ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ
|
|
- Κύμα Κοσμόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ χολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν ΔΠΜΣ: Εφαρμοςμζνεσ Μακθματικζσ Επιςτιμεσ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ Θεϊνθ Αγάκου, ΑΜ: Διδάςκων: Γιϊργοσ Τηιραλισ Εαρινό Εξάμθνο 2009
2 Σελική Αναφορά: Τα dataset τα οποία επεξεργαςτικαμε κατά τθ διάρκεια του εξαμινου ιταν το train set, το οποίο περιελάμβανε 2528 instances και 40 attributes, και το quiz set με 1265 instances και 39 attributes με εκλειπόμενθ τθ μεταβλθτι ςτόχο output. Η απαραίτθτθ προεπεξεργαςία που αφοροφςε ςτο quiz set, προσ επίτευξη τησ πλήρουσ ςυμβατότητασ των δφο dataset και τθν περαιτζρω διεκπεραίωςθ των προβλζψεων, ιταν θ προςκικθ τθσ εκλειπόμενθσ μεταβλθτισ ςτόχου. Μια τζτοια διεργαςία γινόταν με το tab filter (filters unsupervised attribute Add) και τθν κατάλλθλθ ονομαςία αυτοφ του χαρακτθριςτικοφ(attributename: output). Επιπλζον, προςκζτοντασ ζνα νζο χαρακτθριςτικό, ζπρεπε να δϊςουμε τιμζσ ςτα instances (0 αν είχαμε numeric output, ι 0 και 1 αν είχαμε nominal output). To νζο quiz set το ονομάηαμε quiz extended set. Κακ όλθ τθ διάρκεια του εξαμινου, χρθςιμοποίθςα 2 διαφορετικά υποςφνολα χαρακτθριςτικϊν (attributes) του train set, ςφμφωνα με τισ διεργαςίεσ που ορίηουν τα διάφορα είδθ προεπεξεργαςίασ δεδομζνων. Συνολικά κατζκεςα 70 υποβολζσ. Το πρϊτο υποςφνολο δεδομζνων προζκυψε με αυτοματοποιθμζνεσ μεκόδουσ επιλογισ μεταβλθτϊν (tab select attributes) και το δεφτερο, από μεκόδουσ οπτικοποίθςθσ (tab visualize all) ςε μια προςπάκεια βακφτερθσ κατανόθςθσ του προβλιματοσ. Αρχικά, μου δόκθκε θ εντφπωςθ πωσ ιταν καλφτερα να μετατρζψω τθν μεταβλθτι ςτόχο ςε ονομαςτικι (nominal) λόγω τθσ ταχφτερθσ και αποδοτικότερθσ λειτουργίασ των αλγορίκμων εκμάκθςθσ, με αποτζλεςμα να κατακζςω μια μεγάλθ ςειρά υποβολϊν ςτισ οποίεσ θ μεταβλθτι ςτόχοσ ιταν nominal (tab filters NumericToNominal) Ωςτόςο, όπωσ προζκυψε, το καλφτερο ποςοςτό επιτυχίασ επετεφχκθ εντζλει με τθ μεταβλθτι ςτόχο να είναι numeric. Παρατίκενται ακολοφκωσ αναλυτικά τα ςθμαντικότερα από τα βιματα που ακολοφκθςα προκειμζνου να φτάςω ςτθν καλφτερθ πρόβλεψι μου: Τποβολή 23 Βήμα 1: Προεπεξεργαςία Δεδομζνων Στθν υποβολι αυτι ζγιναν δφο βαςικζσ τροποποιήςεισ ςτα train και quiz set. Αρχικά, θ μεταβλθτι ςτόχοσ μετετράπθ ςε nominal, δθλαδι διακριτοποιικθκε. Στθ ςυνζχεια, μειώθηκε ο όγκοσ των δεδομζνων για καλφτερθ επεξεργαςία και χειριςμό του dataset. Η μείωςθ αυτι, ζγινε με αυτοποιθμζνεσ μεκόδουσ, από το tab select attributes του weka. Συγκεκριμζνα, χρθςιμοποίθςα ωσ attribute evaluator το FilteredSubsetEval και ωσ search method τθν BestFirst και τελικά κράτθςα ςτο dataset τα ακόλουκα attributes: 8, 22, 24, 27, 28, 32, 33, 35 και φυςικά το output. 1 Θεϊνθ Αγάκου
3 Βήμα 2: Ζλεγχοσ ςφάλματοσ Διατθρϊντασ το train set ωσ ζχει, με μόνθ τροποποίθςθ αυτι τθσ μεταβλθτισ ςτόχου ςε nominal, υπολόγιςα το αρχικό ςφάλμα ςτο train set για να το χρθςιμοποιιςω ςτθ ςυνζχεια ωσ μζτρο ςφγκριςθσ με το τροποποιθμζνο train set (train23, δθλαδι εκείνο ςτο οποίο θ μεταβλθτι ςτόχοσ ιταν nominal αλλά και είχαμε διατθριςει ςτο dataset μόνο τισ προαναφερκείςεσ μεταβλθτζσ), προκειμζνου τελικά να εκτιμιςω το ςφάλμα που κα είχε θ διατιρθςθ ςτο dataset μόνο των μεταβλθτϊν αυτϊν. Με classifier τον κανόνα JRip και κανόνα αποτίμθςθσ το cross validation, το τελικό ςφάλμα που ζλαβα ιταν αρκετά καλό κι ζτςι ζγιναν αποδεκτζσ οι παραπάνω τροποποιιςεισ δεδομζνων. Η ςφγκριςθ είχε ωσ εξισ: Train Set Τροποποιθμζνο Train Set === Stratified cross-validation === === Stratified cross-validation === Correctly Classified Instances % % Incorrectly Classified Instances % % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % % Root relative squared error % % 2528 Βήμα 3: Επιλογι αλγορίκμου και πρόβλεψθ Αποκθκεφοντασ το τροποποιθμζνο train set πλζον (train23), εφόςον αποδζχτθκα τισ παραπάνω επεξεργαςίεσ δεδομζνων, άνοιξα το quiz extended set, ζκανα αντίςτοιχα τισ ίδιεσ τροποποιιςεισ με εκείνεσ του train set (nominal output, διατιρθςθ των attributes 8, 22, 24, 27,28, 32, 33, 35 και output) και το αποκικευςα ωσ quiz extended 23. Στθ ςυνζχεια, μετά από διάφορουσ πειραματιςμοφσ, κατζλθξα ςτθν εφαρμογι δφο καλϊν αλγορίκμων. Στθν παροφςα υποβολι, εφάρμοςα τον αλγόρικμο LADtree (βρίςκεται ςτο tab Classify trees) για τον οποίο ζλαβα τα εξισ αποτελζςματα ςτο train23: 2 Θεϊνθ Αγάκου
4 === Stratified cross-validation === Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Εφοδιάηοντασ το τροποποιθμζνο train set (train23) με το τροποποιθμζνο quiz extended set (quiz extended 23), το ποςοςτό επιτυχίασ, για αυτι τθν υποβολι, των προβλζψεων που προζκυψαν ιταν : Τποβολή 25 Στθν 25 θ υποβολι μου, χρθςιμοποίθςα ωσ βάςθ το train23. Δθλαδι, ςτο train set μετζτρεψα τθν output ςε nominal και ςτο dataset διατιρθςα μόνο τα attributes 8, 22, 24, 27, 28, 32, 33, 35 και τθν output. Συνεπϊσ, τα βιματα 1 και 2 τθσ υποβολισ αυτισ, ιταν ίδια με εκείνα τθσ υποβολισ 23. Για περεταίρω διευκόλυνςθ ςτο ςυμβολιςμό, το train23 το ονόμαςα τϊρα train25 και το quiz extended 23 το ονόμαςα αντίςτοιχα quiz extended 25. Πρόκειται για ακριβϊσ τα ίδια datasets (αντιςτοίχωσ). Βήμα 3 : Επιλογι αλγορίκμου και πρόβλεψθ Εδϊ, επιδίωξα να μεγιςτοποιιςω το ποςοςτό επιτυχίασ ςε ςχζςθ με τθν προθγοφμενθ υποβολι μου, αλλάηοντασ μόνο τον αλγόρικμο που χρθςιμοποίθςα. Επειδι διαπίςτωςα ότι τα δζντρα (trees) δίνουν μικρά ςφάλματα, επζμεινα αρκετά ςε αυτά, χρθςιμοποιϊντασ τϊρα τον αλγόρικμο BFtree. Για αυτόν, ζλαβα τα εξισ αποτελζςματα ςτο train25: 3 Θεϊνθ Αγάκου
5 === Stratified cross-validation === Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Μθν παρατθρϊντασ ότι το ςφάλμα ςε ςχζςθ με τα αντίςτοιχα αποτελζςματα τθσ 23 θσ υποβολισ είχε μεγαλϊςει (και μάλιςτα ςθμαντικά!), εφοδίαςα το τροποποιθμζνο train set (train25) με το τροποποιθμζνο quiz extended set ( quiz extended 25). To ποςοςτό επιτυχίασ τθσ νζασ πρόβλεψθσ, όπωσ ιταν αναμενόμενο ζπεςε και ιταν ίςο με : Ζχοντασ υποπζςει ςε πλειάδα αντίςτοιχων λακϊν και υποβολϊν, μετά από πολλοφσ πειραματιςμοφσ, αποφάςιςα να τροποποιιςω τισ προεπεξεργαςίεσ δεδομζνων, γιατί τα αποτελζςματα των υποβολϊν μου (τα ποςοςτά επιτυχίασ τουσ), δεν βελτιϊνονταν. Τποβολή 69 Η τακτικι που ακολοφκθςα εδϊ, ιταν αρκετά διαφορετικι ςε ςχζςθ με πριν. Αρχικά, για τον κακαριςμό των δεδομζνων χρθςιμοποίθςα μεκόδουσ οπτικοποίθςθσ και όχι αυτοματοποιθμζνεσ μεκόδουσ. Επίςθσ, άφθςα τθ μεταβλθτι ςτόχο ωσ είχε, δθλαδι numeric. Ειδικότερα, τα βιματα που ακολοφκθςα ιταν τα εξισ: Βήμα 1: Προεπεξεργαςία Δεδομζνων Με χριςθ του tab visualize all, ζκανα τισ εξισ παρατθριςεισ: Για το attribute 34, μόνο μια παρατιρθςθ (instance) παίρνει τθν τιμι 1, ενϊ όλεσ οι άλλεσ τθν τιμι μθδζν. Στο attribute 36, 2513 παρατθριςεισ παίρνουν τθν τιμι μθδζν και μόλισ 15 τθν τιμι 1. 4 Θεϊνθ Αγάκου
6 Στο attribute 38, όλεσ οι παρατθριςεισ παίρνουν μθδενικι τιμι (βρίςκονται ςτο διάςτθμα *0,0+). Για όλα τα υπόλοιπα attributes, οι παρατθριςεισ είχαν ζνα μεγαλφτερο εφροσ τιμϊν. Συνεπϊσ, αυτά τα τρία attributes ζδιναν χαμθλι πλθροφορία για τθ μεταβλθτι ςτόχο, και φαινόταν λογικό θ αφαίρεςι τουσ να μθν ζβλαπτε το τελικό αποτζλεςμα. Δεν ιταν ςαφισ ωςτόςο θ αποτελεςματικότθτα τθσ αφαίρεςθσ του attribute 36 με μια πρϊτθ ματιά, αλλά αυτό ανζλαβε να το εξαςφαλίςει ο ζλεγχοσ του ςφάλματοσ που κα επζφερε μια τζτοια επιλογι αφαίρεςθσ χαρακτθριςτικϊν (34,36,38). Ζτςι, πριν υπολογίςω το ςφάλμα, επζλεξα τα προαναφερκζντα attributes και τα ζδιωξα με το tab Remove. Βήμα 2: Ζλεγχοσ ςφάλματοσ Προτοφ προβϊ ςτθν αφαίρεςθ των μθ ςθμαντικϊν χαρακτθριςτικϊν, υπολόγιςα το ςφάλμα όλου του train set, για να το χρθςιμοποιιςω ωσ μζτρο ςφγκριςθσ με το τροποποιθμζνο train set (train69) μετά τθν αφαίρεςθ των χαρακτθριςτικϊν. Με χριςθ του tab Classify, του κανόνα PaceRegression (function) και του κριτθρίου αποτίμθςθσ cross validation, ζλαβα ζνα πολφ μικρό ςφάλμα μετά τθν αφαίρεςθ των attributes. Η ςφγκριςθ είχε ωσ εξισ: Train Set Τροποποιθμζνο Train Set === Cross-validation === === Cross-validation === Correlation coefficient Correlation coefficient Mean absolute error Mean absolute error Root mean squared error Root mean squared error Relative absolute error % Relative absolute error % Root relative squared error % Root relative squared error % 5 Θεϊνθ Αγάκου
7 Συνεπϊσ, θ αφαίρεςθ των attributes 34, 36 και 38 όπωσ φαινόταν κα ζδινε μια αρκετά καλι πρόβλεψθ. Αποκθκεφοντασ ςτθ ςυνζχεια το τροποποιθμζνο train set (train69) και ανοίγοντασ το quiz extended ζκανα τισ ίδιεσ τροποποιιςεισ με το train set. To τροποποιθμζνο quiz extended, το ονόμαςα quiz extended 69. Βήμα 3: Επιλογι αλγορίκμου και πρόβλεψθ Κι εδϊ χρθςιμοποίθςα δφο διαφορετικζσ αλλθλουχίεσ αλγορίκμων, οι οποίεσ επιλκαν κατόπιν πολλϊν υποβολϊν, αλλά ζδωςαν καλφτερα αποτελζςματα ςε ςχζςθ με πριν. Ειδικότερα, χρθςιμοποίθςα τον meta αλγόρικμο RandomSubSpace, με classifier τον επίςθσ meta αλγόρικμο RegressionByDiscretization, που με τθ ςειρά του εφοδιάςτθκε με τον tree classifier J48. Εφαρμόηοντασ τθν παραπάνω αλλθλουχία ςτο train69, κατζλθξα ςτα εξισ αποτελζςματα: === Cross-validation === Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Εφοδιάηοντασ το τροποποιθμζνο train set (train69), με το τροποποιθμζνο quiz extended set (quiz extended 69), το ποςοςτό επιτυχίασ τθσ υποβολισ αυτισ ιταν : Τποβολή 70 Κδια με τθν υποβολι 69, με διαφορά ςτο τρίτο βιμα. Επίςθσ, εδϊ το τροποποιθμζνο train set ονομάηεται train70 ( που είναι ίδιο με το train69), ενϊ αντίςτοιχα το τροποποιθμζνο quiz extended ονομάηεται quiz extended 70 ( που είναι ίδιο με το quiz extended 69). Βήμα 3: Επιλογι αλγορίκμου και πρόβλεψθ Στθν τελευταία αυτι υποβολι, χρθςιμοποίθςα ξανά τον meta αλγόρικμο RandomSubSpace. Ωσ classifier πιρα και πάλι τον meta αλγόρικμο 6 Θεϊνθ Αγάκου
8 RegressionByDiscretization, ενϊ άλλαξα τον classifier του τελευταίου, διαλζγοντασ πάλι ζνα tree (το J48graft). Εφαρμόηοντασ τθν αλλθλουχία αυτι των αλγορίκμων ςτο train70, ζλαβα τα εξισ αποτελζςματα τελικά: === Cross-validation === Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Παρατθροφμε ςυγκριτικά με τθν ακριβϊσ προθγοφμενθ υποβολι, ότι ο ςυντελεςτισ ςυςχζτιςθσ αυξικθκε ( και προςζγγιςε περιςςότερο τθ μονάδα), ενϊ τα διάφορα ςφάλματα μειϊκθκαν. Επομζνωσ, ιταν αναμενόμενο να γίνει μια καλι πρόβλεψθ των τιμϊν του quiz extended 70. Τελικά, το ποςοςτό επιτυχίασ τθσ πρόβλεψθσ αυτισ ιταν : , που ιταν και το καλφτερο ποςοςτό που βρικα μετά το πζρασ όλων των υποβολϊν μου. Test set Για τθν τελικι και οριςτικι υποβολι (προβλζψεισ των τιμϊν του test set), κα εφαρμόςω τθν αλλθλουχία των αλγορίκμων τθσ τελευταίασ υποβολισ, από τθν οποία προζκυψε το μεγαλφτερο ποςοςτό επιτυχίασ ςτο quiz set, ελπίηοντασ ότι κα προκφψει κι εδϊ ζνα υψθλισ αξιοπιςτίασ αποτζλεςμα. Βήμα 1: Προεπεξεργαςία Δεδομζνων Όμοια με το quiz set, θ τροποποίθςθ που κα γίνει κι εδϊ είναι θ μείωςθ των χαρακτθριςτικϊν. Επιλζγω ξανά να διϊξω τα attributes 34, 36 και 38, ενϊ θ μεταβλθτι ςτόχοσ παραμζνει ωσ ζχει (numeric). Επίςθσ, ςτο test set δεν πρζπει να παραλειφκεί θ προςκικθ τθσ μεταβλθτισ ςτόχου (output) και ς αυτι να προςδοκοφν οι τιμζσ 0 (set missing values to 0 ). Αποκθκεφω το test set με τθν μεταβλθτι ςτόχο ωσ test extended set. 7 Θεϊνθ Αγάκου
9 Βήμα 2: Ζλεγχοσ ςφάλματοσ Στο ςθμείο αυτό διευκρινίηω ότι το τροποποιθμζνο train set το ονομάηω final train set, ενϊ το τροποποιθμζνο test extended set το ονομάηω final test extended set. Ο ζλεγχοσ ςφάλματοσ, πάνω ςτο train set, ζχει ιδθ γίνει ( πρόβλεψθ 69-70) και ςυνεπϊσ δεν χρειάηεται να επαναλθφκεί. Ήδθ γνωρίηουμε ότι θ παροφςα τροποποίθςθ των δεδομζνων, μπορεί να αποδϊςει ζνα πολφ καλό αποτζλεςμα. Βήμα 3: Επιλογι αλγορίκμου και πρόβλεψθ Ο καλφτεροσ αλγόρικμοσ των προαναφερκζντων υποβολϊν, ιταν και αυτόσ που κα επιλζξω για τθν τελικι υποβολι του test set, δθλαδι: RandomSubSpace (Classifier) RegressionByDiscretization (Classifier) J48graft Εφαρμόηοντασ τθν αλλθλουχία αυτι ςτο final train set, ζχουμε τα εξισ αποτελζςματα: === Cross-validation === Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Συγκρίνοντασ με μια γριγορθ ματιά τα αποτελζςματα αυτά, με τα αντίςτοιχα για το quiz set, διαιςκάνεται και αναμζνει κανείσ ότι εφοδιάηοντασ το final train set, με το final test extended set, και δεδομζνου ότι δεν ζχει γίνει υπερεκτίμθςθ ςφάλματοσ, θ πρόβλεψθ των τιμϊν του test set κα είναι καλι και αξιόπιςτθ. 8 Θεϊνθ Αγάκου
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά Μάιος 2008 Τα δεδομένα που έχουμε προς επεξεργασία χωρίζονται σε τρία μέρη: 1. Τα δεδομένα εκπαίδευσης (training set) που αποτελούνται από 2528
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ Το σύνολο των
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M. 09470015 AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκων: Γιώργος Τζιραλής ΔΠΜΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Στάδιο 1 ο. Προεπισκόπηση-προεπεξεργασία δεδομένων: Δίδονται τα παρακάτω
ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ
DATA MINING ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ 1 ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ Αφού δεν γνωρίζουμε κάποιο τρόπο για να επιλέξουμε εκ των προτέρων την πιο κατάλληλη και αποδοτική μέθοδο μάθησης
ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης
Ι. Preprocessing (Επεξεργασία train.arff):
Ονοματεπώνυμο: Κατερίνα Αργύρη Δ.Π.Μ.Σ: Εφαρμοσμένες Μαθηματικές Επιστήμες Ακαδ. Έτος: 2008-2009 1 Για την παρούσα εργασία διατίθενται τρία σύνολα δεδομένων: Δεδομένα Εκπαίδευσης (train set αρχείο train.arff):
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008
squared error, Mean absolute error, Root mean squared error) µεγάλωσαν,
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣ ΣΤΙΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΈΤΟΣ 2009 ΌΝΟΜΑ : ΚΑΤΣΑΒΡΙΑΣ ΕΥΑΓΓΕΛΟΣ Α.Μ. : 09480014 ΕΞΑΜΗΝΟ
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΠΡΟΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Τα προς επεξεργασία
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
review1= a great movie - positive, review2= excellent film - positive review3= worst film ever - negative, review4= a bad movie - negative
Τεχνικζσ Εξόρυξθσ Δεδομζνων: Χειμερινό Εξάμθνο 2011 Πρϊτθ Άςκθςθ (ομάδεσ ζωσ 2 ατόμων) Ημερομθνία Παράδοςθσ: 8/1/2011 Σε αυτι τθν άςκθςθ θα μελετήςετε τρόπουσ προεπεξεργαςίασ των δεδομζνων, αλγορίθμουσ
ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Ηλεκτρονικι Επιχειρθςιακι Δράςθ Εργαςτιριο 1
1. Εγκατάςταςη Xampp Προκειμζνου να γίνει θ εγκατάςταςθ κα πρζπει πρϊτα να κατεβάςετε και εγκαταςτιςετε το XAMPP ωσ ακολοφκωσ. 1.1. Πάμε ςτθν ακόλουκθ διεφκυνςθ https://www.apachefriends.org/download.html
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.
ΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ
ΠΡΟΦΟΡΑ ΖΗΣΗΗ ΚΡΑΣΘΚΗ ΠΑΡΕΜΒΑΗ 1 Ειςαγωγι: Οι αγοραίεσ δυνάµεισ τθσ προςφοράσ και ηιτθςθσ Προσφορά και Ζήτηση είναι οι πιο γνωςτοί οικονοµικοί όροι. Η λειτουργία των αγορϊν προςδιορίηεται από δφο βαςικζσ
ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Ανάλυςη κλειςτϊν δικτφων
Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο
ςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ
ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με
DIOSCOURIDES VERSION
DIOSCOURIDES VERSION 2.15.29 ΑΛΛΑΓΗ ΥΠΑ ΚΑΙ & ΕΠΑΝΤΠΟΛΟΓΙΜΟ ΛΙΑΝΙΚΗ ΣΙΜΗ ΠΑΡΑΥΑΡΜΑΚΩΝ Για τθν τροποποίθςθ των παραπάνω ςτοιχείων ςτθ νζα ζκδοςθ ςασ δίνουμε τθ δυνατότθτα να αλλάξετε το ΦΠΑ και τθ λιανικι
HY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ
ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014
ΑΣΛΑΝΣΙΚΗ ΕΝΩΗ ΠΑΝΕΤΡΩΠΑΪΚΟ STRESS TEST ΑΦΑΛΙΣΙΚΩΝ ΕΣΑΙΡΙΩΝ ΑΠΟΣΕΛΕΜΑΣΑ 2014 τθ διάρκεια του τρζχοντοσ ζτουσ εξελίχκθκε θ ευρωπαϊκι άςκθςθ προςομοίωςθσ ακραίων καταςτάςεων για τισ Αςφαλιςτικζσ Εταιρίεσ
Οδηγίεσ για την Τποβολή Καταςτάςεων υμφωνητικών μζςω xml αρχείου
Οδηγίεσ για την Τποβολή Καταςτάςεων υμφωνητικών μζςω xml αρχείου Περιεχόμενα Ρυθμίςεισ αςφάλειασ κατά την εγκατάςταςη τησ εφαρμογήσ TAXISnet offline ςε JAVA 1.6... 2 Χρήςη Εφαρμογήσ-υνοπτικά Βήματα...
Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox
Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί
Γενικόσ Δείκτησ Τιμών Καταναλωτή (ΔΤΚ) Γενικοφ ΔΤΚ. Εκπαίδευςη Αλκοολοφχα ποτά & Καπνό Χρηςιμοποιήςαμε τα λογιςμικά Excel, PowerPoint & Piktochart.
Τι είναι ο Γενικόσ Δείκτησ Τιμών Καταναλωτή (ΔΤΚ); Ροιεσ από τισ ομάδεσ που μελετά ο δείκτθσ εμφανίηουν τουσ υψθλότερουσ, ποιεσ τουσ χαμθλότερουσ μζςουσ ετιςιουσ υποδείκτεσ τθν περίοδο 2008-2018; Οι υποδείκτεσ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 3 ο Εργαςτιριο υγχρονιςμόσ Διεργαςιϊν Παράλλθλεσ Διεργαςίεσ (1/5) Δφο διεργαςίεσ λζγονται «παράλλθλεσ» (concurrent) όταν υπάρχει ταυτοχρονιςμόσ, δθλαδι οι εκτελζςεισ τουσ επικαλφπτονται
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Ειδικά Θζματα Βάςεων Δεδομζνων
Ειδικά Θζματα Βάςεων Δεδομζνων Ενότητα 15: Εξόρυξη Δεδομζνων (Data Mining) Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ.
Ερωτήςεισ Προβλήματα Α. Σημειώςτε δεξιά από κάθε πρόταςη το γράμμα Σ αν η πρόταςη είναι ςωςτή και το γράμμα Λ αν είναι λάθοσ. 1. Θ περατότθτα ενόσ αλγορίκμου αναφζρεται ςτο γεγονόσ ότι καταλιγει ςτθ λφςθ
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R
Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα
ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ
ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ
Πειραματικι Ψυχολογία (ΨΧ66)
Πειραματικι Ψυχολογία (ΨΧ66) Διάλεξη 7 Σεχνικζσ για τθν επίτευξθ ςτακερότθτασ Πζτροσ Ροφςςοσ Μζθοδοι για την επίτευξη του ελζγχου Μζςω του κατάλλθλου ςχεδιαςμοφ του πειράματοσ (ςτόχοσ είναι θ εξάλειψθ
Θεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)
(v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει
ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ
ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
Αναφορά Εργαςίασ Nim Game
Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player
Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».
Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -
Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)
Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.
Διαχείριςη Αριθμοδεικτών (v.1.0.7)
Διαχείριςη Αριθμοδεικτών (v.1.0.7) Περιεχόμενα 1. Μενοφ... 5 1.1 Αρικμοδείκτεσ.... 5 1.1.1 Δθμιουργία Αρικμοδείκτθ... 6 1.1.2 Αντιγραφι Αρικμοδείκτθ... 11 2. Παράμετροι... 12 2.1.1 Κατθγορίεσ Αρικμοδεικτϊν...
Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ.
Ερϊτθςθ 1 Μια μελζτθ πραγματοποιείται για να εξετάςει αν θ μετεμμθνοπαυςιακι ορμονικι κεραπεία ζχει προςτατευτικό ρόλο για τθν πρόλθψθ εμφράγματοσ του μυοκαρδίου. 1013 γυναίκεσ με οξφ ζμφραγμα του μυοκαρδίου
Ζρευνα ικανοποίθςθσ τουριςτϊν
Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν
Διδάςκων: Κωνςταντίνοσ τεφανίδθσ
ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ
1. Κατέβαςμα του VirtueMart
1. Κατέβαςμα του VirtueMart Αρχικό βήμα (προαιρετικό). Κατζβαςμα και αποςυμπίεςη αρχείων VirtueMart ΠΡΟΟΧΗ. Αυτό το βήμα να παρακαμφθεί ςτο εργαςτήριο. Τα αρχεία θα ςασ δοθοφν από τουσ καθηγητζσ ςασ. Οι
Δια-γενεακι κινθτικότθτα
Δια-γενεακι κινθτικότθτα Κατά κανόνα οι τρζχουςεσ επιλογζσ των ατόμων ζχουν ςυνζπειεσ ςτο μζλλον (δυναμικι ςχζςθ). Σε ότι αφορά τισ επιλογζσ των ατόμων ςε ςχζςθ με τθν εκπαίδευςθ γνωρίηουμε ότι τα άτομα
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΑΠΡΙΛΙΟ 2018 ΚΑΘΗΓΗΤΗΣ: Γιώργος Πασσαλίδης ΑΕΠΠ ΟΝΟΜΑΣΕΠΩΝΤΜΟ: ΒΑΘΜΟ : ΘΕΜΑ Α Α1. Για κακεμία από τισ παρακάτω προτάςεισ
Εργαςτιριο Βάςεων Δεδομζνων
Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ. Πορεία Εκτζλεςθσ Προχπολογιςμοφ Προςωρινά τοιχεία Ιανουαρίου Αυγοφςτου 2010
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ Πορεία Εκτζλεςθσ Προχπολογιςμοφ Προςωρινά τοιχεία Ιανουαρίου Αυγοφςτου 2010 10 επτεμβρίου 2010 Εκτζλεςθ Προχπολογιςμοφ 2009 2010 8μθνο 8μθνο Μεταβολι 8μινου 10/09
ΔΕΛΣΙΟ ΣΤΠΟΤ. Από τθν Ελλθνικι Στατιςτικι Αρχι (ΕΛΣΤΑΤ) ανακοινϊνεται το Ακακάριςτο Εγχϊριο Προϊόν για το 2 ο τρίμθνο του 2015(προςωρινά ςτοιχεία).
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΕΛΛΗΝΙΚΗ ΣΑΣΙΣΙΚΗ ΑΡΧΗ ΔΕΛΣΙΟ ΣΤΠΟΤ Πειραιάσ, 28-08-2015 ΣΡΙΜΗΝΙΑΙΟΙ ΕΘΝΙΚΟΙ ΛΟΓΑΡΙΑΜΟΙ: 2 ο Τρίμθνο 2015 (Προςωρινά ςτοιχεία) Από τθν Ελλθνικι Στατιςτικι Αρχι (ΕΛΣΤΑΤ) ανακοινϊνεται
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO
ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει
Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων
Ιςοηυγιςμζνα δζντρα και Β- δζντρα Δομζσ Δεδομζνων Περιεχόμενα Ιςοηυγιςμζνα δζντρα Μζκοδοι ιςοηφγιςθσ δζντρων Μονι Περιςτροφι Διπλι Περιςτροφι Β - δζντρα Ιςοηυγιςμζνα δζντρα Η μορφι ενόσ δυαδικοφ δζντρου
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε
ΠΑΝΕΠΙΣΗΜΙΑΚΟ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ «ΑΣΣΙΚΟΝ» ΕΚΘΕΗ ΕΠΕΞΕΡΓΑΙΑ ΕΡΩΣΗΜΑΣΟΛΟΓΙΩΝ ΑΘΕΝΩΝ ΣΩΝ ΕΞΩΣΕΡΙΚΩΝ ΙΑΣΡΕΙΩΝ ΦΕΒΡΟΤΑΡΙΟ 2012
ΠΑΝΕΠΙΣΗΜΙΑΚΟ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ «ΑΣΣΙΚΟΝ» ΕΚΘΕΗ ΕΠΕΞΕΡΓΑΙΑ ΕΡΩΣΗΜΑΣΟΛΟΓΙΩΝ ΑΘΕΝΩΝ ΣΩΝ ΕΞΩΣΕΡΙΚΩΝ ΙΑΣΡΕΙΩΝ ΦΕΒΡΟΤΑΡΙΟ 2012 ελίδα 1 από 24 ΤΝΟΨΗ ΤΜΠΕΡΑΜΑΣΩΝ 26% κακζσ εντυπϊςεισ από τθν τθλεφωνικι εξυπθρζτθςθ
Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:
Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com
Γεωργικός Πειραματισμός ΙΙ
ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ Η ανάλυςθ ςυςτάδων κατανζμει ζνα ςφνολο μεταβλθτϊν ι παρατθριςεων ςε ςυγκεκριμζνεσ ομάδεσ οι οποίεσ διακζτουν κοινά χαρακτθριςτικά, ευκρινϊσ διαφοροποιθμζνα από εκείνα των άλλων ομάδων.
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι
1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν
Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ
Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Ειςαγωγό Όπωσ είδαμε, ο χϊροσ εικονικϊν διευκφνςεων μνιμθσ που χρθςιμοποιεί κάκε διεργαςία, είναι αρκετά μεγαλφτεροσ από το χϊρο των φυςικϊν διευκφνςεων.
Slide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:
ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ
Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι
Στατιςτικζσ δοκιμζσ Συνεχι δεδομζνα Γεωργία Σαλαντι Τι κζλουμε να ςυγκρίνουμε; Δφο δείγματα Μζςθ αρτθριακι πίεςθ ςε δφο ομάδεσ Πικανότθτα κανάτου με δφο διαφορετικά είδθ αντικατακλιπτικϊν Τθν μζςθ τιμι
Γεωργικός Πειραματισμός ΙΙ ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ
ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ Συχνά ςυμβαίνει ςτα πρϊτα ςτάδια ενόσ βελτιωτικοφ προγράμματοσ να μθν υπάρχει επαρκι ποςότθτα γενετικοφ υλικοφ των νζων ςειρϊν, γεγονόσ που δυςχεράνει τθν πραγματοποίθςθ πειραμάτων αξιολόγθςθσ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ. Πορεία Εκτζλεςθσ Προχπολογιςμοφ τοιχεία Ιανουαρίου Αυγοφςτου 2010
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ Πορεία Εκτζλεςθσ Προχπολογιςμοφ τοιχεία Ιανουαρίου Αυγοφςτου 2010 20 επτεμβρίου 2010 Εκτζλεςθ Προχπολογιςμοφ Σακτικόσ Προχπ/ςμόσ 2009 2010 8μθνο 8μθνο Μεταβολι
ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ
29/9/2014 το μάκθμα τθσ ευζλικτθσ ηϊνθσ,τα παιδιά χωρίςτθκαν ςε ομάδεσ και ζφτιαξαν τθν δικι τουσ ηωγραφιά χρθςιμοποιϊντασ γεωμετρικά ςχιματα. ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ ΤΜΜΕΣΡΙΑ: 10 ΚΑΙ 13 ΟΚΣΩΒΡΙΟΤ
Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )
Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ
Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9
Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:
ΕΠΑΝΕΚΔΟΗ ΣΙΜΟΛΟΓΙΩΝ ΙΑΝΟΤΑΡΙΟΤ (version )
ΕΠΑΝΕΚΔΟΗ ΣΙΜΟΛΟΓΙΩΝ ΙΑΝΟΤΑΡΙΟΤ (version 2.14.13) Σχετικά με το κζμα που προζκυψε με τθν επιςτροφι των τιμολογίων του ΕΟΠΥΥ, που υποβλικθκαν με το λογαριαςμό Ιανουαρίου 2014, και τθν απαίτθςθ ορκισ επανζκδοςθσ
Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.
1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)
Δίκτυα Υπολογιςτϊν 2-Rooftop Networking Project
Ονοματεπώνυμα και Α.Μ. μελών ομάδασ Κοφινάσ Νίκοσ ΑΜ:2007030111 Πζρροσ Ιωακείμ ΑΜ:2007030085 Site survey Τα κτιρια τθσ επιλογισ μασ αποτελοφν το κτιριο επιςτθμϊν και το κτιριο ςτο οποίο ςτεγάηεται θ λζςχθ
Δείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014
τατιςτικά ςτοιχεία ιςτότοπου Κ.Ε.Π.Α. Α.Ν.Ε.Μ, www.e-kepa.gr για τθν περίοδο 1/1/2011-31/12/2014 Ειςαγωγι Στο παρόν κείμενο παρουςιάηονται και αναλφονται τα ςτατιςτικά ςτοιχεία του ιςτοτόπου τθσ ΚΕΠΑ-ΑΝΕΜ,
Προώθησε το site σου στις μηχανε ς αναζη τησης
Προώθησε το site σου στις μηχανε ς αναζη τησης ΠΡΟΟΧΘ! ΑΤΣΟ Ο ΟΔΘΓΟ ΕΙΝΑΙ ΙΔΑΝΙΚΟ ΓΙΑ ΝΕΕ ΙΣΟΕΛΙΔΕ ΑΛΛΑ Θ ΣΡΑΣΘΓΙΚΘ ΜΠΟΡΕΙ ΝΑ ΕΦΑΡΜΟΣΕΙ ΕΤΚΟΛΑ Ε ΠΑΛΙΕ ΙΣΟΕΛΙΔΕ ΚΑΙ ΝΑ ΣΙ ΩΦΕΛΘΕΙ... Μια προςφορά του http://nextnet.gr
ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΑΡΙΘΜΟ ΑΝΑΠΛΗΡΩΣΩΝ
ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΔΙΟΡΙΜΟΙ ΜΟΝΙΜΩΝ ΚΑΘΗΓΗΣΩΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΑΡΙΘΜΟ ΔΙΟΡΙΘΕΝΣΩΝ 2006-2007 34 2007-2008 40 2008-2009 38 2009-2010 25 2010-2011 13 ΤΝΟΛΟ: 150 ΔΙΟΡΙΜΟΙ ( ΜΕΟ ΟΡΟ 30 ΔΙΟΡΙΜΟΙ ΑΝΑ ΕΣΟ) Με