Ι. Preprocessing (Επεξεργασία train.arff):
|
|
- Ἀγλαΐα Θεοτόκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ονοματεπώνυμο: Κατερίνα Αργύρη Δ.Π.Μ.Σ: Εφαρμοσμένες Μαθηματικές Επιστήμες Ακαδ. Έτος:
2 Για την παρούσα εργασία διατίθενται τρία σύνολα δεδομένων: Δεδομένα Εκπαίδευσης (train set αρχείο train.arff): με 2528 το πλήθος υποδείγματα, 39 το πλήθος χαρακτηριστικά συν μία μεταβλητή output (μεταβλητή στόχος), Δεδομένα Επαλήθευσης (quiz set αρχείο quiz.arff): με 1265 το πλήθος υποδείγματα, 39 το πλήθος χαρακτηριστικά, Δεδομένα Εξέτασης (test set αρχείο test.arff): με 1265 το πλήθος υποδείγματα, 39 το πλήθος χαρακτηριστικά. Σκοπός: Η εξαγωγή μοτίβων πληροφοριών από το train set, η χρήση του quiz set για τον έλεγχο των εξαγομένων μας και τέλος η εφαρμογή τους στο test set προκειμένου να επιτύχουμε ακριβείς προβλέψεις για τη μεταβλητή στόχο. Η ακριβής διαδικασία έχει ως ακολούθως: Ι. Preprocessing (Επεξεργασία train.arff): Με την εντολή Visualize All καθίσταται σαφές ότι η μεταβλητή 38 δε μας προσφέρει κάποιου είδους πληροφορία οπότε αφού την επιλέξουμε, την κάνουμε χειροκίνητα Για περαιτέρω «φιλτράρισμα» επιλέγουμε το tab Select Attributes κι από κει με Attribute Evaluator CfsSubsetEval και εφαρμόζοντας τη μέθοδο GeneticSearch προκύπτουν οι μεταβλητές υψηλού ενδιαφέροντος 07,13,14,24,27,28,32,35 και σαφώς η output. Με την ενέργεια filter-unsupervised-attribute-remove διαγράφουμε τις λοιπές μεταβλητές προσέχοντας αν συμπληρώσουμε τα indices που μας ενδιαφέρουν (plus την target) να θέσουμε και την boolean invertselection true. Τρέχουμε δοκιμαστικά κάποιους αλγόριθμους ώστε να επιβεβαιώσουμε μέσω μιας απλής σύγκρισης των σφαλμάτων το αμελητέο κόστος που προκάλεσε η διαγραφή των επιλεγμένων μεταβλητών. Τέλος, χρησιμοποιώντας την ενέργεια filter-unsupervised-attribute- NumericToNominal, μετατρέπω από numeric σε nominal τη μεταβλητή output. Το ακόλουθο στιγμιότυπο του WEKA δείχνει το τελικό σύνολο εκπαίδευσης που αποθηκεύτηκε με το όνομα train_g.arff. 2
3 Σχήμα 1. Στιγμιότυπο του WEKA: Η τελική μορφή του συνόλου εκπαίδευσης ΙΙ. Επεξεργασία quiz.arff Επαναλαμβάνουμε με μεγάλη ακρίβεια την ίδια επεξεργασία στο σύνολο quiz.arff προκειμένου να μπορούμε να το χρησιμοποιήσουμε ως σύνολο ελέγχου. Έτσι αφού επιλέξουμε τα χαρακτηριστικά 07,13,14,24,27,28,32,35 προσθέτουμε ένα χαρακτηριστικό output το οποίο μετατρέπουμε από numeric σε nominal. Το ακόλουθο στιγμιότυπο του WEKA δείχνει το τελικό σύνολο επαλήθευσης το οποίο αποθηκεύτηκε με το όνομα quiz_g.arff. 3
4 Σχήμα 2. Στιγμιότυπο του WEKA: Η τελική μορφή του συνόλου επαλήθευσης. ΙΙΙ. Επιλογή Κατάλληλου Αλγόριθμου Εφαρμόστηκαν επιλεγμένοι αλγόριθμοι στο train set και με χρήση του quiz set ως supplied test set (test options). Ενδεικτικά αναφέρονται κάποιοι Classifiers που χρησιμοποιήθηκαν : Bayes NaiveBayes NaiveBayesSimple Functions MultilayerPerceptron Logistic SimpleLogistic 4
5 Trees J48 RandomTree UserClassifier Rules OneR PART DecisionTable ZeroR Meta AdaBoostM1 Bagging Stacking Vote Για την επιλογή του καταλληλότερου αλγόριθμου επιστρατεύτηκαν διάφορα κριτήρια όπως το υψηλό ποσοστό επιτυχίας των προβλέψεων της μεταβλητής στόχου, τα ποσοστά σφαλμάτων που παρέχει το WEKA (mean absolute error, root mean squared error, relative absolute error, root relative squared error), η ανθεκτικότητα της επιτυχίας πρόβλεψης σε προσθήκη θορύβου καθώς και το χαμηλό υπολογιστικό κόστος. Έτσι, ζητούμενο ήταν η εύρεση αλγορίθμου που δίνει μικρό σφάλμα για το σύνολο εκπαίδευσης και υψηλά ποσοστά επιτυχίας για το σύνολο επαλήθευσης. 5
6 Παρακάτω παρατίθενται ενδεικτικά τα τρεξίματα τριών από τους καλύτερους (ως προς το ποσοστό επιτυχίας των προβλέψεων της μεταβλητής και τα λοιπά προαναφερθέντα κριτήρια) αλγόριθμους και έπειτα αιτιολογείται η τελική επιλογή: αλγόριθμος τρέξιμο (10-fold cross-validation) επιτυχία πρόβλεψης (με quizset ως supplied test set) Bagging PART Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 2528 AdaBoostM1 J48 Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 2528 Logitboost M5P Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 2528 Πίνακας 1. Οι επικρατέστεροι αλγόριθμοι. 0,9217 0,9225 0,9146 Ενώ και οι επικρατέστεροι αλγόριθμοι έδωσαν σχεδόν ισοδύναμες προβλέψεις η τελική επιλογή ήταν ο μεταμαθησιακός αλγόριθμος Bagging με ορισμένο Classifier 6
7 τον αλγόριθμο PART επειδή τα σφάλματα στη συγκεκριμένη περίπτωση ήταν χαμηλότερα και επιδείκνυε σταθερότερη συμπεριφορά σε προσθήκη θορύβου. ΙΙΙ. Επεξεργασία test set Ανοίγουμε το test.arff, ακολουθούμε τις ίδιες διαδικασίες επιλογής και αφού προσθέσουμε ένα χαρακτηριστικό με το όνομα output και το επεξεργαζόμαστε με τον ίδιο τρόπο που ακολουθήθηκε και στα train.arff, quiz.arff. Έπειτα το αποθηκεύουμε με το όνομα test_g.arff. IV. Εφαρμογή επιλεγμένου αλγόριθμου στο test set Τελικά εφαρμόζουμε τον Bagging με Classifier τον PART επιλέγοντας ως supplied test set το επεξεργασμένο σύνολο εξέτασης (test_g.arff). Έτσι, αφού επιλέξουμε τη δυνατότητα output predictions προκύπτει η τελική μας πρόβλεψη. 7
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ Το σύνολο των
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΠΡΟΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Τα προς επεξεργασία
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά Μάιος 2008 Τα δεδομένα που έχουμε προς επεξεργασία χωρίζονται σε τρία μέρη: 1. Τα δεδομένα εκπαίδευσης (training set) που αποτελούνται από 2528
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008
ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ
DATA MINING ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ 1 ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ Αφού δεν γνωρίζουμε κάποιο τρόπο για να επιλέξουμε εκ των προτέρων την πιο κατάλληλη και αποδοτική μέθοδο μάθησης
ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M. 09470015 AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκων: Γιώργος Τζιραλής ΔΠΜΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Στάδιο 1 ο. Προεπισκόπηση-προεπεξεργασία δεδομένων: Δίδονται τα παρακάτω
squared error, Mean absolute error, Root mean squared error) µεγάλωσαν,
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣ ΣΤΙΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΈΤΟΣ 2009 ΌΝΟΜΑ : ΚΑΤΣΑΒΡΙΑΣ ΕΥΑΓΓΕΛΟΣ Α.Μ. : 09480014 ΕΞΑΜΗΝΟ
ΕΡΩΤΗΜΑ 1 ΕΡΩΤΗΜΑ 2. ELONGATEDNESS <= 41 AND MAX.LENGTH ASPECT RATIO <= 7 AND COMPACTNESS > 95: bus (70.0/1.0)
ΕΡΩΤΗΜΑ 1 Κάνοντας Visualize all στο παρατηρούμε ότι όλα τα 20 attributes είναι σημαντικά στο train set και το output είναι nominal Cross validation με δοκιμή διάφορων αλγορίθμων για το train set επιλογή
Αναγνώριση Προτύπων Εργασία 1η Classification
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Αναγνώριση Προτύπων Εργασία 1η Classification Κιντσάκης Αθανάσιος 6667 Μόσχογλου Στυλιανός 6978 30 Νοεμβρίου,
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ χολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν ΔΠΜΣ: Εφαρμοςμζνεσ Μακθματικζσ Επιςτιμεσ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ Θεϊνθ Αγάκου, ΑΜ: 09480006 Διδάςκων: Γιϊργοσ Τηιραλισ
Διάλεξη 07: Αλγόριθμοι εκμάθησης ΜέροςΓ Συναρτήσεις & μετα-μαθησιακοί Αλγόριθμοι
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 07: Αλγόριθμοι εκμάθησης ΜέροςΓ Συναρτήσεις & μετα-μαθησιακοί Αλγόριθμοι Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης
Ζήτημα 1ο. Ζήτημα 2o. Τρέχουμε κάποιους αλγόριθμους. Ο OneR δίνει τους παρακάτω κανόνες
Ζήτημα 1ο Επιλογή χαρακτηριστικών (οπτικοί έλεγχοι, select attributes, Remove useless) Από το select attributes οι πιο σημαντικές μεταβλητές είναι οι (1, 2, 3, 6, 20) Με τους οπτικούς έλεγχους παρατηρώ
Διδάσκουσα: Χάλκου Χαρά,
Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών
Διπλωματική Εργασία. Διαχείριση Γνώσης και Ασφάλεια Πληροφοριών
Πανεπιστήμιο Πειραιώς Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Ευρωπαικό Μεταπτυχιακό Πρόγραμμα στη Διοίκηση Επιχειρήσεων Διοίκηση Ολικής Ποιότητας Διπλωματική Εργασία Διαχείριση Γνώσης και Ασφάλεια
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάλυση και κατηγοριοποίηση χρηστών Twitter ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της ΔΑΝΑΗΣ
Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr
ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΕΠΙΛΟΓΗ ΒΕΛΤΙΣΤΟΥ ΑΛΓΟΡΙΘΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΙΤΛΟ: ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ:
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ
8. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΔΕΔΟΜΕΝΩΝ Στόχος του εργαστηρίου αυτού είναι να δείξει πώς τα εργαστήρια με τα δεδομένα της ICAP μπορούν να υλοποιηθούν χωρίς τη χρήση SQL Server, χρησιμοποιώντας μόνον Excel και Rapid
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΡΚΕΙΑΣ ΦΩΝΗΜΑΤΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΗ ΣΥΝΘΕΣΗ ΟΜΙΛΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΟΜΕΑΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΚΑΙ ΤΕΧΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΡΚΕΙΑΣ ΦΩΝΗΜΑΤΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ
«Αναζήτηση Γνώσης σε Νοσοκομειακά Δεδομένα»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Πρόγραμμα Σπουδών M.I.S. «Αναζήτηση Γνώσης σε Νοσοκομειακά Δεδομένα» Μεταπτυχιακός Φοιτητής: Επιβλέπων Καθηγητής: Εξεταστής Καθηγητής: Τορτοπίδης Γεώργιος Μηχανικός
ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ (Τ. & Τ.Π.) ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ (Τ. & Τ.Π.) ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων 1 Είσοδος/Έξοδος Είσοδος/Έξοδος ανάλογα με τον τύπο του προγράμματος Πρόγραμμα
Αποθήκες και Εξόρυξη Δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 2 Ο Εργαστήριο WEKA (CLASSIFICATION) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Κατηγοριοποίηση Αποτελεί μια από τις βασικές
LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης
Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j
Πειραματικές Προσομοιώσεις ΚΕΦΑΛΑΙΟ 4 Όλες οι προσομοιώσεις έγιναν σε περιβάλλον Matlab. Για την υλοποίηση της μεθόδου ε-svm χρησιμοποιήθηκε το λογισμικό SVM-KM που αναπτύχθηκε στο Ecole d Ingenieur(e)s
Εξόρυξη Γνώσης από Βιολογικά εδομένα
Παρουσίαση Διπλωματικής Εργασίας Εξόρυξη Γνώσης από Βιολογικά εδομένα Καρυπίδης Γεώργιος (Μ27/03) Επιβλέπων Καθηγητής: Ιωάννης Βλαχάβας MIS Πανεπιστήμιο Μακεδονίας Φεβρουάριος 2005 Εξόρυξη Γνώσης από Βιολογικά
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές
4.4 Βάσεις Δεδομένων με πολλές Μεταβλητές Σε αυτή την ενότητα θα παρουσιάσουμε μερικά παραδείγματα με βάσεις δεδομένων που έχουν μονοδιάστατη έξοδο και πολυδιάστατη είσοδο. Οι βάσεις δεδομένων προέρχονται
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM
ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 03: Προεπεξεργασία & Επιλογή Δεδομένων Προεπεξεργασία δεδομένων Ο μετασχηματισμός των δεδομένων σε μορφή κατάλληλη και
Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
Εξόρυξη Γνώσης από Δεδομένα
Εξόρυξη Γνώσης από Δεδομένα Το εργαλείο WEKA Ομάδα ιαχείρισης εδομένων,, Τμήμα Πληροφορικής, Πανεπιστήμιο Πειραιώς http://infolab.cs.unipi.gr έσποινα Κοπανάκη (dkopanak@unipi.gr) Νοέμβριος 2009 Τα δεδομένα
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Αικατερίνη Καμπάση, PhD. Τμήμα Προστασίας και Συντήρησης Πολιτισμικής Κληρονομιάς Α.Τ.Ε.Ι. Ιονίων Νήσων
Αικατερίνη Καμπάση, PhD Τμήμα Προστασίας και Συντήρησης Πολιτισμικής Κληρονομιάς Α.Τ.Ε.Ι. Ιονίων Νήσων Ζάκυνθος 2011 2 ΠΕΡΙΕΧΟΜΕΝΑ ΕΝΟΤΗΤΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ 5 1.1 Βάσεις Δεδομένων 7 1.2
2o μέρος εργασίας (Αρχείο cpu)
2o μέρος εργασίας (Αρχείο cpu) Στο dataset cpu, υπάρχουν 209 instances που αντιστοιχούν σε διαφορετικά configurations ενός υπολογιστή. Εξετάζεται το κατά πόσο επηρεάζεται η απόδοση του υπολογιστή από τις
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης
Διπλωματική εργασία Θέμα: «Δημιουργία ευφυούς συστήματος για τη διαχείριση και διαλογή των ασθενών Τμήματος Επειγόντων Περιστατικών
Διπλωματική εργασία Θέμα: «Δημιουργία ευφυούς συστήματος για τη διαχείριση και διαλογή των ασθενών Τμήματος Επειγόντων Περιστατικών Μεταπτυχιακός φοιτητής: Γεώργιος Κηπουργός Νοσηλευτής Τ.Ε Επιβλέπων καθηγητής:
Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική
Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση
ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση Η μορφή των δεδομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Περιγραφή των Δεδομένων
Τεχνικές Εξόρυξης Δεδομένων Μεγάλης Κλίμακας Χειμερινό Εξάμηνο 2017-2018 1η Άσκηση, Ημερομηνία παράδοσης: Έναρξη Εξεταστικής Χειμερινού Εξαμήνου Ομαδική Εργασία (2 Ατόμων) Σκοπός της εργασίας Σκοπός της
Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση
Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο
«ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΤΕΜΑΧΙΣΜΟΥ ΚΑΙ ΑΝΑΓΝΩΡΙΣΗΣΣ ΗΧΗΤΙΚΩΝ ΚΑΤΗΓΟΡΙΩΝ ΑΠΟ ΡΑΔΙΟΦΩΝΙΚΕΣ ΕΚΠΟΜΠΕΣ»
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΜΜΕ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΤΕΜΑΧΙΣΜΟΥ ΚΑΙ ΑΝΑΓΝΩΡΙΣΗΣΣ ΗΧΗΤΙΚΩΝ ΚΑΤΗΓΟΡΙΩΝ
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 18/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 18/10/07 Αλγόριθμος: Βήμα προς βήμα διαδικασία για την επίλυση κάποιου προβλήματος. Το πλήθος των βημάτων πρέπει να είναι πεπερασμένο. Αλλιώς: Πεπερασμένη
Ανάλυση μεγάλων δεδομένων με χρήση εργαλείων εξόρυξης δεδομένων. Η περίπτωση μιας εφαρμογής υποστήριξης αποφάσεων εκλογικής ψήφου.
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στα Πληροφοριακά Συστήματα Ανάλυση μεγάλων δεδομένων με χρήση εργαλείων εξόρυξης δεδομένων. Η περίπτωση μιας εφαρμογής υποστήριξης αποφάσεων εκλογικής ψήφου.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο Ι. Να αντιστοιχίσετε τους παρακάτω όρους. Στη στήλη Β περισσεύει μια επιλογή. (6 Μονάδες) 1 - Β 2 - Α 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
Αποθήκες και Εξόρυξη Δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 1 Ο Εργαστήριο Εισαγωγή στο WEKA (Preprocessing Select Attributes) Στουγιάννου Ελευθερία estoug@unipi.gr -2- ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή
Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση
Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.
GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα
GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα Μάθημα 6ο Σουίτα Γραφείου LibreOffice 2 Ύλη Μαθημάτων V Μαθ. 5/6 : Σουίτα Γραφείου LibreOffice LibreOffice Γενικά, Κειμενογράφος - LibreOffice Writer,
Γραφικά υπολογιστών Εργαστήριο 4 Εισαγωγή στις λίστες
Γραφικά υπολογιστών Εργαστήριο 4 Εισαγωγή στις λίστες Σκοπός της 3ης άσκησης είναι να μάθουμε να φτιάχνουμε και να προσπελαύνουμε λίστες, να δούμε τι διαφορά έχουν από τα tuples και επίσης πώς μπορούμε
Εργαστήριο «Τεχνολογία Πολιτισμικού Λογισμικού» Ενότητα. Επεξεργασία πινάκων
Ενότητα 4 Επεξεργασία πινάκων 36 37 4.1 Προσθήκη πεδίων Για να εισάγετε ένα πεδίο σε ένα πίνακα που υπάρχει ήδη στη βάση δεδομένων σας, βάζετε τον κέρσορα του ποντικιού στο πεδίο πάνω από το οποίο θέλετε
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,
Δέντρα Απόφασης (Decision(
Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα
1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Εξαγωγή Καταστάσεων ΜΥΦ. Σε αυτό το εγχειρίδιο περιγράφεται η εξαγωγή αρχείου για τις συγκεντρωτικές καταστάσεις πελατώνπρομηθευτών
Εξαγωγή Καταστάσεων ΜΥΦ Σε αυτό το εγχειρίδιο περιγράφεται η εξαγωγή αρχείου για τις συγκεντρωτικές καταστάσεις πελατώνπρομηθευτών (ΜΥΦ) Περιεχόμενα Εξαγωγή Καταστάσεων ΜΥΦ 3 Πιθανά Σφάλματα 6 2 Εξαγωγή
Σχεδιασμός εκτυπώσεων ERG
Σχεδιασμός εκτυπώσεων ERG Περιεχόμενα Δημιουργία εκτυπώσεων ERG... 3 Επιλογή πεδίων... 4 Λεπτομέρειες... 6 Καθορισμός φίλτρων... 6 Ταξινόμηση και ομαδοποίηση... 7 Εξαγόμενο εκτύπωσης... 7 Δικαιώματα πρόσβασης...
Συνοπτικός Οδηγός Χρήσης του MySQL Workbench
Συνοπτικός Οδηγός Χρήσης του MySQL Workbench To ΜySQL Workbench είναι μία εφαρμογή, με γραφικό περιβάλλον, στην οποία μπορούμε να συντάξουμε και να εκτελέσουμε εντολές SQL. To MySQL Workbench απαιτεί να
Ανακάλυψη Γνώσης από εδοµένα και Εξόρυξη Γνώσης στο εργαλείο WEKA
Ανακάλυψη Γνώσης από εδοµένα και Εξόρυξη Γνώσης στο εργαλείο WEKA Ειρήνη Ντούτση Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) 02/04/2008 Ανακάλυψη και
CRM για Εκπαιδευτικούς Φορείς
Cosmos Business Systems S.A. Group CRM για Εκπαιδευτικούς Φορείς CRM Εκπαιδευτικών Φορέων Το CRM Εκπαιδευτικών Φορέων έχει αναπτυχθεί για να ικανοποιήσει τις ανάγκες διαχείρισης του υποψήφιου πελατολογίου
Δημιουργίας Ενεργειών
Δημιουργίας Ενεργειών Περιεχόμενα Δημιουργία Ενεργειών (Επικοινωνίας, Ραντεβού)... 3 Καταχώρηση Επικοινωνίας και Ραντεβού... 4 Βασικά Στοιχεία... 7 Πεδία Χρήστη... 8 Υπομνήματα... 8 Μεταβολή Ενέργειας...
ΚΤΙΡΙΑΚΕΣ ΥΠΟΔΟΜΕΣ Α.Ε. Οδηγίες Λειτουργίας Πληροφοριακού Συστήματος ηλεκτρονικής διαχείρισης Αιτημάτων. v1.3 (23/11/2014)
ΚΤΙΡΙΑΚΕΣ ΥΠΟΔΟΜΕΣ Α.Ε. ΕΡΓΟ: «ΑΝΑΛΥΣΗ, ΣΧΕΔΙΑΣΜΟΣ, ΑΝΑΠΤΥΞΗ - ΥΛΟΠΟΙΗΣΗ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΥΠΟΒΟΛΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΧΟΡΗΓΗΣΗΣ ΕΞΟΠΛΙΣΜΟΥ ΣΧΟΛΕΙΩΝ» Οδηγίες
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Δίνεται το παρακάτω τμήμα αλγορίθμου. Να εξετάσετε αν ικανοποιεί τα αλγοριθμικά κριτήρια. Γράψε 'Δώσε
Eισαγωγή στο λογισμικό QGis
Eισαγωγή στο λογισμικό QGis 3 η Εργαστηριακή άσκηση Οικολογίας της Βλάστησης - 2018 ανοιχτό λογισμικό: http://www.qgis.org/en/site/ Τι επιλέγουμε να εγκαταστήσουμε Αλλαγή γλώσσας στο QGis Ρυθμίσεις ->
ΤΕΙ Ιονίων Νήσων Εργαστηριακές Ασκήσεις στα Γεωγραφικά Συστήματα Πληροφοριών
ΕΡΓΑΣΤΗΡΙΟ 2 ο : Εισαγωγή στα Γεωγραφικά Συστήματα Πληροφοριών ArcMap (2/2) Μέρος 1: (συνέχεια από τα προηγούμενα) Κάνουμε κλικ το εικονίδιο Add Data στην γραμμή εργαλείων standard και επιλέγουμε το αρχείο/τα
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα
Kεφ.2: Σχεσιακό Μοντέλο (επανάληψη) Κεφ.6.1: Σχεσιακή Άλγεβρα Database System Concepts, 6 th Ed. Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use Παράδειγμα Σχέσης attributes
Γνωρίστε το Excel 2007
Εισαγωγή τύπων Γνωρίστε το Excel 2007 Πληκτρολογήστε το σύμβολο της ισότητας (=), χρησιμοποιήστε ένα μαθηματικό τελεστή (+,-,*,/) και πατήστε το πλήκτρο ENTER. Πρόσθεση, διαίρεση, πολλαπλασιασμός και αφαίρεση
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
Συνοπτικό εγχειρίδιο χρήσης του Microsoft Visual Studio 2010
Τμήμα Πληροφορικής & Επικοινωνιών Τομέας Υπολογιστικών Τεχνικών & Συστημάτων Συνοπτικό εγχειρίδιο χρήσης του Microsoft Visual Studio 2010 Ιωάννης Γεωργουδάκης - Πάρις Μαστοροκώστας Σεπτέμβριος 2011 ΠΕΡΙΕΧΟΜΕΝΑ
Δυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
ModellingSpace. Εγχειρίδιο Χρήστη
ModellingSpace Εγχειρίδιο Χρήστη 1 Βασική ιδέα Η βασική ιδέα, που αποτελεί την βάση για το λογισμικό, είναι το μοντέλο. Ένα μοντέλο είναι μία ομάδα υποθέσεων που προσπαθεί να είναι αναπαράσταση του πραγματικού
SPSS. Βασικά στοιχεία
SPSS Βασικά στοιχεία Εισαγωγικά Στοιχεία SPSS (Statistical Package for Social Sciences) Χρησιμοποιείται σε έρευνες των Κοινωνικών Επιστημών ημιουργήθηκε στο Πανεπιστήμιο του Stanford Το 1975 ιδρύεται η
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 9ο Aντώνης Σπυρόπουλος Σφάλματα στρογγυλοποίησης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Διαγωνισμός Μαθηματικών ικανοτήτων ΠΥΘΑΓΟΡΑΣ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΗΝ Α και Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Θέμα 1 ο Από τους αριθμούς 12, 13, 14, 15, 17 αυτός που έχει τους περισσότερους
ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΑΤΕΥΘΥΝΣΗ: ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΔΙΚΤΥΑ ΤΙΤΛΟΣ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΔΙΚΤΥΩΝ ΜΕ ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΜΗΧΑΝΙΚΗΣ ΜΑΘΗΣΗΣ
ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ: ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΔΙΚΤΥΑ ΤΙΤΛΟΣ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΙΑΧΕΙΡΙΣΗΣ ΔΙΚΤΥΩΝ ΜΕ ΧΡΗΣΗ ΤΕΧΝΙΚΩΝ ΜΗΧΑΝΙΚΗΣ ΜΑΘΗΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΕΛΙΤΖΙΑΣ ΙΩΑΝΝΗΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 14 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ
Αρχεία Ένα αρχείο αποτελείται από μία σειρά ομοειδών δεδομένων που ονομάζονται λογικές εγγραφές (logical record)
Διαχείριση Αρχείων Αρχεία Για να είναι δυνατή η επεξεργασία μεγάλου αριθμού δεδομένων τα δεδομένα είναι αποθηκευμένα σε ψηφιακά μέσα κατάλληλα οργανωμένα. Η αποθήκευση γίνεται σε αρχεία. Πολλά προγράμματα
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Οδηγός καταχώρισης σχεδίου δράσης σχολείου στην Ηλεκτρονική Πύλη Επαγγελματικής Μάθησης
Οδηγός καταχώρισης σχεδίου δράσης σχολείου στην Ηλεκτρονική Πύλη Επαγγελματικής Μάθησης http://epaggelmatikimathisi.pi.ac.cy Για την καταχώριση στοιχείων στην Ηλεκτρονική Πύλη Επαγγελματικής Μάθησης ακολουθούνται
Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα
Σφάλματα (errors) Σε κάθε υπολογισμό μιας πραγματικής ποσότητας υπάρχει σφάλμα Πηγές σφαλμάτων ανακριβής θεωρία ανακριβείς μετρήσεις παραμέτρων μεταβλητότητα παραμέτρων ανακριβής μέθοδος υπολογισμού (σφάλματα
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: Βάσεις δεδομένων και Microsoft Access Κεφάλαιο 2: Microsoft Access
Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 Κεφάλαιο 1: Βάσεις δεδομένων και Microsoft Access... 9 Κεφάλαιο 2: Microsoft Access 2002... 20 Κεφάλαιο 3: Το σύστημα Βοήθειας του Microsoft Office ΧΡ... 36
Οδηγός γρήγορης εκκίνησης
Οδηγός γρήγορης εκκίνησης Το Microsoft Excel 2013 έχει διαφορετική εμφάνιση από προηγούμενες εκδόσεις. Γι αυτό το λόγο, δημιουργήσαμε αυτόν τον οδηγό για να ελαχιστοποιήσουμε την καμπύλη εκμάθησης. Προσθήκη
Σχεδιασμός εκτυπώσεων ERG
Σχεδιασμός εκτυπώσεων ERG Περιεχόμενα Δημιουργία και διαχείριση εκτυπώσεων ERG... 3 Επιλογή πεδίων... 4 Λεπτομέρειες... 6 Καθορισμός φίλτρων... 6 Ταξινόμηση και ομαδοποίηση... 7 Εξαγόμενο εκτύπωσης...
ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003
ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 Μία από τις βασικές λειτουργίες του Excel είναι και η παραγωγή γραφημάτων για την απεικόνιση επεξεργασμένων αριθμητικών δεδομένων στα φύλλα εργασίας.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι
Εγχειρίδιο Χρήστη Φάση 1: Καταχώρηση Ειδικοτήτων
ΦΟΡΕΑΣ: ΙΝΣΤΙΤΟΥΤΟ ΔΙΑΡΚΟΥΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΝΗΛΙΚΩΝ ΕΡΓΟ: «Υλοποίηση Πληροφοριακού συστήματος για την Υποστήριξη του Έργου Διαχείρισης των Δημοσίων Ι.Ε.Κ.» Εγχειρίδιο Χρήστη Φάση 1: Καταχώρηση Ειδικοτήτων
ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ LIVETRIP TRAVELLER
ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ LIVETRIP TRAVELLER Η εφαρμογή LiveTripTraveller διατίθεται για κινητά τηλέφωνα με λειτουργικό σύστημα Android. Στο υπο-ιστοσελίδα www.livetrips.com/sources μπορείτε να κατεβάσετε την εφαρμογή
Διαστήματα Εμπιστοσύνης
Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z
Α Διαγώνισμα 1 ου Τριμήνου στο μάθημα της Πληροφορικής Γ Γυμνασίου Ονοματεπώνυμο:...
α Α Διαγώνισμα 1 ου Τριμήνου στο μάθημα της Πληροφορικής Γ Γυμνασίου Ονοματεπώνυμο:... Θέμα 1ο Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λανθασμένες (Λ). 1. Υπάρχουν προβλήματα που έχει
Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία