Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Αποσύνθεση Χρονοσειράς Διάλεξη 2
|
|
- Πηρω Ζαφειρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση Χρονοσειράς Διάλεξη 2
2 Αποσύνθεση (Decomposition) 01 Μαθηματική διαδικασία η οποία αποσκοπεί στην απομόνωση των συνιστωσών μίας χρονοσειράς. Τάση Εποχιακότητα Τυχαιότητα Κύκλος Τάση Trend component Εποχιακότητα Seasonal Component Τυχαιότητα Irregular or Random component Κύκλος Cyclical component Μαθηματική Διατύπωση: Υ t = f(s t, T t, C t, R t )
3 Αποσύνθεση (Decomposition) 02 Τάση Εποχιακότητα Τυχαιότητα Κύκλος Τάση Trend component Εποχιακότητα Seasonal Component Τυχαιότητα Irregular or Random component Κύκλος Cyclical component Μαθηματική Διατύπωση: Υ t = f(s t, T t, C t, R t ) Υ t : παρατήρηση κατά τη χρονική περίοδο t S t : συνιστώσα εποχιακότητας T t : συνιστώσα τάσης C t : συνιστώσα κύκλου R t : συνιστώσα τυχαιότητας
4 03 Αποσύνθεση (Decomposition) Προσθετικό (Additive) Δύο μορφές του μοντέλου Πολλαπλασιαστικό (Multiplicative) Υ t = S t + T t + R t + C t Υ t : παρατήρηση κατά τη χρονική περίοδο t S t : συνιστώσα εποχιακότητας T t : συνιστώσα τάσης κύκλου R t : συνιστώσα τυχαιότητας Υ t = S t T t R t C t
5 Γράφημα της Αποσύνθεσης 04
6 Αποεποχικοποίηση 05 Είναι μέρος της διαδικασίας αποσύνθεσης. Αποσκοπεί στην απομόνωση της συνιστώσας εποχιακότητας (περιοδική συμπεριφορά στη διάρκεια ενός έτους) της χρονοσειράς. Αποσκοπεί στην δημιουργία της αποεποχικοποιημένης χρονοσειράς.
7 Αποεποχικοποίηση 06 Είναι ιδιαίτερα σημαντική διαδικασία. Οι μέθοδοι προβλέψεων πρέπει να εφαρμόζονται σε μη εποχιακές χρονοσειρές, οι οποίες στην συνέχεια επαναεποχικοποιούνται (εποχικοποίηση). Η πρακτική αυτή αυξάνει την αξιοπιστία των προβλέψεων.
8 Αίτια Εποχιακής Συμπεριφοράς 07 Ημερολογιακές επιδράσεις (Calendar effects) Οι μέρες των εθνικών εορτών κ.λ.π. επιδρούν δυναμικά στα οικονομικά μεγέθη, δημιουργώντας ένα εποχιακό πρότυπο, ιδιαίτερα έντονο στην βιομηχανική παραγωγή και στην κατανάλωση αγαθών. Σημαντικές αποφάσεις (Institutional influences) Όλα τα είδη αποφάσεων από ιδρύματα και ιδιώτες επιδρούν με τον ανάλογο βαθμό στην εξέλιξη οικονομικών μεγεθών. Κλασσικό παράδειγμα οι ακριβείς ημερομηνίες που θα διατεθούν, από διάφορους οργανισμούς, τα μερίσματα των μετοχών ή τα ομόλογα.. Προσδοκίες (Expectations) Οι προσδοκίες στον οικονομικό χώρο, απόρροια της μακράς πείρας, επιδρούν άμεσα στις αποφάσεις των παραγωγών και καταναλωτών με αποτέλεσμα να δημιουργούν εποχιακές διακυμάνσεις. Παράδειγμα η αύξηση της παραγωγής παιχνιδιών πριν τις εορτές αλλά και η αναμονή των καταναλωτών μέχρι να πέσει η τιμή του πετρελαίου θέρμανσης.. Κλίμα- Καιρός (Weather influences) Οι κλιματολογικές μεταβολές επιδρούν στις οικονομικές μεταβλητές και είναι ιδιαίτερα έντονες στον χώρο της αγροτικής παραγωγής, των κατασκευαστικών εταιρειών, των μεταφορών κ.λ.π.
9 Κινητοί Μέσοι Όροι 08 Οι κινητοί μέσοι όροι χρησιμοποιούνται ως: Μέθοδο αποεποχικοποίησης εξομάλυνσης των δεδομένων. Εκτιμούμε την καμπύλη τάσης κύκλου χρησιμοποιώντας τον μέσο όρο των κοντινών σημείων. Μέθοδο πρόβλεψης των δεδομένων. Εκτιμούμε την τιμή της επόμενης παρατήρησης χρησιμοποιώντας τον μέσο όρο των πιο πρόσφατων παρατηρήσεων.
10 09 Κινητοί Μέσοι όροι Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Simple Moving Average Weighted moving Average Double Moving Average Centered Moving Average
11 Simple Moving Average 10 Υπολογισμός του μέσου όρου των τιμών γύρω από μία παρατήρηση. Εξαλείφει μέρος της τυχαιότητας των δεδομένων Δίνει μία λογική εκτίμηση της συνιστώσας τάσης-κύκλου της παρατήρησης.
12 Simple Moving Average 11
13 Simple Moving Average 12
14 t Y t KMO(5) , , , , , , , , , , , , Simple Moving Average 13
15 Weighted Moving Average 14 Αποτελεί παραλλαγή του Simple Moving Average. Οι όροι που μετέχουν στον μέσο όρο, έχουν διαφορετικά βάρη. Δίνεται μεγαλύτερο βάρος στις παρατηρήσεις που γειτνιάζουν σε μεγάλο βαθμό με την τρέχουσα παρατήρηση και μικρότερο βάρος στις πιο μακρινές παρατηρήσεις. Επιλέγονται, ώστε να είναι συμμετρικά ως προς την τρέχουσα παρατήρηση. Η καμπύλη που προκύπτει είναι περισσότερο ομαλή.
16 Weighted Moving Average 15
17 t Y t ΣΚΜΟ(5) , , , , , , , , , , , , Weighted Moving Average 16
18 Double Moving Averages 17 Αποτελεί αποτέλεσμα της ομαλοποίησης ενός απλού μέσου όρου, με την χρήση ενός δεύτερου απλού μέσου όρου. Π.χ. Ο 5x3 ΜΑ υπολογίζεται από τον 3ΜΑ ενός 5ΜΑ.
19 Double Moving Average 18 t Y t ΚΜΟ(3) ΔΚΜΟ(3 3) , ,67 40, ,33 39, ,67 37, ,00 37, ,00 39, ,67 37, ,33 34, ,33 37, ,67 41, ,00 40, ,67 37, ,00 37, ,
20 Centered Moving Average 19
21 Centered Moving Average 20 t Y t ΚΚΜΟ(4) , , , , , , , , , , , ,
22 Κινητοί Μέσοι Όροι ως Μέθοδος Πρόβλεψης 21
23 Κινητοί Μέσοι Όροι ως Μέθοδος Πρόβλεψης 22
24 Τεχνική Backcasting 23 t Y t KMO(5) t Y t KMO(5) ; 1 15 ; 2 17 ; 2 17 ; , , , , , , , , ; , ; ,
25 Τεχνική Backcasting 24 t Y t t' Y t ' t Y t KMO(5) , , , , , , , ,
26 Βήματα Κλασικής Μεθόδου Αποσύνθεσης 25 Βήμα 1 ο Υπολογισμός ενός κινητού μέσου όρου ο οποίος βασίζεται στο μήκος της εποχιακότητας Βήμα 4 ο Διαίρεση των πραγματικών δεδομένων με τους αντίστοιχους δείκτες εποχιακότητας για την εύρεση της αποεποχικοποιημένης σειράς. Βήμα 2 ο Διαίρεση των πραγματικών δεδομένων με τις αντίστοιχες τιμές των κινητών μέσων όρων Βήμα 5 ο Απαλοιφή της τυχαιότητας από την αποεποχικοποιημένη σειρά. Βήμα 3 ο Απαλοιφή της τυχαιότητας από τους λόγους εποχιακότητας του Βήματος 2. Βήμα 6 ο Υπολογισμός της τάσης από τη σειρά τάσηςκύκλου του Βήματος 5.. Βήμα 7 ο Πρόβλεψη μέσω αποσύνθεσης
27 Κλασική Μέθοδος Αποσύνθεσης 26 Η κλασική μέθοδος αποσύνθεσης αποτελεί την πιο απλή διαδικασία για την απομόνωση των 4 συνιστωσών μιας χρονοσειράς. Βήμα 1ο: Υπολογισμός ενός κινητού μέσου όρου ο οποίος βασίζεται στο μήκος της εποχιακότητας (για παράδειγμα, κινητός μέσος όρος 7 παρατηρήσεων για ημερήσια δεδομένα). Με αυτόν τον τρόπο ο υπολογιζόμενος κινητός μέσος όρος δεν περιέχει εποχιακότητα ενώ περιέχει πολύ μικρή ή μηδενική τυχαιότητα, δεδομένου ότι η τυχαιότητα αντιπροσωπεύεται από τυχαίες διακυμάνσεις που κυμαίνονται γύρω από το μέσο όρο των παρατηρήσεων. Οι τιμές των κινητών μέσων όρων που υπολογίζονται με αυτόν τον τρόπο είναι εξομαλυμένες και δίνουν μια καλή εκτίμηση της συμπεριφοράς της χρονοσειράς όσον αφορά την τάση και την κυκλικότητα. Οπότε, μπορούμε να θεωρήσουμε πως: όπου ΚΜΟ(n) είναι ένας κινητός μέσος όρος μήκους n και T, C οι συνιστώσες τάσης και κύκλου αντίστοιχα. Στην περίπτωση που τα δεδομένα έχουν μήκος εποχιακότητας άρτιο αριθμό (για παράδειγμα μηνιαίες ή τριμηνιαίες παρατηρήσεις), τότε προτιμάται η χρήση κεντρικού κινητού μέσου όρου αντίστοιχου μήκους.
28 Κλασική Μέθοδος Αποσύνθεσης 27 Βήμα 2ο: Διαίρεση των πραγματικών δεδομένων με τις αντίστοιχες τιμές των κινητών μέσων όρων. Με τον τρόπο αυτό προκύπτουν οι λόγοι εποχιακότητας, οι οποίοι, όμως, περιέχουν τυχαιότητα: Βήμα 3ο: Απαλοιφή της τυχαιότητας από τους λόγους εποχιακότητας του Βήματος 2. Η διαδικασία επιτυγχάνεται με εύρεση της μέσης τιμής των αντίστοιχων λόγων εποχιακότητας, δηλαδή των λόγων που αναφέρονται σε αντίστοιχες χρονικές περιόδους. Στην περίπτωση, για παράδειγμα, μηνιαίων δεδομένων, υπολογίζουμε το μέσο όρο των λόγων εποχιακότητας που αντιστοιχούν στο μήνα Ιανουάριο, κατόπιν το μέσο όρο των λόγων εποχιακότητας που αντιστοιχούν στο μήνα Φεβρουάριο κοκ. Οι υπολογισμένοι μέσοι όροι αποτελούν τους δείκτες εποχιακότητας της αρχικής μας χρονοσειράς. Σε ορισμένες περιπτώσεις, οι δείκτες εποχιακότητας χρήζουν κανονικοποίησης, ούτως ώστε το άθροισμά τους να ισούται με το μήκος της εποχιακότητας. Αν η χρονοσειρά περιέχει αρκετή τυχαιότητα ή ασυνήθιστες τιμές, προτείνεται ο υπολογισμός των ενδιάμεσων μέσων όρων, προκειμένου να προκύψουν οι δείκτες εποχιακότητας. Η διαφοροποίηση έγκειται στη μη χρήση του μέγιστου και του ελάχιστου λόγου εποχιακότητας στον υπολογισμό του κάθε δείκτη εποχιακότητας, με στόχο τη σταθεροποίηση αυτών.
29 Κλασική Μέθοδος Αποσύνθεσης 28 Βήμα 4ο: Διαίρεση των πραγματικών δεδομένων με τους αντίστοιχους δείκτες εποχιακότητας για την εύρεση της αποεποχικοποιημένης σειράς. Για παράδειγμα, στα μηνιαία δεδομένα, κάθε παρατήρηση που αντιστοιχεί στο μήνα Δεκέμβριο διαιρείται με τον δείκτη εποχιακότητας του Δεκεμβρίου. Η σειρά που προκύπτει περιέχει μόνο τάση, κύκλο και τυχαιότητα: Βήμα 5ο: Απαλοιφή της τυχαιότητας από την αποεποχικοποιημένη σειρά. Αυτό επιτυγχάνεται υπολογίζοντας τον κινητό μέσο όρο μήκους 3 ή 6 παρατηρήσεων της αποεποχικοποιημένης σειράς. Η σειρά των μέσων όρων που προκύπτει, αποτελεί μία αρκετά ομαλή και ακριβή σειρά τάσης-κύκλου. Για βέλτιστη εξομάλυνση και απαλοιφή της τυχαιότητας συνίσταται η χρήση διπλού κινητού μέσου όρου 3 3. Αν το ζητούμενο είναι ο υπολογισμός της συνιστώσας της τυχαιότητας, αυτή μπορεί να προκύψει από διαίρεση της αποεποχικοποιημένης σειράς και της σειράς τάσης-κύκλου:
30 Κλασική Μέθοδος Αποσύνθεσης 29 Βήμα 6ο: Υπολογισμός της τάσης από τη σειρά τάσης-κύκλου του Βήματος 5. Μετά το 5ο Βήμα της αποσύνθεσης η σειρά που προκύπτει περιέχει τάση και κυκλικότητα. Σε περιπτώσεις που είναι επιθυμητός ο διαχωρισμός των δύο αυτών συνιστωσών, θα πρέπει να επιλεγεί το μοντέλο τάσης που περιγράφει καλύτερα τη χρονοσειρά. Αν θεωρήσουμε γραμμική τάση, ο υπολογισμός της συνιστώσας της τάσης επιτυγχάνεται από εφαρμογή της απλής γραμμικής παλινδρόμησης (ευθεία ελαχίστων τετραγώνων): Όπου Τ δηλώνει την σειρά της τάσης, TC δηλώνει τις τιμές της σειράς τάσης κύκλου (εξαρτημένη μεταβλητή της γραμμικής παλινδρόμησης) και t δηλώνει τον αύξοντα αριθμό της χρονικής περιόδου (ανεξάρτητη μεταβλητή της γραμμικής παλινδρόμησης). Οι συντελεστές α και β δηλώνουν το αρχικό επίπεδο και την τάση αντίστοιχα. Αφού υπολογισθεί η σειρά της τάσης, μπορεί να ορισθεί και η συνιστώσα του κύκλου ως η ακόλουθη διαίρεση:
31 Κλασική Μέθοδος Αποσύνθεσης 30 Βήμα 7ο: Πρόβλεψη μέσω αποσύνθεσης Έχοντας αναλύσει την αρχική χρονοσειρά στις συνιστώσες της, μπορούμε να τις συνθέσουμε (πολλαπλασιαστικά) προκειμένου να εκτιμήσουμε μελλοντικές τιμές της χρονοσειράς. Η διαδικασία αυτή λέγεται πρόβλεψη μέσω αποσύνθεσης και περιγράφεται από την παρακάτω εξίσωση:
32 Έλεγχος σημαντικής εποχιακής συμπεριφοράς 31 Σε αρκετές περιπτώσεις η χρονοσειρά δεν εμφανίζει σημαντική εποχιακή συμπεριφορά, οπότε θα μπορούσαν να παραλειφθούν τα βήματα 1 έως 4 της κλασικής μεθόδου αποσύνθεσης. Ο έλεγχος σημαντικότητας της εποχιακής συμπεριφοράς μιας σειράς δεδομένων εφαρμόζεται μέσω ελέγχου αυτοσυσχέτισης δεδομένων με περίοδο καθυστέρησης (k) ίση με τον αριθμό των περιόδων ενός κύκλου εποχιακότητας (pos) σε σύγκριση με τις αυτοσυσχετίσεις περιόδου καθυστέρησης έως και μιας μονάδας μικρότερης από τον αριθμό των περιόδων ενός κύκλου εποχιακότητας. Μία χρονοσειρά θεωρείται εποχιακή αν και μόνο αν ισχύει: Confidence Level t critical 80% 1,28 90% 1,645 95% 1,96 98% 2,33 99% 2,58
33 Fell free to say hi! We are friendly and social Ηρώων Πολυτεχνείου 9, Ζωγράφος Αττική, 15780, Ελλάδα info(at)fsu.gr Τηλέφωνο: Fax: Κτίριο της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 2ος όροφος NTUA Μονάδα Προβλέψεων και Στρατηγικής ΕΜΠ lesson@fsu.gr
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 2 η Ενότητα http://www.fsu.gr -
1 η Ενότητα Εισαγωγικά στοιχεία προβλέψεων. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 1 η Ενότητα Εισαγωγικά στοιχεία προβλέψεων
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Αποσύνθεση Χρονοσειράς Διάλεξη 3
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση Χρονοσειράς Διάλεξη 3 Αποσύνθεση (Decomposition)
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Data and Adjustments Διάλεξη 5
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Data and Adjustments Διάλεξη 5 Περιεχόμενα Example for the
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10 Επιλογή κατάλληλης
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Παρακολούθηση Χρονοσειράς Διάλεξη 11
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Παρακολούθηση Χρονοσειράς Διάλεξη 11 Παρακολούθηση (1 από
Τεχνικές Προβλέψεων. Παράδειγμα Αποσύνθεσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Παράδειγμα Αποσύνθεσης http://www.fsu.gr
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Intermittent Demand Διάλεξη 8
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Intermittent Demand Διάλεξη 8 Αίτια Δημιουργίας 01 Η διακοπτόμενη
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Intermittent Demand Διάλεξη 7η
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Intermittent Demand Διάλεξη 7η Αίτια Δημιουργίας 01 Η διακοπτόμενη
Τεχνικές Προβλέψεων Προετοιμασία Χρονοσειράς Data and Adjustments
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία Χρονοσειράς Data and Adjustments
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & StrategyUnit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2 Αποσύνθεση (Decomposition)
Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2 Αποσύνθεση (Decomposition)
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Μακροπρόθεσμη Πρόβλεψη Διάλεξη 11
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Μακροπρόθεσμη Πρόβλεψη Διάλεξη 11 Μηνιαίες τιμές χαλκού για
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Εισαγωγή στις Μεθόδους Προβλέψεων Διάλεξη 5
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Εισαγωγή στις Μεθόδους Προβλέψεων Διάλεξη 5 Περιεχόμενα Ορισμοί
Εισαγωγή στις Μεθόδους Προβλέψεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Εισαγωγή στις Μεθόδους Προβλέψεων Πρόβλεψη 02 Η μεγαλύτερη
Τεχνικές Προβλέψεων. 3η Ενότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα http://www.fsu.gr - lesson@fsu.gr
Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr
ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ
9-1 ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ Χρονοσειρά (Time Series) είναι η καταγραφή δεδομένων κατά τη διάρκεια μιας χρονικής περιόδου. Η καταγραφή αυτή μπορεί να είναι ημερήσια, εβδομαδιαία, μηνιαία, τριμηνιαία,
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 1 η Ενότητα http://fsu.ece.ntua.gr
Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η)
Στατιστική ΙΙΙ-(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική
Τεχνικές Προβλέψεων. Εισαγωγικά στοιχεία προβλέψεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Εισαγωγικά στοιχεία προβλέψεων http://www.fsu.gr
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
3η Ενότητα Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr
ΧΡΟΝΟΣΕΙΡΕΣ. Διαχείριση Πληροφοριών
ΧΡΟΝΟΣΕΙΡΕΣ Μία χρονοσειρά είναι ένα σύνολο παρατηρήσεων πάνω σε μία ποσοτική μεταβλητή που συγκεντρώνονται με το πέρασμα του χρόνου. Πρόκειται για δεδομένα πάνω στη συμπεριφορά μιας ή πολλών μεταβλητών
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Μέθοδος Theta Διαγωνισμοί Προβλέψεων Διάλεξη 9
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Μέθοδος Theta Διαγωνισμοί Προβλέψεων Διάλεξη 9 Το Μοντέλο
ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ
Διατμηματικό πρόγραμμα μεταπτυχιακών σπουδών ΥΔΡΑΥΛΙΚΗ ΜΗΧΑΝΙΚΗ Δρ Βασίλειος Κιτσικούδης και Δρ Σπηλιώτης Μιχάλης ΕΦΑΡΜΟΣΜΕΝΗ ΑΝΑΛΥΣΗ ΥΔΡΟΛΟΓΙΚΩΝ ΧΡΟΝΙΚΩΝ ΣΕΙΡΩΝ ΞΑΝΘΗ, 2015 Παραδείγματα από Τριβέλλα Θ.
Ανάπτυξη Διαδικτυακής Εφαρμογής Προβλέψεων Μεθόδων Χρονοσειρών
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη Διαδικτυακής Εφαρμογής Προβλέψεων Μεθόδων Χρονοσειρών Αθανάσιος Ι. Κουμεντάκος Γεωργακάκος Επιβλέπων:
Εισαγωγικά Στοιχεία Ποιοτικά Χαρακτηριστικά Χρονοσειρών Προετοιμασία Χρονοσειρών Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Εισαγωγικά Στοιχεία Ποιοτικά Χαρακτηριστικά Χρονοσειρών Προετοιμασία
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
Τεχνικές Προβλέψεων. 3η Ενότητα Προβλέψεις (Μέρος 2 ο )
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & StrategyUnit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 2 ο ) http://www.fsu.gr
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Προετοιμασία & Ανάλυση Χρονοσειράς Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Προετοιμασία & Ανάλυση Χρονοσειράς Διάλεξη 2 Απεικόνιση δεδομένων
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Συστήματα Λήψης Αποφάσεων [Εισαγωγικά Στοιχεία και Ποιοτικά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Συστήματα Λήψης Αποφάσεων [Εισαγωγικά Στοιχεία και Ποιοτικά
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
1.2 Απλός Κινητός Μέσος (Simple -equally-weighted- Moving Average)
Μέθοδοι Εξομάλυνσης Οι διαδικασίες της εξομάλυνσης (smoohig και της παρεμβολής (ierpolaio αποτελούν ένα περίπλοκο πεδίο έρευνας και γνώσης και έχουν άμεση πρακτική εφαρμογή στις οικονομικές επιστήμες..
7. ΧΡΟΝΟΣΕΙΡΕΣ ΚΑΙ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΟΥΣ
7. ΧΡΟΝΟΣΕΙΡΕΣ ΚΑΙ ΟΙ ΣΥΝΙΣΤΩΣΕΣ ΤΟΥΣ Πολλές οικονομικές χρονοσειρές αποτελούνται από συνιστώσες οι οποίες όταν μελετηθούν μεμονωμένα μας παρέχουν χρήσιμες πληροφορίες για την κατανόηση της συμπεριφοράς
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές [Εισαγωγικά Στοιχεία και Ποιοτικά Χαρακτηριστικά Χρονοσειρών] Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές [Εισαγωγικά
All rights reserved
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων Βελτίωση ακρίβειας στατιστικών μεθόδων πρόβλεψης σε
ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ
ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα
Ανάλυση και Πρόβλεψη Χρονοσειρών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Ανάλυση και Πρόβλεψη Χρονοσειρών Διπλωματική εργασία της Γεωργίας Μαργιά
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΥΠΟΔΕΙΓΜΑ ΒΡΑΧΥΠΡΟΘΕΣΜΩΝ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ
Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΥΠΟΔΕΙΓΜΑ ΒΡΑΧΥΠΡΟΘΕΣΜΩΝ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ DISSERTATION THESIS: SHORT-TERM BUSINESS PROVISION MODEL
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Συστήματα Λήψης Αποφάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Συστήματα Λήψης Αποφάσεων 3η Ενότητα Προβλέψεις http://www.fsu.gr
ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΚΑΙ ΜΟΝΤΕΛΑ ΠΡΟΒΛΕΨΗΣ ΖΗΤΗΣΗΣ
ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΚΑΙ ΜΟΝΤΕΛΑ ΠΡΟΒΛΕΨΗΣ ΖΗΤΗΣΗΣ Η δυνατότητα μιας επιχείρησης να προβλέπει με ακρίβεια τη ζήτηση των πελατών είναι εξαιρετικά σημαντική και συχνά χαρακτηρίζεται ως συγκριτικό πλεονέκτημα.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ Η ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΤΙΜΕΣ ΤΟΥ ΑΝΘΡΑΚΑ, ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ, ΤΟΥ ΧΑΛΥΒΑ ΚΑΙ ΤΟΥ ΧΡΥΣΟΥ Δαμιανού Χριστίνα Διπλωματική
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΕΒΔΟΜΑΔΙΑΙΑΣ ΠΡΟΒΛΕΨΗΣ ΩΡΙΑΙΑΣ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΤΙΡΙΩΝ ΜΕΣΗΣ ΤΑΣΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ Η/Υ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΔΠΜΣ: «ΤΕΧΝΟ-ΟΙΚΟΝΟΜΙΚΑ ΣΥΣΤΗΜΑΤΑ» ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΕΒΔΟΜΑΔΙΑΙΑΣ ΠΡΟΒΛΕΨΗΣ
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
ΔΙΑΛΕΞΗ8 η : Μέθοδοι και τεχνικές πρόβλεψης ζήτησης
Διοίκηση Λειτουργιών ΔΙΑΛΕΞΗ8 η : Μέθοδοι και τεχνικές πρόβλεψης ζήτησης Δρ. Β. Ζεϊμπέκης (vzeimp@fme.aegean.gr) Τμήμα Μηχανικών Οικονομίας & Διοίκησης Πολυτεχνική Σχολή, Πανεπιστήμιο Αιγαίου Copyright
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης
ΜΕΡΟΣ Βασικές Έννοιες Στατιστικής & Μέθοδοι Πρόβλεψης Εισαγωγή Περιγραφή μεθόδων πρόβλεψης Οι μέθοδοι προβλέψεων χωρίζονται σε 3 μεγάλες κατηγορίες Α. Με βάση τον ορίζοντα προγραμματισμού. βραχυπρόθεσμες.
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού.
ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σηµειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Η επιδίωξη της µέγιστης χρησιµότητας αποτελεί βασικό χαρακτηριστικό της συµπεριφοράς του καταναλωτή στη ζήτηση αγαθών.
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Κριτική Πρόβλεψη Διάλεξη 11
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Κριτική Πρόβλεψη Διάλεξη 11 Στατιστική Πρόβλεψη 01 Κριτική
Έλεγχος των Phillips Perron
ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων
Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα
Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή
ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Εισαγωγή στην Γραμμική Παλινδρόμηση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα Ελένη Ζαχαροπούλου
Διαχείριση Εφοδιαστικής Αλυσίδας
Διαχείριση Εφοδιαστικής Αλυσίδας 3 η Διάλεξη: Μέθοδοι & Τεχνικές πρόβλεψης ζήτησης (demand forecasting) 2017 Τμήμα Μηχανικών Οικονομίας & Διοίκησης Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
ΤΙ ΕIΝΑΙ ΠΡΟΒΛΕΨΕΙΣ; Διαδικασία εκτίμησης μελλοντικών καταστάσεων βασιζόμενη συνήθως σε ιστορικά στοιχεία
ΤΙ ΕIΝΑΙ ΠΡΟΒΛΕΨΕΙΣ; Διαδικασία εκτίμησης μελλοντικών καταστάσεων βασιζόμενη συνήθως σε ιστορικά στοιχεία Πρόβλεψη μελλοντικών γεγονότων για: Σχεδιασμό, Οργάνωση και Έλεγχο των πόρων Λήψη επιχειρηματικών
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Ορισµός. Ανάλυση Χρονοσειρών
Ορισµός Με τον όρο Χρονοσειρές εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Συµβολίζοντας µε Χi τις n χρονικές στιγµές (έτη, µήνες,
1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ
ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Απλή Γραμμική Παλινδρόμηση I
Απλή Γραμμική Παλινδρόμηση I. Εισαγωγή Έστω ότι θέλουμε να ερευνήσουμε εμπειρικά τη σχέση που υπάρχει ανάμεσα στις δαπάνες κατανάλωσης και στο διαθέσιμο εισόδημα, των οικογενειών. Σύμφωνα με την Κεϋνσιανή
Βραχυπρόθεσμη πρόβλεψη ζήτησης φορτίου ηλεκτρικής ενέργειας και εξέταση της επίδρασης των ειδικών ημερών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ειρήνη-Ελισάβετ Θεοδώρου
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων Βραχυπρόθεσμη πρόβλεψη ζήτησης φορτίου ηλεκτρικής ενέργειας
Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς.
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς Θέμα 1 Σε θέση ποταμού, όπου πρόκειται να κατασκευαστεί ταμιευτήρας,
ΠΥΘΙΑ 2η ΕΚΔΟΣΗ. Μονάδα Προβλέψεων και Στρατηγικής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών
ΠΥΘΙΑ 2η ΕΚΔΟΣΗ Επιχειρησιακές Προβλέψεις Σύστημα Υποστήριξης Μονάδα Προβλέψεων και Στρατηγικής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών http://www.fsu.gr
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative