïëá íá õðïëïãéóôïýí ìå ñþóç ôïõ êáíüíá L' Hospital: Áí ïé óõíáñôþóåéò f; g : (a; b) R åßíáé ðáñáãùãßóéìåò óôï x 0 (a; b) êáé f x x0 f(x) = x x0 g(x) = 0 (Þ ), ôüôå áí õðüñ åé ôï üñéï (x) x x0 g, õðüñ åé êáé ôï (x) f(x) üñéï x x0 êáé éó ýåé üôé g(x) f(x) x x 0 g(x) = x x f (x) 0 g (x) : 5
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ B ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôá Üñôéá óôïé åßá êáôáëáìâüíïõí ôéò ôåëåõôáßåò
Διαβάστε περισσότεραÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á
ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ 2008 - ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á ÈÝìá. Èåùñïýìå ôï óýíïëï Ω {; 2; ; 2008}. (á ( âáèìüò Ðüóåò åßíáé ïé ìåôáèýóåéò ôùí óôïé åßùí ôïõ Ω óôéò ïðïßåò ôï óôïé åßï âñßóêåôáé óå êüðïéá áðü ôéò
Διαβάστε περισσότεραÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ
28 ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ 3.1 ÅéóáãùãÞ Ãéá êüèå ôåôñáãùíéêü ðßíáêá A áíôéóôïé åß Ýíáò ðñáãìáôéêüò áñéèìüò ï ïðïßïò êáëåßôáé ïñßæïõóá êáé óõíþèùò óõìâïëßæåôáé ìå A Þ det(a). ÌåôáèÝóåéò: Ìéá áðåéêüíéóç ôïõ
Διαβάστε περισσότερα3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim
3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x (i) f(x, y) = sin 1 2 (x + y) (ii) f(x, y) = y 2 + 3 (iii) f(x, y, z) = 25 x 2 y 2 z 2 (iv) f(x, y, z) = z +ln(1 x 2 y 2 ) 3.2 (i) óôù f(x, y, z) =
Διαβάστε περισσότεραÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)
44 ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ) Óå äéüöïñåò öõóéêýò åöáñìïãýò õðüñ ïõí ìåãýèç ôá ïðïßá ìðïñïýí íá áñáêôçñéóèïýí ìüíï ìå Ýíá áñéèìü. ÔÝôïéá ìåãýèç, üðùò ãéá ðáñüäåéãìá, ç èåñìïêñáóßá
Διαβάστε περισσότερα( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ
. Äßíåôáé ç óõíüñôçóç : [, + ) R óõíå Þò óôï äéüóôçìá [,+ ) êáé ðáñáãùãßóéìç óôï äéüóôçìá (,+ ), ãéá ôçí ïðïßá éó ýåé ( ) = α. óôù üôé õðüñ åé κî R, þóôå íá éó ýåé ( ) κ ãéá êüèå Î (,+ ). Íá äåßîåôå üôé
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 7: Οριακή Τιμή Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò
ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò Áíôþíçò Ïéêïíüìïõ aeconom@math.uoa.gr ÌáÀïõ óêçóç (Ross, Exer. 4.8) Áí E[X] êáé V ar[x] 5 íá âñåßôå. E[( + X) ],. V ar[4 + X]. óêçóç (Ross, Exer. 4.64)
Διαβάστε περισσότεραÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ
ÌÜèçìá 7 ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ Óôï ìüèçìá áõôü èá äïèåß ç Ýííïéá ôïõ ïñßïõ ìéáò ðñáãìáôéêþò óõíüñôçóçò ìå ôñüðï ðñïóáñìïóìýíï óôéò áðáéôþóåéò ôùí äéáöüñùí åöáñìïãþí, ðïõ áðáéôïýíôáé óôçí åðéóôþìç ôïõ.
Διαβάστε περισσότεραÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí
ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí ñþóôïò ÊïíáîÞò, A.M. 200416 ìðë 30-06-2005 óêçóç 1. óôù R N n ; n 1. ËÝìå üôé ç R åßíáé "áñéèìçôéêþ" áí õðüñ åé ôýðïò ö(x 1 ; : : : ; x n ) ôçò Ã1 èá ôýôïéïò ðïõ
Διαβάστε περισσότεραÌáèáßíïõìå ôéò áðïäåßîåéò
50. Βήµα ο Μαθαίνουµε τις αποδείξεις ã) Ùò ðñïò ôçí áñ Þ ôùí áîüíùí, áí êáé ìüíï áí Ý ïõí áíôßèåôåò óõíôåôáãìýíåò. ÄçëáäÞ: á = á êáé â = â ÂÞìá Ìáèáßíïõìå ôéò áðïäåßîåéò ä) Ùò ðñïò ôç äé ïôüìï ôçò çò êáé
Διαβάστε περισσότερα16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.
55 16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò. A ÌÝñïò 1. Íá êáôáóêåõüóåéò óôï Function Probe ôç ãñáöéêþ ðáñüóôáóç ôçò y=çìx. Óôïí ïñéæüíôéï Üîïíá íá ïñßóåéò êëßìáêá áðü ôï -4ð
Διαβάστε περισσότεραΠροτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Χημεία Θετικής Κατεύθυνσης 2o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ 1.1. ÓùóôÞ áðüíôçóç åßíáé ç Ä. ΘΕΜΑ 1ο 1.2. ñçóéìïðïéïýìå ôçí êáôáíïìþ ôùí çëåêôñïíßùí óå áôïìéêü ôñï éáêü óýìöùíá
Διαβάστε περισσότεραÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ
55 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ 5.1 ÅéóáãùãÞ Ïñéóìüò: íá óýíïëï V êáëåßôáé äéáíõóìáôéêüò þñïò Þ ãñáììéêüò þñïò ðüíù óôïí IR áí (á) ôï V åßíáé êëåéóôü ùò ðñïò ôç ðñüóèåóç,
Διαβάστε περισσότεραÓ ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X
V X A B+24 AEROGRAMÌI Ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò Å öáßíïíôáé óôï ðáñáêüôù ó Þìá. Áíôßóôïé á, ïé äéáóôüóåéò ôùí óôïìßùí ôçò óåéñüò ÂÔ öáßíïíôáé óôï Ó Þìá Å. Ãéá ôïí ðñïóäéïñéóìü ôçò ðáñáããåëßáò
Διαβάστε περισσότεραÓõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò
Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò Áããåëßíá ÂéäÜëç åðéâëýðùí êáèçãçôþò: ÃéÜííçò Ìïó ïâüêçò Q 13 Éïõíßïõ, 2009 ÄïìÞ äéðëùìáôéêþò åñãáóßáò 1o êåö. ÅéóáãùãÞ óôá óõíå Þ êëüóìáôá 2ï êåö. Ëßãç
Διαβάστε περισσότεραÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â
ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â ÐÁÑÁÑÔÇÌÁ Â 464 ÅÊÙÓ 000 - Ó ÏËÉÁ ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ Â.1 ÁÓÕÌÌÅÔÑÏ ÓÕÓÔÇÌÁ Η N / ( 0. + 0.1 η) 0.6 ν ν, η 3, η > 3...
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 8: Συνέχεια Συνάρτησης Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß
ÌÜèçìá 8 ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÏñéáêÞ ôéìþ óõíüñôçóçò, äßíïíôáé ðåñéëçðôéêü ïé âáóéêüôåñïé ïñéóìïß êáé èåùñþìáôá ðïõ áíáöýñïíôáé óôç óõíý åéá ìéáò ðñáãìáôéêþò óõíüñôçóçò, åíþ ï
Διαβάστε περισσότερα1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)
ÔÅÉ ËÜñéóáò, ÔìÞìá Ìç áíïëïãßáò ÌáèçìáôéêÜ ÉI, ÅîÝôáóç Ðåñéüäïõ Éïõíßïõ 24/6/21 ÄéäÜóêùí: Á éëëýáò Óõíåöáêüðïõëïò 1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) (3x 2 + 6xy 2 )dx + (6x 2 y + 4y 3 )dy = 2. Íá
Διαβάστε περισσότερα3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ
.1 Ç Ýííïéá ôçò óõíüñôçóçò 55.1 H Ýííïéá ôçò óõíüñôçóçò Åñþ ôçóç 1 Ôé ëýãåôáé óõíüñôçóç; ÁðÜíôçóç Ç ó Ýóç åêåßíç ðïõ êüèå ôéìþ ôçò ìåôáâëçôþò x, áíôéóôïé ßæåôáé óå ìéá ìüíï ôéìþ ôçò ìåôáâëçôþò y ëýãåôáé
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αναδρομικές Συναρτήσεις Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότερα2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr
2.1 i) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = 2 + t)i + 1 2t)j + 3tk ôýìíåé ôï åðßðåäï xz. ii) Íá âñåèïýí ïé óõíôåôáãìýíåò ôïõ óçìåßïõ óôï ïðïßï ç åõèåßá r = ti + 1 + 2t)j 3tk ôýìíåé
Διαβάστε περισσότεραå) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.
ÌÁÈÇÌÁÔÉÊÁ ÃÅÍÉÊÇÓ ÐÁÉÄÅÉÁÓ Ã ËÕÊÅÉÏÕ È Å Ì Á 1 ï 3 ï Ä É Á Ã Ù Í É Ó Ì Á á êéçôü êéåßôáé ðüù óôï Üîïá x~x. Ç èýóç ôïõ êüèå ñïéêþ óôéãìþ t äßåôáé áðü ôç 3 óõüñôçóç x(t) = t 1t + 60t + 1, üðïõ ôï t ìåôñéýôáé
Διαβάστε περισσότεραÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ
ÌÜèçìá 5 ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 5.1 ÅéóáãùãÞ Óôï ìüèçìá áõôü èá äïèïýí ïé âáóéêüôåñåò Ýííïéåò ôùí ìéãáäéêþí óõíáñôþóåùí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá ôïõ ìáèþìáôïò
Διαβάστε περισσότερα1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï
5. ÐÑÏÏÄÏÉ 7 5. ÁñéèìçôéêÞ ðñüïäïò Á ÏìÜäá. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï á = 7 êáé äéáöïñü ù = 3. Óõíåðþò
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Μιγαδικές Συναρτήσεις Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραEstimation Theory Exercises*
Estimation Theory Exercises* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@math.uoa.gr December 22, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô. ÐáðáúùÜííïõ, ôéò óçìåéþóåéò
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 11: Διανυσματική Συνάρτηση Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραSPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá
ÌÜèçìá 4 SPLINES 4.1 ÓõíÜñôçóç spline 4.1.1 Ïñéóìïß êáé ó åôéêü èåùñþìáôá Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôùí ðïëõùíýìùí ðáñåìâïëþò, äçëáäþ ðïëõùíýìùí ðïõ óõíýðéðôáí
Διαβάστε περισσότεραΣχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματική Λογική Αποδεικτικό Σύστημα Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT
ÊåöÜëáéï 7 ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT 7. Áêïëïõèßåò ¼ðùò êáé ãéá ôïõò ðñáãìáôéêïýò áñéèìïýò, ìéá (Üðåéñç) áêïëïõèßá ìðïñåß íá èåùñçèåß ùò óõíüñôçóç ìå ðåäßï ïñéóìïý ôïõò èåôéêïýò áêýñáéïõò. ÄçëáäÞ, ìéá
Διαβάστε περισσότεραÐñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.
ÌÅÈÏÄÏËÏÃÉÁ Ãéá Ýíá óþìá ðïõ åêôåëåß åõèýãñáììç ïìáëü ìåôáâáëëüìåíç êßíçóç éó ýïõí ïé ôýðïé: õ=õ ï +á. t x=õ. ï t+ át. ÅÜí ôï óþìá îåêéíüåé áðü ôçí çñåìßá, äçëáäþ ç áñ éêþ ôá ýôçôá åßíáé õ ï =0, ôüôå ïé
Διαβάστε περισσότεραÌÜèçìá 2ï: Èåùñçôéêü Õðüâáèñï
ÌÜèçìá 2ï: Èåùñçôéêü Õðüâáèñï Óôï ìüèçìá áõôü èá áó ïëçèïýìå ìå ôñßá áíôéêåßìåíá. Ðñþôïí, èá ðáñïõóéüóïõìå åðß ôñï Üäçí ìåñéêü âáóéêü ìáèçìáôéêü åñãáëåßá ðïõ åßíáé áðáñáßôçôá êáôü ôçí áíüëõóç ôùí áëãïñßèìùí.
Διαβάστε περισσότεραÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò
ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò Ç åðßëõóç áíáäñïìéêþí åîéóþóåùí åßíáé Ýíá áðïëýôùò áðáñáßôçôï åñãáëåßï ãéá ôçí åýñåóç åêöñüóåùí ðïõ ðåñéãñüöïõí ôçí ðïëõðëïêüôçôá ðïëëþí áëëü êáé âáóéêþí áëãïñßèìùí. Ãåíéêþò,
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα : Αόριστο Ολοκλήρωμα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραÈåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò
Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email:
Διαβάστε περισσότεραÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò
ÌÜèçìá 2 ÓÅÉÑÅÓ 2. Áêïëïõèßåò áñéèìþí Êñßíåôáé óêüðéìï íá äïèåß ðåñéëçðôéêü ðñéí áðü ôç ìåëýôç ôùí óåéñþí ç Ýííïéá ôçò áêïëïõèßáò áñéèìþí. Ï áíáãíþóôçò, ãéá ìéá åêôåíýóôåñç ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá
Διαβάστε περισσότεραÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ
66 ÊåöÜëáéï 3 ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ 3.1 ÅéóáãùãÞ óôù üôé S åßíáé Ýíá óýíïëï áðü óçìåßá óôïí n äéüóôáôï þñï. Ìéá óõíüñôçóç (ðïõ ïñßæåôáé óôï S) åßíáé ìéá ó Ýóç ç ïðïßá ó åôßæåé êüèå óôïé åßï ôïõ
Διαβάστε περισσότεραΣυντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Συντακτική ανάλυση (μέρος 3ον) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç
ÌÜèçìá 0 ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ 0. ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ïé êõñéüôåñïé êáíüíåò ïëïêëþñùóçò, ðïõ êýñéá åìöáíßæïíôáé óôéò ôå íïëïãéêýò åöáñìïãýò. Äéåõêñéíßæåôáé üôé áêïëïõèþíôáò ìßá áõóôçñü
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 5: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Διαβάστε περισσότεραÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ
ÌÜèçìá 3 ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ 3.1 ÅéóáãùãÞ Åßíáé ãíùóôü üôé óôá äéüöïñá ðñïâëþìáôá ôùí åöáñìïãþí ôéò ðåñéóóüôåñåò öïñýò ðáñïõóéüæïíôáé óõíáñôþóåéò ðïõ ðåñéãñüöïíôáé áðü ðïëýðëïêïõò ôýðïõò, äçëáäþ ôýðïõò
Διαβάστε περισσότερα[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.
ÐÁÑÁÑÔÇÌÁÔÁ 76 77 ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ f( (Á. üôáí ãéá êüèå êáíïíéêü ïñèïãþíéï ôáíõóôþ Q éó
Διαβάστε περισσότεραΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ Εικονογράφηση ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Ï ðéï ìåãüëïò êáé ï ðéï óçìáíôéêüò ðáéäáãùãéêüò êáíüíáò äåí åßíáé ôï íá
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ
ÌÜèçìá 6 ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ ÅéóáãùãÞ 1Ç ðñïóýããéóç ôçò ôéìþò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ñçóéìïðïéåßôáé êõñßùò: i) üôáí ëüãù ôçò ðïëýðëïêçò ìïñöþò ôïõ ôýðïõ ôçò åßíáé áäýíáôïò ï èåùñçôéêüò õðïëïãéóìüò
Διαβάστε περισσότεραÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ
ÌÜèçìá 18 ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ 18.1 ÅéóáãùãÞ 1 Óôï ìüèçìá áõôü äßíïíôáé ïé âáóéêýò Ýííïéåò ôïõ Äéáíõóìáôéêïý Äéáöïñéêïý Ëïãéóìïý, ðïõ åßíáé ó åôéêýò ìå ôéò âáèìùôýò Þ ôéò äéáíõóìáôéêýò óõíáñôþóåéò
Διαβάστε περισσότεραΑνώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά Ι Ενότητα 6: Γραμμική Άλγεβρα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραB i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí
B i o f l o n Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí Ç åôáéñåßá Aflex, ç ïðïßá éäñýèçêå ôï 1973, Þôáí ç ðñþôç ðïõ ó åäßáóå ôïí åýêáìðôï óùëþíá PTFE ãéá ôç ìåôáöïñü çìéêþí õãñþí ðñßí áðü 35 ñüíéá. Ï åëéêïåéäþò
Διαβάστε περισσότεραChi-Square Goodness-of-Fit Test*
Chi-Square Goodness-of-Fit Test* Öþôçò ÓéÜííçò ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêü fsiannis@mathuoagr February 6, 2009 * Áðü ôéò óçìåéþóåéò "ÓôáôéóôéêÞ Óõìðåñáóìáôïëïãßá" ôïõ Ô ÐáðáúùÜííïõ êáé ôá âéâëßá
Διαβάστε περισσότεραÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ
ÌÜèçìá 17 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 17.1 ÅéóáãùãéêÝò Ýííïéåò 17.1.1 Ïñéóìüò äéáíõóìáôéêþò óõíüñôçóçò 1 Õðåíèõìßæåôáé ï ïñéóìüò ôçò ðñáãìáôéêþò óõíüñôçóçò ìéáò ðñáãìáôéêþò ìåôáâëçôþò, ðïõ ãéá åõêïëßá óôç
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας
Διαβάστε περισσότερα6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)
F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 6935 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 432 17 Áðñéëßïõ 2001 ÁÐÏÖÁÓÅÉÓ Áñéè. 91496 Áíþôáôá ¼ñéá ÕðïëåéììÜôùí, MRLs, Öõôïðñïóôáôåõôéêþí Ðñïúüíôùí åðß êáé åíôüò
Διαβάστε περισσότεραιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá
1.1 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí Express Ýêäïóç ôïõ SQL Server... 3 1.2 ÃåíéêÝò ðëçñïöïñßåò ãéá ôçí åãêáôüóôáóç... 3 2.1 ÅãêáôÜóôáóç Microsoft SQL Server 2008R2 Express Edition... 4 2.1 Åíåñãïðïßçóç ôïõ
Διαβάστε περισσότεραCel animation. ÅöáñìïãÝò ðïëõìýóùí
ÅöáñìïãÝò ðïëõìýóùí Cel animation Ç ôå íéêþ áõôþ óõíßóôáôáé óôçí êáôáóêåõþ ðïëëþí ó åäßùí ðïõ äéáöýñïõí ìåôáîý ôïõò óå óõãêåêñéìýíá óçìåßá. Ôá ó Ýäéá áõôü åíáëëüóóïíôáé ôï Ýíá ìåôü ôï Üëëï äßíïíôáò ôçí
Διαβάστε περισσότεραÇ íýá Ýííïéá ôïõ ýðíïõ!
ΑΞΕΣΟΥΑΡ Ç íýá Ýííïéá ôïõ ýðíïõ! ÅããõÜôáé ôçí áóöüëåéá êáé õãåßá ôïõ ìùñïý êáôü ôç äéüñêåéá ôïõ ýðíïõ! AP 1270638 Õðüóôñùìá Aerosleep, : 61,00 AP 125060 ÊÜëõììá Aerosleep, : 15,30 ÁóöáëÞò, ðüíôá áñêåôüò
Διαβάστε περισσότεραÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ
ÌÜèçìá 1 ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ 11 ÅéóáãùãéêÝò Ýííïéåò 111 Ïñéóìïß Êñßíåôáé áñ éêü áðáñáßôçôï íá ãßíåé óôïí áíáãíþóôç õðåíèýìéóç ôùí ðáñáêüôù âáóéêþí ìáèçìáôéêþí åííïéþí: Ïñéóìüò 111-1 (åîßóùóçò) ËÝãåôáé
Διαβάστε περισσότεραÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ
ÌÜèçìá 8 ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ 8.1 ÅéóáãùãéêÝò Ýííïéåò Åßíáé Þäç ãíùóôü óôïí áíáãíþóôç üôé ç åðßëõóç ôùí ðåñéóóüôåñùí ðñïâëçìüôùí ôùí èåôéêþí åðéóôçìþí ïäçãåß óôç ëýóç ìéáò äéáöïñéêþò
Διαβάστε περισσότερα4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò
4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò Óôéò áóêþóåéò ìå åðßäñáóç óôç èýóç ìéáò éóïññïðßáò ãßíåôáé áíáöïñü óå ðåñéóóüôåñåò áðü ìßá èýóåéò éóïññïðßáò. Ïé èýóåéò éóïññïðßáò åßíáé äéáäï
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας
Διαβάστε περισσότεραÅÍÏÔÇÔÁ 5ç ÔÁ Ó ÇÌÁÔÁ
Ενότητα 5 Μάθημα 38 Ο κύκλος 1. Ná êáôáíïþóïõí ôçí Ýííïéá ôïõ êýêëïõ. 2. Ná ìüèïõí íá ñùôïýí êáé íá áðáíôïýí ó åôéêü ìå ôïí êýêëï. 1. Íá ðáßîïõí êáé íá ôñáãïõäþóïõí ôï «Ãýñù-ãýñù üëïé» êáé «To ìáíôçëüêé».
Διαβάστε περισσότεραÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009
ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009 Ïíïìáôåðþíõìï : Á.Ì : ÈÝìá 1: Âáèìüò [ ] ÈÝìá 2: Âáèìüò [ ] ÈÝìá 3: Âáèìüò [ ] ÈÝìá 4: Âáèìüò [ ] èñïéóìá
Διαβάστε περισσότερα3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)
F ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ ÔÇÓ ÅËËÇÍÉÊÇÓ ÄÇÌÏÊÑÁÔÉÁÓ 3523 ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ Áñ. Öýëëïõ 252 28 Öåâñïõáñßïõ 2002 ÁÐÏÖÁÓÅÉÓ Áñéè. 19306/Ã2 ÐñïãñÜììáôá Óðïõäþí Ôå íéêþí Åðáããåëìáôéêþí Åêðáéäåõôçñßùí (Ô.Å.Å.).
Διαβάστε περισσότεραÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ
ÌÜèçìá 5 ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ 5.1 ÄéáêñéôÞ ðñïóýããéóç 5.1.1 ÅéóáãùãÞ Óôï ÌÜèçìá ÐïëõùíõìéêÞ ðáñåìâïëþ åîåôüóôçêå ôï ðñüâëçìá ôçò åýñåóçò ôïõ ðïëõùíýìïõ ðáñåìâïëþò, äçëáäþ ôïõ ðïëõùíýìïõ ðïõ
Διαβάστε περισσότερα1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç
1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç 7 1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç Åñþ ôçóç 1 Ðïéïé áñéèìïß ïíïìüæïíôáé öõóéêïß; Ðþò ôïõò óõìâïëßæïõìå êáé ðþò ùñßæïíôáé;
Διαβάστε περισσότεραÓÅÉÑÁ FOURIER. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò
ÌÜèçìá 13 ÓÅÉÑÁ FOURIER 13.1 ÅéóáãùãéêÝò Ýííïéåò Ïé ðåñéïäéêýò óõíáñôþóåéò óõíáíôþíôáé óõ íü óå äéüöïñá ðñïâëþìáôá åöáñìïãþí. Ç ðñïóðüèåéá íá åêöñáóôïýí ïé óõíáñôþóåéò áõôýò ìå üñïõò áðëþí ðåñéïäéêþí óõíáñôþóåùí,
Διαβάστε περισσότερα1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï
ÊåöÜëáéï 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï óôù ç ôñéüäá (a, b, c). Ôï óýíïëï ôùí ôñéüäùí êáëåßôáé 3-äéÜóôáôïò þñïò êáé óõìâïëßæåôáé ìå IR 3. Åéäéêüôåñá ç ôñéüäá (a, b, c) ïñßæåé
Διαβάστε περισσότερα¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí
¼ñãáíá Èåñìïêñáóßáò - ÓõóêåõÝò Øõêôéêþí Ìç áíçìüôùí ÈåñìïóôÜôçò ÓõíôÞñçóçò REF-DF-SM ÅëÝã åé Ýíá èåñìïóôïé åßï PTC Êëßìáêá èåñìïêñáóßáò: -19? +99 C ëåã ïò áðüøõîçò - dfrst Ôñßá ñåëý: óõìðéåóôþò (30Á, 2ÇÑ),
Διαβάστε περισσότεραÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ
ÕÐÏÕÑÃÅÉÏ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ÏÉÊÏÍÏÌÉÊÙÍ ÃÅÍÉÊÇ ÄÉÅÕÈÕÍÓÇ ÄÇÌÏÓÉÁÓ ÐÅÑÉÏÕÓÉÁÓ & ÅÈÍÉÊÙÍ ÊËÇÑÏÄÏÔÇÌÁÔÙÍ ÄÉÅÕÈÕÍÓÇ ÔÅ ÍÉÊÙÍ ÕÐÇÑÅÓÉÙÍ & ÓÔÅÃÁÓÇÓ ÔÌÇÌÁ ÁÍÔÉÊÅÉÌÅÍÉÊÏÕ ÐÑÏÓÄÉÏÑÉÓÌÏÕ ÖÏÑÏËÏÃÇÔÅÁÓ ÁÎÉÁÓ ÁÊÉÍÇÔÙÍ
Διαβάστε περισσότεραÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ
ÌÜèçìá 7 ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ ÅéóáãùãÞ ¼ìïéá, üðùò êáé óôï ÌÜèçìá ÐñïóÝããéóç Ðáñáãþãùí, ç ðñïóåããéóôéêþ ôéìþ ôïõ ïñéóìýíïõ ïëïêëçñþìáôïò ñçóéìïðïéåßôáé êõñßùò, üôáí I(f) = f(x) dx i) ëüãù ôçò ðïëýðëïêçò
Διαβάστε περισσότεραÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ
Åðéìïñöùôéêü Ðñüãñáììá Ãéá ôïõò Åêðáéäåõôéêïýò-Ìáèçìáôéêïýò óôï Ìáèçìáôéêü ôìþìá ôïõ Ðáíåðéóôçìßïõ Áèçíþí êáôü ôçí ðåñßïäï Äåêåìâñßïõ 2000-Éïõíßïõ 200 ìå Õðåýèõíï ôïí êáèçãçôþ Ð. ÓôñÜíôæáëï ÅÑÃÁÓÉÁ ÃÉÁ
Διαβάστε περισσότεραÈåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá
Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email: fotakis@aegean.gr 1 Âáóéêïß Ïñéóìïß êáé Ïñïëïãßá
Διαβάστε περισσότερα5Ô Ô ÚÓÔ. ðüóï 15 ðüóï 1/ ðüóï 2/ ðüóï 4/ ðüóï ðüóï ðüóï. 13 ðüóï 33 ðüóï ðüóï ðüóï. ðüóï 26 ðüóï 2XA ðüóï 3XA ¼ëïé ðüóï
5Ô Ô ÚÓÔ ª ıëùòó Bã ÎÏÔ ¼ëïé óôçí ðñþôç / K 2 Ìïßñáóå ï  3 Q 10 6 2 6 J 8 7 6 3 5 7 2 / 10 8 5 4 / A J 9 7 3 A 9 7 3 K J 5 6 Q 4 6 K 10 5 A Q 9 3 5 J 10 5 4 / Q 6 3 3 8 4 3 6 A 9 5 2 5 K 8 6 ðüóï 15 ðüóï
Διαβάστε περισσότεραÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ
ÌÜèçìá 9 ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ 9. ÄéðëÜ ïëïêëçñþìáôá 9.. ÅéóáãùãÞ Ãéá ôçí êáëýôåñç êáôáíüçóç ôïõ ïñéóìýíïõ ïëïêëçñþìáôïò ìéáò óõíüñôçóçò äýï ìåôáâëçôþí, äçëáäþ ôïõ äéðëïý ïëïêëçñþìáôïò, êñßíåôáé áðáñáßôçôï
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΣΠΟΥ ΩΝ ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ /ΝΣΗ ΣΠΟΥ ΩΝ Π.Ε.
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝ. ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚ/ΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΣΠΟΥ ΩΝ ΕΠΙΜΟΡΦΩΣΗΣ ΚΑΙ ΚΑΙΝΟΤΟΜΙΩΝ /ΝΣΗ ΣΠΟΥ ΩΝ Π.Ε. Τµήµα Α Αν. Παπανδρέου 37 151 80 Μαρούσι Πληροφορίες: Ρ. Γεωργακόπουλος
Διαβάστε περισσότεραÁíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ
ÔÏ ÅÑÃÏ ÓÕà ÑÇÌÁÔÏÄÏÔÅÉÔÁÉ ÁÐÏ ÔÏ ÅÕÑÙÐÁÉÊÏ ÊÏÉÍÙÍÉÊÏ ÔÁÌÅÉÏ ÊÁÉ ÁÐÏ ÅÈÍÉÊÏÕÓ ÐÏÑÏÕÓ Áíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ Ðáíåðéóôçìßïõ Áèçíþí ìå Ýìöáóç óôçí ÐëçñïöïñéêÞ,
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Προσέγγιση παραγώγων Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότεραÐïëëÝò åôáéñßåò ðñïóöýñïõí õðçñåóßåò
Ferral Ferral Της Πηνελόπης Λεονταρά Σήμανση CE: Πως γίνεται ο έλεγχος της παραγωγικής Ï êáèïñéóìüò ôïõ åëýã ïõ ðáñáãùãþò óå Ýíá êáôáóêåõáóôéêü óýìöùíá ìå ôéò ôå íéêýò ðñïäéáãñáöýò ãéá ôá êïõöþìáôá, óôçí
Διαβάστε περισσότεραÍá èõìçèïýìå ôç èåùñßá...
ÇËÅÊÔÑÉÊÏ ÐÅÄÉÏ Íá èõìçèïýìå ôç èåùñßá....1 Ôé ïíïìüæïõìå çëåêôñéêü ðåäßï; Çëåêôñéêü ðåäßï ïíïìüæïõìå ôïí þñï ìýóá óôïí ïðïßï áí âñåèåß Ýíá çëåêôñéêü öïñôßï èá äå èåß äýíáìç. Ãéá íá åîåôüóïõìå áí óå êüðïéï
Διαβάστε περισσότεραÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé
ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé Íéêüëáò ÊÜñáëçò Á/Ì : 91442 ÔìÞìá 1ï 28 Óåðôåìâñßïõ, 26 1 ìåóåò ÌÝèïäïé 1.1 Åñþôçìá 1 ñçóéìïðïéþíôáò ôçí gauss.m êáé ôçí herm5.m,
Διαβάστε περισσότεραÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ
30 ÊåöÜëáéï 2 ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ 2.1 ÅéóáãùãÞ ¼ðùò êáé óôïí IR 2, Ýôóé êáé óôïí IR 3 ìðïñïýìå íá ïñßóïõìå ìéá êáìðýëç ðáñáìåôñéêü. ÄçëáäÞ, íá Ý åé ôç ìïñöþ x = x(t), y = y(t), z = z(t), üðïõ t åßíáé
Διαβάστε περισσότεραΤυπικές Γλώσσες. Μεταγλωττιστές. (μέρος 1ο) Νίκος Παπασπύου, Κωστής Σαγώνας
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μεταγλωττιστές Νίκος Παπασπύου, Κωστής Σαγώνας Τυπικές Γλώσσες (μέρος 1ο) Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕνότητα 7: Διαδικασιακός Προγραμματισμός
Συμβολικές Γλώσσες Προγραμματισμού Ενότητα 7: Διαδικασιακός Προγραμματισμός Νικόλαος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης è Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο.
ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο Τελικό Πρόγραμμα Β Χειρουργική και Γαστρεντερολογική κλινική, Ναυτικού Νοσοκομείου
Διαβάστε περισσότεραUnion of Pure and Applied Chemistry).
.5 Ç ãëþóóá ôçò çìåßáò Ãñáö çìéêþí ôýðùí êáé åéóáãùã óôçí ïíïìáôïëïãßá ôùí áíüñãáíùí åíþóåùí..5.1 ÃåíéêÜ. Ç çìåßá Ý åé ôç äéê ôçò äéåèí ãëþóóá, ç ïðïßá êáèïñßæåôáé áðü êáíüíåò ðïõ Ý ïõí ðñïôáèåß êáé ðñïôåßíïíôáé
Διαβάστε περισσότεραÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí
165 KåöÜëáéï 8 ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí 1. Ïñéóìüò êáé óõíý åéá óõíáñôþóåùò ðåñéóóïôýñùí ìåôáâëçôþí * ÌåôñéêÝò óå ìåôñéêïýò þñïõò Åðß ôïõ Rïñßæïõìå ôçí ìåôñéêþ d(, = - 1 1 Åðß ôïõ R ïñßæïõìå ôéò åðüìåíåò
Διαβάστε περισσότεραÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ
ÌÜèçìá 6 ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ Ç ðñïóýããéóç ôçò ôéìþò ôçò ðáñáãþãïõ ìéáò óõíüñôçóçò ñçóéìïðïéåßôáé óôéò ðáñáêüôù êõñßùò ðåñéðôþóåéò: i) üôáí ëüãù ôçò ðïëýðëïêçò ìïñöþò ôïõ ôýðïõ ìéáò óõíüñôçóçò åßíáé áäýíáôïò
Διαβάστε περισσότεραΙΣΤΙΟΠΛΟΪΚΟΣ ΑΓΩΝΑΣ : ΑΣΠΡΟΝΗΣΟΣ Ο ΗΓΙΕΣ ΠΛΟΥ
ΙΣΤΙΟΠΛΟΪΚΟΣ ΑΓΩΝΑΣ : ΑΣΠΡΟΝΗΣΟΣ Ο ΗΓΙΕΣ ΠΛΟΥ 1. ΩΡΑ Η επίσημη ώρα για τον αγώνα "ΑΣΠΡΟΝΗΣΟΣ 2007" είναι 9η του αστεροσκοπείου Αθηνών. Η πληροφόρηση γίνεται με τηλεφωνική κλήση του αριθμού 141. 2. ΠΡΟΓΝΩΣΗ
Διαβάστε περισσότεραÜóêçóç 15. ÕëéêÜ - åîáñôþìáôá äéêôýïõ ðåðéåóìýíïõ áýñá êáé ðíåõìáôéêýò óõóêåõýò
ÕëéêÜ - åîáñôþìáôá äéêôýïõ ðåðéåóìýíïõ áýñá êáé ðíåõìáôéêýò óõóêåõýò Óôü ïé ôçò Üóêçóçò äéüñêåéá Üóêçóçò: 6 äéäáêôéêýò þñåò Óôï ôýëïò ôçò Üóêçóçò ïé ìáèçôýò èá åßíáé éêáíïß: é íá áíáãíùñßæïõí ôá åîáñôþìáôá
Διαβάστε περισσότεραÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß
ÌÜèçìá 1 ÄÉÁÍÕÓÌÁÔÁ 1.1 ÅéóáãùãéêÝò Ýííïéåò Óôï ìüèçìá áõôü èá äïèïýí ôá êõñéüôåñá óôïé åßá ôùí äéáíõóìüôùí, ðïõ åßíáé áðáñáßôçôá ãéá ôçí êáôáíüçóç ôùí åðüìåíùí ìáèçìüôùí. Ï áíáãíþóôçò, ãéá ìéá ðëçñýóôåñç
Διαβάστε περισσότερα(Á 154). Amitraz.
ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) 13641 ñèñï 4 (Üñèñï 3 ôçò Ïäçãßáò 2001/99/ÅÊ) Ïé äéáôüîåéò ôçò ðáñïýóáò áðüöáóçò éó ýïõí áðü ôçí 1ç Éïõëßïõ 2002. Ç ðáñïýóá áðüöáóç íá äçìïóéåõèåß óôçí Åöçìåñßäá
Διαβάστε περισσότεραËáíèÜíïõóá ÓçìáóéïëïãéêÞ ÁíÜëõóç
8 ËáíèÜíïõóá ÓçìáóéïëïãéêÞ ÁíÜëõóç Ðåñéå üìåíá Êåöáëáßïõ 8.1 ÅéóáãùãÞ......................... 162 8.2 ÂáóéêÝò ííïéåò ÃñáììéêÞò ëãåâñáò........ 163 8.2.1 Ðßíáêåò êáé Äéáíýóìáôá................ 163 8.2.2
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 8: Προσέγγιση ολοκληρωμάτων Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Διαβάστε περισσότεραΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ. Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012
ΔΙΗΜΕΡΟ ΚΙΝΗΤΟΠΟΙΗΣΕΩΝ ΤΩΝ ΔΗΜΩΝ ΤΗΣ ΧΩΡΑΣ Αναστολή λειτουργίας των δήμων στις 12 και 13 Σεπτεμβρίου 2012 Τετάρτη, 12 Σεπτεμβρίου, Πανελλαδική Συγκέντρωση στη Πλατεία Κλαυθμώνος, στις 11.00 π.μ. Πορεία
Διαβάστε περισσότεραÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ ÁÐÁÉÔÇÓÅÙÍ ÕÐÇÑÅÓÉÙÍ. Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ
138 Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ 10 ÌÏÍÔÅËÏ ÁÐÏÔÉÌÇÓÇÓ ÔÙÍ ÁÐÁÉÔÇÓÅÙÍ 11 ÔÏÌÅÉÓ ÅÖÁÑÌÏÃÇÓ ÔÙÍ ÕÐÇÑÅÓÉÙÍ 139
Διαβάστε περισσότεραRamsey's Theory or something like that.
Ramsey's Theory or something like that. ÌÜñèá, ÄçìÞôñçò, ÓôÝöáíïò 30 Íïåìâñßïõ 2005 Complete disorder is impossible T.S.Motzikin 1 ÅéóáãùãÞ. To 1930 o Ramsey[10] äçìïóßåõóå Ýíá Üñèñï ðüíù óå Ýíá ðñüâëçìá
Διαβάστε περισσότερα11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ
. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών
Διαβάστε περισσότεραÈåùñßá ÃñáöçìÜôùí: ÄÝíôñá
Èåùñßá ÃñáöçìÜôùí: ÄÝíôñá ÄçìÞôñçò ÖùôÜêçò ÔìÞìá Ìç áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéáêþí ÓõóôçìÜôùí ÐáíåðéóôÞìéï Áéãáßïõ, 83200 Êáñëüâáóé, ÓÜìïò Email: fotakis@aegean.gr 1 Ïñéóìüò íá ãñüöçìá ùñßò êýêëïõò
Διαβάστε περισσότερα11. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ
. ΜΕΝΤΕΣΕΔΕΣ ΕΠΙΠΛΩΝ 1 . ΜΕΝΤΕΣΕΔΕΣ ÅÐÉÐËÙÍ Σύντομη αναδρομή στην ιστορία της. Η εταιρία Salice, πρωτοπόρος στον τομέα των χωνευτών μεντεσέδων επίπλων, παράγει μια πολύ μεγάλη γκάμα μεντεσέδων και μηχανισμών
Διαβάστε περισσότερα