|
|
- Αρκάδιος Μάγκας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Viola adorata
2
3 X ± 2s
4
5
6
7
8
9
10
11
12
13
14 AT1 AT MO CV 15.0% 13.3% Std Error
15
16
17 Descriptive Statistics Dependent Variable: tem loc Total Mean Std. Deviation N Dependent Variable: tem Source Corrected Model Intercept loc Error Total Corrected Total Tests of Between-Subjects Effects Type III Sum of Squares df Mean Square F Sig a a. R Squared =.521 (Adjusted R Squared =.441) Multiple Comparisons Dependent Variable: tem LSD (I) loc (J) loc Mean Difference 95% Confidence Interval (I-J) Std. Error Sig. Lower Bound Upper Bound -3.00* * * * Based on observed means. *. The mean difference is significant at the.05 level.
18 / / 1 8,4 11 8,0 2 5,8 12 7,7 3 7,8 13 7,0 4 6,4 14 7,7 5 7,9 15 7,3 6 7,2 16 6,7 7 7,3 17 6,3 8 8,4 18 7,3 9 5,1 19 6,0 10 7,6 20 4,2
19
20 X = 7,005 s= 1,097
21 s s X ta / 2 µ X + ta / 2 n n 1,097 1,097 7,005 2,093 µ 7,005+ 2, ( 6, 492, 7,518) Το 95% δ.ε. Κρίσιµη τιµή τηςt-κατανοµής για 19 β.ε. και επίπεδο σηµαντικότηταςα/2=0,025
22 s s X ta / 2 µ X + ta / 2 n n 1,097 1,097 7,005 1,729 µ 7,005+ 1, ,581, 7, 429 ( ) Το 90% δ.ε. Κρίσιµη τιµή τηςt-κατανοµής για 19 β.ε. και επίπεδο σηµαντικότηταςα/2=0,05
23 n 1 s n 1 s ( ) ( ) X σ 2 2 a / 2 X1 a / 2 19.(1,097) 19.(1,097) σ 32,852 8,907 0,696, 2,567 ( ) Το 95% δ.ε. για την παραλλακτικότητα s = 1,097 s = 1,
24 s = 1,097 s = 1, 203 µε 19 βε n ta / 2s 4.(2,093).1, 203 n = 84, d 0,5 1 n Βρίσκουµε την κρίσιµη τιµή τηςt-κατανοµής γιαα=0,025 και 85-1=84 β.ε. και επαναλαµβάνουµε τον υπολογισµό ta / 2s 4.(1,989).1, 203 n = 76, d 0,5 2
25
26 / Με βάση τα παραπάνω δεδοµένα να βρείτε ένα 90% διάστηµα εµπιστοσύνης για την πραγµατική διαφορά µ 1 -µ 2 στον αριθµό των σπόρων του φυτούχχχr που προέρχεται από άνθη στο πάνω και στο κάτω µέρος του φυτού.
27
28 z ± s z n t n 1; a / 2 Οι διαφορές x i -y i z i
29 z = 0,900, s = 1,729 z sz 1,729 z ± tn 1; a / 2 0,900± 1,833 n 10 µε t = t = 1,833 n 1; a / 2 9;0,05 ( 0,102, 1,902) Το 90% δ.ε.
30
31
32 pˆ = = 0,36 pˆ = = 0, pˆ (1 pˆ ) pˆ (1 pˆ ) pˆ pˆ ± z + n m n= 588, m= 123, z = z = 1, ( 1 2 ) a / 2, 0,10/ 2 0,05 0,36 0,64 0, 211 0,789 (0,36 0, 211) ± 1,64 + = ,149± 0,069 (0,08, 0, 218) Το 90% δ.ε.
33
34
35
36
37 Η 0 : µ 1 =µ 2 Η 1 : µ 1 µ 2 Σε ε.σ. α=0,05
38 n Y s = 10 = 1.185,0 = ,1 n Y s = 11 = 981,8 = , 4 F , 4 = = 4,17> F10,9;0,025 = 3, ,1 Οι δύο παραλλακτικότητες διαφέρουν στατιστικά σηµαντικά σε ε.σ. α=0,05
39 = { > } R t t ν ; a / 2 t Y Y Y Y = = 2 2 s s 1 s2 Y1 Y2 + n n Α ν n = n = n τ τε ν = 2( n 1) Αν n ν = 1 2 n ( 2 ) ( 2 s ) 1 / n1 s2 / n2 n s n τ τε s + n n 1 1 2
40 Τυπικό Σφάλµα ιαφοράς των δύο µέσων όρων s s s = + = + = 9.468,5 = 97,3 n m , , 4 s Y Y Y Y t ,0 981,8 = = 97,3 2,088 Βαθµοί Ελευθερίας 2 ( ,1/ , 4/11) ( ) + ( ) ν = = 14, ,1/10 / , 4/11 /10
41 t = 2,131 15;0,025
42
43
44
45 Η 0 Η 1 Υπολογίζουµε το στατιστικό: X X 2 2 ( ) 2 n 1 s = σ 2 0 ( 25 1) 750 = = ,8
46 { 2 2 } 1; R= X > X n a { 2 2 } { 2 36,42} 24;0,05 R= X > X = X > 2
47
48 A/A Μπορούµε να ισχυριστούµε ότι οι δύο µέθοδοι είναι ισοδύναµες σε ε.σ. α=0,05;
49
50 Η 0 : µ 1 =µ 2 Η 1 : µ 1 µ 2 Σε ε.σ. α=0,05
51 x i -y i A/A x i y i x i - y i
52 z = 4,6 s s 2 z z = 3,82 = 1,96 z n R= > tn 1; a / 2 sz 4,6 10 R= > t 1,96 9;0,025 4,6 10 1,96 = 7,42> t = 2,262 9;0,025
53
54 F
55
56
57 είγµατα F1 απογόνων * Κλάσεις Παραγ ωγής Γύρης Cros stabulation % w ithin είγµατα F1 απ ογόνων είγµατα F1 απ ογόνων Total συχν τητα κελιο 100 σ νολογραµµ ς Κλάσεις Παραγ ωγ ής Γύρης Total 27.5% 15.0% 22.5% 35.0% 100.0% 24.1% 20.7% 24.1% 31.0% 100.0% 37.8% 13.5% 18.9% 29.7% 100.0% 26.2% 9.5% 16.7% 47.6% 100.0% 42.3% 3.8% 23.1% 30.8% 100.0% 32.5% 11.5% 21.0% 35.0% 100.0% = =
58 σ νολογραµµ ς σ νολοστ λης αναµεν µενη είγµατα συχν F1 απογόνων τητα = * Κλάσεις Παραγ ωγής Γύρης γενικ σ νολο Expected Count είγµατα F1 απ ογόνων Total Κλάσεις Παραγ ωγ ής Γύρης Total = =
59 είγµατα F1 απογόνων * Κλ άσεις Παραγ ωγής Γύρης Cros stabulation είγµατα F1 απ ογόνων Total Count Expected Count Count Expected Count Count Expected Count Count Expected Count Count Expected Count Count Expected Count Κλάσεις Παραγ ωγ ής Γύρης Total Count: Συχνότητα Expected Count: Αναµενόµενη Συχνότητα
60 2 2 ( ) 2 2 παρατηρο µενη συχν τητα αναµεν µενη συχν τητα Χ = αναµεν µενη συχν τητα ( ) ( ) ( ) ,0 6 4, , 2 Χ = = 12,125 13,0 4,6 18, 2
61 2 2 2 Ανατρέχουµε στους Πίνακες της 2 Κατανοµής
62 2 (12) 0,05 =21,03 (12) 0,05 2 =12,125 2 =12,125<21,03= 21,03= 2 (12) (12) 0,05 2 < 2
63
64 Φυλλοφόρα µοσχεύµατα δύο ποικιλιών ελιάς που ριζοβόλησαν ή όχι µετά από 84 ηµέρες κάτω από υδρονέφωση
65
66 Η : p = Η p Στατιστικός Έλεγχος : ταδ οποσοστ διαφ ρουν ( p p ) 1 1 2
67 (1,1) 11= = 104,5 320 (2,1) 21= = 104,5 320 (1,2) 12= = 55,5 320 (2,2) 22= = 55,5 320
68 ιόρθωση Συνέχειας τουyates ( ) ( ) ( ) ( ) ,5 0, ,5 0, ,5 0, ,5 0,5 2 X = = 104,5 55,5 104,5 55,5 = 0,88 Γενική Σχέση X 2 = O E E Ο: Παρατηρούµενη Συχνότητα Ε: Αναµενόµενη-Θεωρητική Συχνότητα
69 2 (1) 0,05 =3,84 (1) 0,05 2 =0,88 2 =0,88<3,84= 2 (1) (1) 0,05 2 < 2
70 z z = pˆ pˆ pq ˆ ˆ( + ) n n 1 2 X 2 = ( pˆ pˆ ) pq ˆ ˆ( + ) n n 1 2
71
72 { } R= z > z a pˆ 1 pˆ z= 2 s /2 ˆ ˆ 1 1 s pq + n n 1 2 Σύµφωνα µε τη Μηδενική Υπόθεση τα δύο ποσοστά είναι ίσα και εποµένως µπορούµε να συγχωνεύσουµε τα δύο δείγµατα σε ένα και να υπολογίσουµε ένα κοινόp(καιq=1-p) 209 p= ˆ = 0, Τυπικό Σφάλµα της ιαφοράς των ύο Ποσοστών
73
74
75
76
77 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation % within Κλάσεις Ηλικιών Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 16.6% 2.8% 15.9% 56.6% 8.3% 100.0% 18.8%.9% 9.0% 65.5% 5.8% 100.0% 24.5% 5.5% 61.8% 8.2% 100.0% 22.6%.6% 3.4% 68.4% 5.1% 100.0% 28.9%.8% 5.5% 53.1% 11.7% 100.0% 19.6% 4.9% 2.9% 59.8% 12.7% 100.0% 21.8% 1.3% 7.1% 61.7% 8.0% 100.0%
78 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation % within Πρόβληµα Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 11.1% 30.8% 32.4% 13.4% 15.0% 14.6% 19.4% 15.4% 28.2% 23.8% 16.3% 22.4% 24.9% 16.9% 22.1% 22.5% 22.1% 18.4% 7.7% 8.5% 19.7% 11.3% 17.8% 17.1% 7.7% 9.9% 11.1% 18.8% 12.9% 9.2% 38.5% 4.2% 9.9% 16.3% 10.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
79 % of Total Κλάσεις Ηλικιών Total ετών Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 2.4%.4% 2.3% 8.2% 1.2% 14.6% 4.2%.2% 2.0% 14.7% 1.3% 22.4% 5.4% 1.2% 13.7% 1.8% 22.1% 4.0%.1%.6% 12.2%.9% 17.8% 3.7%.1%.7% 6.8% 1.5% 12.9% 2.0%.5%.3% 6.1% 1.3% 10.3% 21.8% 1.3% 7.1% 61.7% 8.0% 100.0%
80 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Expected Count Κλάσεις Ηλικιών Total ετών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total
81 Sig. p-value Chi-Square Tests Pearson Chi-Square Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases Asymp. Sig. 99% Confidence Interval Value df (2-sided) Sig. Lower Bound Upper Bound a b b b c b b Monte Carlo Sig. (2-sided) a. 6 cells (20.0%) have expected count less than 5. The minimum expected count is b. Based on sampled tables with starting seed c. The standardized statistic is Monte Carlo Sig. (1-sided) 99% Confidence Interval Sig. Lower Bound Upper Bound Αφούp<0,05 η Μηδενική Υπόθεση απορρίπτεται σε επίπεδο σηµαντικότηταςα=0,05
82
83 Symmetric Measures Nominal by Nominal N of Valid Cases Phi Cramer's V a. Not assuming the null hypothesis. Value Approx. Sig. Sig. Lower Bound Upper Bound c c b. Using the asymptotic standard error assuming the null hypothesis. c. Based on sampled tables with starting seed Monte Carlo Sig. 99% Confidence Interval Η τιµή του δείκτη συνάφειαςvτου Cramer µαρτυρά ασθενούς εντάσεως συσχέτιση µεταξύ των δύο χαρακτηριστικών που διασταυρώνονται
84 V X 2 p=min(k-1, l-1). V = Np k l Παίρνει τιµές στο διάστηµα [0, 1]
85 Κλάσεις Ηλικιών * Πρόβληµα Crosstabulation Κλάσεις Ηλικιών Total ετών % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Adjusted Residual % within Κλάσεις Ηλικιών Πρόβληµα Τζόγος Στεγαστικό Σπουδές Οικονοµικό Υγεία Total 16.6% 2.8% 15.9% 56.6% 8.3% 100.0% %.9% 9.0% 65.5% 5.8% 100.0% %.0% 5.5% 61.8% 8.2% 100.0% %.6% 3.4% 68.4% 5.1% 100.0% %.8% 5.5% 53.1% 11.7% 100.0% % 4.9% 2.9% 59.8% 12.7% 100.0% % 1.3% 7.1% 61.7% 8.0% 100.0% Adjusted Residual: ιορθωµένο Τυποποιηµένο Υπόλοιπο
86
87 <0,55 0 0,0154 2,59 0,55-1,05 5 0,0247 4,15 1,05-1,55 8 0,0500 8,40 1,55-2, , ,46 2,05-2, , ,05 2,55-3, , ,99 3,05-3, , ,17 3,55-4, , ,06 4,05-4, , ,06 4,55-5, , ,49 5,05-5,55 7 0,0368 6,18 5,55-6,05 7 0,0168 2,82 >6,05 0 0,0094 1, , ,00
88 X = 3,18 s= 1,22 Στην πράξη υπολογίζονται από το δείγµα
89
90 Y 3,18 0,55 3,18 P( Y 0,55) = P ( 2,16) 1,22 1,22 = P z = = 0,5000 0, 4846= 0,0154 0,55 3,18 Y 3,18 1,55 3,18 P(0,55 Y 1,55) = P 1,22 1,22 1,22 = = P( 2,16 z 1,75) = 0, , 4599= 0,0247
91
92 <0,55 0 0,0154 2,59 0,55-1,05 5 0,0247 4,15 1,05-1,55 8 0,0500 8,40 1,55-2, , ,46 2,05-2, , ,05 2,55-3, , ,99 3,05-3, , ,17 3,55-4, , ,06 4,05-4, , ,06 4,55-5, , ,49 5,05-5,55 7 0,0368 6,18 5,55-6,05 7 0,0168 2,82 >6,05 0 0,0094 1, , ,00
93 2 : X ( ) ( ) ( ) 2 0 2,59 5 4,15 0 1,58 = = 15,30 2,59 4,15 1,58 Συγκρίνουµε το στατιστικό 2 =15,30 µε την κρίσιµη της 2 Κατανοµής µε 10 β.ε. σε επίπεδο σηµαντικότητας α=0,05.
94 Απάντηση (συνέχεια) 2 (10) 0,05 =18,31 (θεωρητικό, κρίσιµη τιµή) 2 =15,30 (δειγµατικό) 2 =15,30<18,31= 18,31= 2 (10) (10) 0,05 ειγµατικό 2 < Θεωρητικό 2 Η µηδενική Υπόθεση παραµένει
95 Απάντηση (συνέχεια) Απόφαση-Συµπέρασµα Συµπέρασµα: Με βάση τα διαθέσιµα δεδοµένα η µηδενική υπόθεση δεν µπορεί να απορριφθεί σε ε.σ. α=0,05. εν ανιχνεύθηκαν στατιστικά σηµαντικές διαφορές µεταξύ θεωρητικών και δειγµατικών τιµών. εν έχουµε λόγους να αµφιβάλλουµε ότι η κατανοµή του χλωρού βάρους είναι η Κανονική (σε ε.σ. α=0,05).
96 Σκηνή 4η Λυµένες Ασκήσεις στον Πίνακα
97 1
98 2
99 3
100 3
101 3
102 3
103 3
104 4
105 5
106 6
107 7
108 8
109 8
110 8
111 Σκηνή Πέµπτη Bonus Θέµατα
112 Πρόβληµα Επιδηµιολογίας Από ανθρώπους, οι είναι γυναίκες και οι είναι άνδρες. Από τις γυναίκες έχουν το πρόβληµα υγείας «φ» και από τους άνδρες έχουν το ίδιο πρόβληµα. Έστω ότι επιλέγουµε ένα άτοµο τυχαία.
113 Πρόβληµα Επιδηµιολογίας (συνέχεια) Έχουµε Ω={ ={γφ, γµ, αφ, αµ} ως δειγµατικό χώρο µε το να σηµαίνει γυναίκα µε πρόβληµα υγείας, το γυναίκα χωρίς πρόβληµα, το άνδρας µε πρόβληµα υγείας και το άνδρας χωρίς πρόβληµα υγείας. Ρ = 0,090 Ρ = 0,425 Ρ = 0,302 Ρ = 0,183
114 Πρόβληµα Επιδηµιολογίας (συνέχεια) Έστω Α το ενδεχόµενο της επιλογής ενός ανθρώπου µε πρόβληµα υγείας και έστω Β το ενδεχόµενο επιλογής γυναίκας. το Α Β είναι το ενδεχόµενο επιλογής µιας γυναίκας µε πρόβληµα υγείας, το Α Β είναι το ενδεχόµενο επιλογής ενός ανθρώπου µε πρόβληµα υγείας ή γυναίκας, το Β-Α είναι το ενδεχόµενο επιλογής µια γυναίκας χωρίς πρόβληµα υγείας
115 Πρόβληµα Επιδηµιολογίας (συνέχεια) Ρ(A) = 0, ,302 = 0,392 Ρ(B) = 0, ,425 = 0,515 Ρ(Α Β) ) = 0,090 Ρ(Α Β) ) = 0, , ,302 = 0,817 Ρ(B-A) = 0,425
116 Πρόβληµα ιωνυµικής Κατανοµής Έστω ότι ρίχνουµε ένα ζάρι 5 φορές και ενδιαφερόµαστε αν το αποτέλεσµα κάθε ρίψης ήταν «1» ή «όχι 1». 1. Ποια η πιθανότητα να µην έρθει ούτε µια φορά στις 5 προσπάθειες το «1»? 2. Ποια η πιθανότητα να έρθει ακριβώς τρεις φορές στις 5 προσπάθειες το «1»? 3. Ποια η πιθανότητα να έρθει τουλάχιστο δύο φορές στις 5 προσπάθειες το «1»?
117 Απάντηση Ας θεωρήσουµε ως επιτυχία (Ε) το αποτέλεσµα της ρίψης να είναι το 1 και ως αποτυχία (Α) το αποτέλεσµα να είναι «όχι 1» (κοινώς το «όχι 1» σηµαίνει ότι το αποτέλεσµα µπορεί να είναι 2,3,4,5 ή 6). Η πιθανότητα να έρθει «1» όταν ρίχνουµε ένα ζάρι είναι 1/6. Άρα η πιθανότητα επιτυχίας είναι p=1/6 και εποµένως η πιθανότητα αποτυχίας θα είναι q=1-p=5/6. Αν µε X συµβολίσουµε το συνολικό αριθµό επιτυχιών στις 5 επαναλήψεις του πειράµατος, τότε X~B(5,1/6). Έχουµε λοιπόν:
118 Απάντηση (συνέχεια)
119 Πρόβληµα Poisson Κατανοµής Μια υπάλληλος η οποία εισάγει δεδοµένα στον Η/Υ κάνει κατά µέσο όρο τρία λάθη ανά σελίδα. Να υπολογιστεί η πιθανότητα σε τυχαία επιλεγµένη σελίδα να βρεθούν δύο λάθη. Εστω ο αριθµός των λαθών ανά σελίδα. Σύµφωνα µε τα δεδοµένα X~P( =3). Ζητάµε την πιθανότητα P(X=2)
120 Ασκήσεις Πιθανοτήτων 1. ίνονται Ρ(Α )=0,3, Ρ(Β)=0,4 και Ρ(ΑΒ )=0,5. Να υπολογίσετε τις πιθανότητες Ρ(Α), Ρ(ΑΒ), Ρ(Α Β). 2. Ένα παλιό τρακτέρ χαλάει 65% από βλάβη µηχανής, 20% από αµέλεια του οδηγού,, 5% από βλάβη µηχανής και αµέλεια οδηγού και από άλλες αιτίες. Ποια είναι η πιθανότητα να χαλάσει το τρακτέρ «µόνο από βλάβη µηχανής ή µόνο από αµέλεια οδηγού»; 3. Ρίχνουµε δύο ζάρια µια φορά. Ποιος είναι ο ειγµατοχώρος; Ποια είναι τα γεγονότα: α) Το άθροισµα των ενδείξεων είναι διαιρετό διά 4, β) Οι ενδείξεις των ζαριών είναι ίδιες, γ) οι ενδείξεις των ζαριών διαφέρουν το πολύ κατά 3. Ποιες είναι οι πιθανότητες των ενδεχοµένων που ορίστηκαν στα α), β) και γ)
121 Άσκηση Συµπλήρωσης (1)
122 Άσκηση Συµπλήρωσης (2)
123 ΤΕΛΟΣ
124 Viola adorata
Karl Pearson (27 March April 1936)
ar a t a d o l a Vio 2 Karl Pearson (27 March 1857 27 April 1936) F1 1 2 3 4 1 11 6 9 14 40 2 7 6 7 9 29 3 14 5 7 11 37 4 11 4 7 20 42 5 22 2 12 16 52 65 23 42 70 200 r 1 n c 1 συχν τητα κελιο 100
Στατιστική. 10 ο Μάθημα: Προσομοίωση Εξέτασης στο μάθημα της Στατιστικής (Λυμένα και Άλυτα Θέματα) Γεώργιος Μενεξές Τμήμα Γεωπονίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 10 ο Μάθημα: Προσομοίωση Εξέτασης στο μάθημα της Στατιστικής (Λυμένα και Άλυτα Θέματα) Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Στατιστική. 7 ο Μάθημα: Ο Έλεγχος Χ 2. Γεώργιος Μενεξές Τμήμα Γεωπονίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 7 ο Μάθημα: Ο Έλεγχος Χ 2 Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests)
Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Σε αρκετές περιπτώσεις απαιτείται να ελεγχθεί αν η συχνότητα εμφάνισης κάποιων συγκεκριμένων τιμών (κατηγοριών) μιας
Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο
Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2011-2012 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές Μέθοδοι και Προσεγγίσεις για την Επιστημονική Έρευνα ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2. Μη Παραμετρικοί Έλεγχοι Παραμετρικοί είναι οι κλασικοί έλεγχοι υποθέσεων της Στατιστικής οι οποίοι διεξάγονται κάτω από κάποιες προϋποθέσεις για τις παραμέτρους
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 5Α: ΠΑΡΑΜΕΤΡΙΚΟ Χ 2 Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
Μη Παραµετρικοί Έλεγχοι
Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Εισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.
Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα
Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι
Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι Εργαστήριο 9 1. Να χρησιμοποιηθεί το αρχείο data_kids. Τα δεδομένα του προέρχονται από την έρευνα των Chase και Dummer (1992), μελέτησαν τον ρόλο των
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
Σύγκριση Συνδυασµένων Παραγόντων
Σύγκριση Συνδυασµένων Παραγόντων Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Παραγοντικά Πειράµατα (Factorial Experiments)
Βοήθημα Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων
Βοήθημα Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων 2 1. Περιγραφική Στατιστική Θα δίνονται το ιστόγραμμα των σχετικών συχνοτήτων και τα στατιστικά. 1. Να μπορείτε να εξάγετε
Media Monitoring. Ενότητα 7: Εισαγωγή & Ανάλυση δεδομένων με το SPSS. Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ
Media Monitoring Ενότητα 7: Εισαγωγή & Ανάλυση δεδομένων με το SPSS Σταμάτης Πουλακιδάκος Σχολή ΟΠΕ Τμήμα ΕΜΜΕ Output Είναι ο όρος που χρησιμοποιείται για να περιγράψει τα αποτελέσματα από αναλύσεις που
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μη παραμετρικοί στατιστικοί έλεγχοι Καθηγητής ΔΠΘ Κων/νος Τσαγκαράκης Δευτέρα 6 Μαρτίου 13:00-16:00 Ώρα για εξ αποστάσεως συνεργασία Τρίτη 7 Μαρτίου 12:00-14:00
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 3. Στατιστική Συµπερασµατολογία για ποιοτικές µεταβλητές
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 3. Στατιστική Συµπερασµατολογία για ποιοτικές µεταβλητές Η έννοια της Στατιστικής Συµπερασµατολογίας (Statistical Inference) Συµπερασµατολογία (Inference): εξαγωγή συµπεράσµατος µε βάση
Ενότητα 6 η :Επαγωγική Στατιστική Ι. Ανάλυση δύο μεταβλητών. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 6 η :Επαγωγική
ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ
ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού
Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square)
Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Το Chi Square τεστ αποτελεί ένα μη παραμετρικό τεστ και εφαρμόζεται σε ονομαστικές μεταβλητές, βάσει των οποίων τα
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ. Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδάστριες Γιαννιού Λαμπρινή Μεγγίσογλου Ευθυμία Ξενογιώργη Αικατερίνη Σβολιανίτη Χριστίνα Εισηγητής Ταφιάδης Χρ.Διονύσης «Η γλώσσα
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Επαναληπτικζς ασκήσεις Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,
Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της
Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Στατιστική. 9 ο Μάθημα: Εφαρμογές Στατιστικής ΙΙ: Στατιστικοί Έλεγχοι. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 9 ο Μάθημα: Εφαρμογές Στατιστικής ΙΙ: Στατιστικοί Έλεγχοι Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
!# # v "6c. ,ι ιι ι "ι ηι ιι ιι. # ι α αα+ 0+!α/,. * η ι ι ιη ηι ι η ι η ι ιι ι ι ι ι η ιη ι ι ιι ηι.
!# # v "6c #,ι ιι ι "ι ηι ιι ιι. # ι α αα+ 0+!α/,. * η ι ι ιη ηι ι η ι η ι ιι ι ι ι ι η ιη ι ι ιι ηι. $ι ιι η ι ι ι η ηι ι ιι ιι chi-square ι 0 2 ι ι ι! α (measures of association. ο,,,--,ο& 632ε/+ ιι
Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική
Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς
ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie
«ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ ΣΤΟ ΔΙΑΔΙΚΤΥΟ»
Ελληνική Εταιρεία Μελέτης της Διαταραχής Εθισμού στο Διαδίκτυο 3ο Πανελλήνιο Διεπιστημονικό Συνέδριο E-LIFE 2013 Κινηματογράφος ΔΑΝΑΟΣ - Αθήνα, 1-2 Νοεμβρίου 2013 «ΘΥΜΑΤΟΠΟΙΗΣΗ ΚΑΙ ΦΟΒΟΣ ΤΟΥ ΕΓΚΛΗΜΑΤΟΣ
ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm
HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624
Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος
ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Λυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επαγωγική Στατιστική
Στατιστικό πακέτο SPSS Επαγωγική Στατιστική users.auth.gr/agpapana/spss_stat_inference.pdf Παπάνα Αγγελική, ρ. papanagel@yahoo.gr, agpapana@gen.auth.gr Η επαγωγική στατιστική αποτελείται μία σειρά μεθόδων
Δείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
Εισαγωγή στην Ανάλυση Παραλλακτικότητας
Εισαγωγή στην Ανάλυση Παραλλακτικότητας Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Παραλλακτικότητα Που Οφείλεται; Παραλλακτικότητα
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική
Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 1 Παλινδρόµηση Έλεγχοι Υποθέσεων ΙI ΕΠΙΜΕΛΕΙΑ ΣΗΜEΙΩΣΕΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΗΜΗΤΡΙΟΥ ΒΑΣΙΛΕΙΟΣ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
Οδηγός Ανάλυσης Παραλλακτικότητας εδοµένων Γεωργικών Πειραµάτων µε Στατιστικά Πακέτα
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Γεωπονική Σχολή Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Οδηγός Ανάλυσης Παραλλακτικότητας εδοµένων Γεωργικών Πειραµάτων µε Στατιστικά
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Όταν ανοίγουµε µία βάση στο SPSS η πρώτη εικόνα που
Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)
ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης
Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ
ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των
$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.
η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS
Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 2 και διακύμανση σ, άγνωστη.
Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ.
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑΣ Σπουδαστές Γιαννουλάκης Αντρέας Α.Μ. 11796 Τσουρουνάκης 'Αγγελος Α.Μ. 12133 Μουτουσίδου Πόπη Α.Μ. 12279 Εισηγητής: Ταφιάδης Χρ. Διονύσης
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες
Άσκηση 2. i β. 1 ου έτους (Υ i )
Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.
Έλεγχος Υποθέσεων Εφαρμογές
ΚΕΦΑΛΑΙΟ 7 Έλεγχος Υποθέσεων Εφαρμογές 7.1 Παράμετροι και Στατιστικά Ο στόχος της επαγωγικής στατιστικής είναι η εκτίμηση των παραμέτρων του πληθυσμού από στατιστικό μέγεθος ενός δείγματος. Οι κυριότερες
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης
Περιγραφή των εργαλείων ρουτινών του στατιστικού
Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες Ενότητα 9 : Περιγραφή του ελέγχου Χ 2 Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ