Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
|
|
- Νανα Δημαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y ) Να βρεθεί ο πίνακας συσχέτισης μεταξύ των X, X, X, X. Ποιά ζεύγη μεταβλητών παρουσιάζουν υψηλή συσχέτιση; ) i) Να εξεταστούν όλα τα δυνατά γραμμικά μοντέλα που περιέχουν τις X,X,X,X και την Y. Να βρεθεί το καλύτερο με βάση: a) το R, β) το R (adj), γ) το MSE p και δ) το C p. ii) Να βρεθεί το καλύτερο μοντέλο με βάση τις διαδικασίες Stepwise regression και Backward elimination και να περιγραφούν όλα τα ενδιάμεσα βήματα. ) Στο πλήρες μοντέλο: i) Εκτιμήστε τα β i, σ και υπολογίστε τους συντελεστές προσδιορισμού, R, R (adj). ii) Βρείτε 95% διάστημα εμπιστοσύνης για κάθε ένα από τα β i. Βρείτε από κοινού δ.ε. 95% για τα β, β, β, β με τη μέθοδο Bonferroni. iii) Να κάνετε τους ελέγχους Η 0 :β i =0 με H :β i 0, i=,,, και Η 0 : β = β = β = β = 0 με H :β 0 ή β 0 ή β 0 ή β 0 σε ε.σ. %. iv) Βρείτε 95% δ.ε. για τη μέση και ατομική πρόβλεψη του Υ όταν Χ = Χ = Χ = Χ = 0. v) Κάνετε τον έλεγχο Η 0 : β = β με Η 0 : β β σε ε.σ. α = 5%. Βρείτε δ.ε. 95% για το β +β.
2 Λύση. ) Χρησιμοποιώντας τη διαδικασία /Analyze/correlate/Bivariate προκύπτει ο πίνακας X X X X Pearson Correlation Sig. (-tailed) N Pearson Correlation Sig. (-tailed) N Pearson Correlation Sig. (-tailed) N Pearson Correlation Sig. (-tailed) N Correlations **. Correlation is significant at the 0.0 level (-tailed). X X X X,000,,886**,7,,5,000, ,,000,09,8**,5,,67, ,886**,09,000,5,000,67,, ,7,8**,5,000,7,000,6, και άρα ο πίνακας συσχέτισης μεταξύ των X, X, X, X είναι X X X X X,000 X,,000 X,886,09,000 X,7,8,5,000 (Υπενθυμίζεται ότι ο πίνακας που προκύπτει από την διαδικασία Linear /Statistics: Coefficients, covariance Matrix είναι ο πίνακας συσχέτισης και συνδιασποράς μεταξύ των βˆ i και όχι μεταξύ των στηλών Χ i ). Παρατηρούμε ότι τα ζεύγη Χ,Χ και Χ,Χ παρουσιάζουν υψηλή συσχέτιση. Αυτό γίνεται εύκολα αντιληπτό και από το παρακάτω γράφημα (/Graphs/Scatter/Matrix). X X X X Επομένως (για λόγους που έχουμε αναπτύξει στην άσκ. 9) ίσως θα πρέπει στο μοντέλο να μείνει μόνο μία από τις Χ,Χ και μία από τις Χ,Χ. Σε αυτό το σημείο αξίζει να παρατηρήσουμε ότι δεν έχει νόημα να επικαλεστούμε τα p-value που δίνονται στον παραπάνω πίνακα διότι αυτά προκύπτουν υποθέτοντας ότι οι Χ i είναι τυχαίες παρατηρήσεις από κάποια κατανομή κάτι που δεν συμβαίνει στην προκειμένη περίπτωση (στο γραμμικό μοντέλο θεωρούνται ως ερμηνευτικές μεταβλητές, δηλαδή μη-τυχαίες). ) Εξετάζοντας όλα τα δυνατά μοντέλα λαμβάνουμε τον πίνακα.
3 p R R (Adj) MSE p C p X X X X X, X X, X X, X X, X X, X X, X X, X, X X, X, X X, X, X X, X, X X, X, X, X Οπότε, ) Σύμφωνα με το R καλύτερο θεωρείται το μοντέλο Χ, Χ («σταθεροποιεί» το R ) ) Σύμφωνα με το R (adj) καλύτερο θεωρείται το μοντέλο X, X, X (μεγαλύτερο R (adj)) ) Σύμφωνα με το MSE p καλύτερο θεωρείται το μοντέλο X, X, X (μικρότερο MSE p ) ) Σύμφωνα με το C p καλύτερο θεωρείται το μοντέλο X, X (μικρότερο C p με C p p). Υπενθυμίζεται ότι τα κριτήρια με βάση τα R (adj) και MSE p είναι ισοδύναμα διότι R (adj) = (n ) MSE p /SST. Τα παραπάνω γίνονται φανερά και από τα παρακάτω γραφήματα:,8,6,,,,,,,,,,,,,,,,8,6,,,,,,,,,,,,,,,,, R, 0,0,5,0,5,,0,5,0,5 R AD J, 0,0,5,0,5,,0,5,0,5 P P 600, 00,,,, ,,,,,,,,,5,0 C p = p M SE 00 00,5,0,5,,0,5,,,,,0,5,,,5 CP,0,5,,0,5,,,0,5 P P
4 Σύμφωνα με παραπάνω παρατήρηση, επειδή η Χ παρουσιάζει υψηλή συσχέτιση με την Χ τελικά είναι προτιμότερο το μοντέλο X, X και όχι το X, X, X (η εξάρτηση της Υ από την Χ ίσως να είναι φαινομενική και να οφείλεται στο ότι η Υ εξαρτάται από την Χ ή οποία παρουσιάζει υψηλή συσχέτιση με την Χ). ii) Stepwise regression Variables Entered/Removed Variables Variables Method Entered Removed X, Stepwise (Criteria: Probability-of-F-to-enter <=,050, Probability-of-F-to-remove >=,00). X, Stepwise (Criteria: Probability-of-F-to-enter <=,050, Probability-of-F-to-remove >=,00). a Dependent Variable: Y Summary Adjusted Std. Error of R R Square R Square the Estimate,7 a,509,9 8,79,870 b,758,70 0,59 a. Predictors:, X b. Predictors:, X, X a. Predictors:, X b. Predictors:, X, X c. Dependent Variable: Y ANOVA c Sum of Squares df Mean Square F Sig. 09,76 09,76 8,987,000 a,8 8 88,98 7, , 7898,06,,000 b 78 7,89 7,00 9 X X X a. Dependent Variable: Y Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts B Std. Error Beta t Sig. 66,87,8,596,000 -,08,9 -,7-5,8,000 09,09,9 7,58,000 -,65, -,80-8,66,000,569,98,50 5,69,000
5 Το καλύτερο μοντέλο με βάση τη διαδικασία Stepwise regression είναι το Χ, Χ. Backward elimination Variables Entered/Removed Variables Variables Method Entered Removed X, X, X, X, Enter, X Backward (criterion: Probability of F-to-remove >=,00)., X Backward (criterion: Probability of F-to-remove >=,00). a All requested variables entered. b Dependent Variable: Y Summary Adjusted Std. Error of R R Square R Square the Estimate,88 a,778,7 0,7,880 b,77,78 0,5,870 c,758,70 0,59 a. Predictors:, X, X, X, X b. Predictors:, X, X, X c. Predictors:, X, X ANOVA d Sum of Squares df Mean Square F Sig. 6769,989 99,97,97,000 a 07, 5 8,88 7, ,70 9,568 9,750,000 b 0657, ,90 7, , 7898,06,,000 c 78 7,89 7,00 9 a. Predictors:, X, X, X, X b. Predictors:, X, X, X c. Predictors:, X, X d. Dependent Variable: Y
6 X X X X X X X X X a. Dependent Variable: Y Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts B Std. Error Beta t Sig.,5 65 7,55,000 -,9,77 -,6 -,667,5 -,09,5 -,67 -,80,00,9,66,65,07,005 -,56,99 -,9 -,,70,55,778 7,79,000 -,065,55 -,68 -,95,00,555,9,506 7,000 -,57,9 -, -,86,77 09,09,9 7,58,000 -,65, -,80-8,66,000,569,98,50 5,69,000 Το καλύτερο μοντέλο με βάση τη διαδικασία Backward elimination είναι και πάλι το Χ, Χ. ) Θεωρούμε το πλήρες μοντέλο: Variables Entered/Removed b Variables Variables Entered Removed Method X, X, X, X a, Enter a. All requested variables entered. b. Dependent Variable: Y Summary Adjusted Std. Error of R R Square R Square the Estimate,88 a,778,7 0,7 a. Predictors:, X, X, X, X ANOVA b Sum of Squares df Mean Square F Sig. 6769,989 99,97,97,000 a 07, 5 8,88 7,00 9 a. Predictors:, X, X, X, X b. Dependent Variable: Y
7 X X X X a. Dependent Variable: Y Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts 95% Confidence Interval for B B Std. Error Beta t Sig. Lower Bound Upper Bound,5 65 7,55,000 8,87, -,9,77 -,6 -,667,5 -,00,07 -,09,5 -,67 -,80,00 -,7 -,90,9,66,65,07,005,6, -,56,99 -,9 -,,70 -,87,59 ii) Τα δ.ε. 95% για κάθε ένα από τα β i δίνονται στον παραπάνω πίνακα. Συγκεκριμένα, 95% Confidence Interval for B Lower Bound Upper Bound β 0 8,87, β -,00,07 β -,7 -,90 β,6, β -,87,59 Για την εύρεση από κοινού δ.ε. α = 95% για τα β, β, β, β με τη μέθοδο Bonferroni αρκεί να πάρουμε ως Ι i =(L i,u i ) ένα δ.ε. για το β i συντελεστού a /, i =,,, διότι τότε P(( β, β, β, β) I I I I) = P( β I, i =,,,) = P( A!... A ) Επομένως, δ.ε. για τα β i συντελεστού a/ = 98.75% είναι: i i! C C C C = P( A "..." A ) P( A )... P( A ) a = P( β Ι)... P( β Ι) = = a β ˆ s( βˆ ) t (( a / ) / ) = 0.9 ± 0.77 (0.0065) = (.67,.8) ± n p t5 β ˆ ˆ s( β) t (( a / ) / ) =.09 ± 0.5 t ± n p 5 (0.0065) = (.57, 0.600) β ˆ s( βˆ ) t (( a / ) / ) =.9 ± 0.66 (0.0065) = (0.5,.600) ± n p t5 β ˆ s( βˆ ) t (( a / ) / ) = 0.56 ± 0.99 (0.0065) = (.6, 0.505) ± n p t5 ( t5(0.0065) = IDF.T(0.9975,7) =,68). Άρα η περιοχή εμπιστοσύνης 95% για το (β, β, β, β ) θα είναι η (.67,.8) (.57, 0.600) (0.5,.600) (.6, 0.505). iii) Τα p-values των πρώτων ελέγχων Η 0 :β i =0 με H :β i 0, i=,,, δίνονται στον πίνακα των coefficients (0.5, 0.00, 0.005, 0.70). Επομένως, απορρίπτουμε τις υποθέσεις Η 0 :β =0, Η 0 :β =0.
8 Για τον από κοινού έλεγχο ως γνωστό χρησιμοποιούμε το F-test από τον πίνακα ANOVA. Το αντίστοιχο p-value είναι οπότε, όπως ήταν αναμενόμενο, απορρίπτουμε την Η 0 : β = β = β = β = 0. iv) Εισάγοντας μία επιπλέον γραμμή στα δεδομένα και εκτελώντας τη διαδικασία της γραμμικής παλινδρόμησης (save Prediction intervals) προκύπτει ότι δ.ε. 95% για μέση πρόβλεψη του Υ (Χ = Χ = Χ = Χ = 0) : (58.50, 98.99), δ.ε. 95% για ατομική πρόβλεψη του Υ (Χ = Χ = Χ = Χ = 0) : (.669, ) v) Θα χρησιμοποιήσουμε τον μετασχηματισμό: γ = β +β β = γ β και το μοντέλο γίνεται Y β + β X + β X + ( γ β ) X + β X + ε = β + β X + β ( X X + γ X + β X + ε = 0 0 ) από όπου προκύπτει ο πίνακας (Χ = Χ Χ) X X X X a. Dependent Variable: Y Unstandardized Coefficients Coefficients a Standardi zed Coefficien ts 95% Confidence Interval for B B Std. Error Beta t Sig. Lower Bound Upper Bound,5 65 7,55,000 8,87, -,9,77 -,6 -,667,5 -,00,07 -,09,5 -,809 -,80,00 -,7 -,90 -,06,80 -,0 -,7,900 -,85,60 -,56,99 -,9 -,,70 -,87,59 Επειδή p-value = 0.9 δεν απορρίπτουμε ότι Η 0 :γ = 0 β = β. Το δ.ε. 95% για το γ = β +β είναι (.85,.60).
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΜάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος
ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις
Διαβάστε περισσότεραΆσκηση 2. i β. 1 ου έτους (Υ i )
Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.
Διαβάστε περισσότεραΠροϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
Διαβάστε περισσότεραΆσκηση 1. Πληθυσμός (Χ i1 )
Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό
Διαβάστε περισσότεραΛυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραPENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς
Διαβάστε περισσότεραΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης
Διαβάστε περισσότεραΗ βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή
Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί
Διαβάστε περισσότεραΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]
Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Διαβάστε περισσότεραΑπλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Διαβάστε περισσότερα1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια
Διαβάστε περισσότεραΜονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Διαβάστε περισσότεραΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια
Διαβάστε περισσότεραΠροσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος
Διαβάστε περισσότεραΑ. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής
Διαβάστε περισσότεραΕρμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Διαβάστε περισσότεραLampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Διαβάστε περισσότερατατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Διαβάστε περισσότεραΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ
ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ ΔΙΟΡΘΩΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΥΝΕΠΕΙΕΣ ΠΡΟΒΛΗΜΑΤΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ 1 ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ Γραφική παράσταση των υπολοίπων (ή των μαθητικοποιημένων υπολοίπων) ως προς την
Διαβάστε περισσότεραΤο στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται
Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση
Διαβάστε περισσότεραΕρωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
Διαβάστε περισσότεραLAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
Διαβάστε περισσότεραΛογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Διαβάστε περισσότεραΑσκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Διαβάστε περισσότεραΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ
ΕΡΕΥΝΑ ΑΓΟΡΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑ ΤΗΣ ΚΡΗΤΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΌ ΣΑΛΟΥΣΤΡΟΥ ΑΝΤΙΓΟΝΗ ΣΥΓΛΕΤΟΥ ΕΛΕΝΗ ΑΝΑΓΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΤΗΣ ΕΡΕΥΝΑΣ Μελέτη ποιοτικών χαρακτηριστικών ξενοδοχείων Συμβουλευτικές υπηρεσίες από εσωτερικούς
Διαβάστε περισσότεραΚεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
Διαβάστε περισσότερατατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος... v
Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ+ΠΑΤΡΩΝ+ Τμήμα+Διοίκησης+Επιχειρήσεων+
ΠΑΝΕΠΙΣΤΗΜΙΟ+ΠΑΤΡΩΝ+ Τμήμα+Διοίκησης+Επιχειρήσεων+ «Η# δράση# των# επιχειρήσεων# στα# κοινωνικά# δίκτυα# (social# media)# στο# διαδίκτυο# και# η# επίδραση#στην#απόδοση#των#επιχειρήσεων)#»# Δρ.#Δέσποινα#Καραγιάννη,#Αθηνά#Ντάβαρη#(ΜΒΑ)
Διαβάστε περισσότερα2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
Διαβάστε περισσότεραΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 11 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση)
Ενότητα ιαφάνειες Μαθήµατος: - Ενότητα ιαφάνειες Μαθήµατος: - ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 006-007, 3ο εξάµηνο.. Γενίκευση του µοντέλου ΜΑΘΗΜΑ
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
Διαβάστε περισσότεραΠεριγραφή των εργαλείων ρουτινών του στατιστικού
Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
Διαβάστε περισσότεραNI it (dalam jutaan rupiah)
NI it (dalam jutaan rupiah) No Kode Emiten 2009 2010 1 AISA 34.763 75.235 2 ARNA 63.888 79.039 3 ASII 10.040 14.366 4 AUTO 768.265 1.141.179 5 BATA 52.980 60.975 6 BRNA 20.260 34.760 7 BTON 9.388 8.393
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
Διαβάστε περισσότεραΠρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή
Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Ονοματεπώνυμο : Ευανθία Καρακατσάνη Σειρά: 9 Επιβλέπων Καθηγητής: Ο. Κυριακίδου Δεκέμβριος 2012 ΣΤΟΧΟΣ/ ΣΚΟΠΟΣ
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
Διαβάστε περισσότεραΠαράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Διαβάστε περισσότεραΕπιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 6. Συσχέτιση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 6. Συσχέτιση Γενικά Υπάρχει σχέση ανάµεσα σε δύο (ή περισσότερες) µεταβλητές; Αν υπάρχει σχέση ποια η φύση της σχέσης αυτής; Συσχέτιση: µέτρο σχέσης ανάµεσα σε µεταβλητές Θετικά συσχετισµένες
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης
Διαβάστε περισσότερα10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΕισαγωγή στη Βιοστατιστική
Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέμβριος 2017 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόμενα Ορισμός της Στατιστικής Περιγραφική στατιστική
Διαβάστε περισσότεραΕισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης
Διαβάστε περισσότεραΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΚΠΟΝΗΣΗ : ΜΠΑΡΔΑΚΗ ΘΕΟΔΩΡΑ ΛΑΚΟΥΜΕΝΤΑ ΙΩΑΝΝΑ
Διαβάστε περισσότεραΕισαγωγή στη Βιοστατιστική
Εισαγωγή στη Βιοστατιστική Π.Μ.Σ.: Έρευνα στη Γυναικεία Αναπαραγωγή Οκτώβριος Νοέµβριος 2013 Αλέξανδρος Γρυπάρης, PhD Αλέξανδρος Γρυπάρης, PhD 3 Περιεχόµενα o Ορισµός της Στατιστικής o Περιγραφική στατιστική
Διαβάστε περισσότερα519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Διαβάστε περισσότεραΕλένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων
Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές
Διαβάστε περισσότεραΤίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Γραμμική παλινδρόμηση Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ Γραμμική παλινδρόμηση Σε προηγούμενο κεφάλαιο είδαμε
Διαβάστε περισσότεραΜη Παραµετρικοί Έλεγχοι
Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα
Διαβάστε περισσότεραHMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
Διαβάστε περισσότεραΔείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Διαβάστε περισσότεραΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Διαβάστε περισσότεραΑνάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS. 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ
Ανάλυση εδοµένων - Χρήση του στατιστικού πακέτου SPSS η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ (Α) Καταγραφή δεδοµένων και επιλογή κατάλληλων ρυθµίσεων των µεταβλητών Η βασική οθόνη του στατιστικού
Διαβάστε περισσότεραΣτόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)
ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω
Διαβάστε περισσότεραΚεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση
Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης
Διαβάστε περισσότεραΙδιότητες της ευθείας παλινδρόµησης
Ιδιότητες της ευθείας παλινδρόµησης Ηευθεία παλινδρόµησης περνάει από το σηµείο αφού a b, a b ( b ) b b ( + + + ) ( ) + b u u a b a b Αυτό όµως προϋποθέτει την ύπαρξη του a. Αν δηλαδή υποχρεώσουµε την
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραStatistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραΜαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Διαβάστε περισσότεραΜοντέλα Πολλαπλής Παλινδρόμησης
Μοντέλα Πολλαπλής Παλινδρόμησης Πέτρος Ρούσσος Πρόγραμμα Ψυχολογίας, ΦΠΨ, ΕΚΠΑ ΕΙΣΑΓΩΓΙΚΑ 1 Ορολογία Προβλεπτικές μεταβλητές ή παράγοντες (predictors) Μεταβλητή κριτήριο (criterion) Απλή και πολλαπλή παλινδρόμηση
Διαβάστε περισσότερα1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm
HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)
4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.
Διαβάστε περισσότεραΣτατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ
Διαβάστε περισσότερα2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική
Διαβάστε περισσότεραΚαμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10)
Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10) 1 2 y t = β 0 + β 1 x t + u t y t = Πληθωρισμός x t = Ανεργία 3 Dependent Variable: INFLATION Method: Least Squares Sample: 1948-1996 (49) C
Διαβάστε περισσότεραΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50], ΕΡΓΑΣΙΑ 4. Ενδεικτική Λύση
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50], 2012-13 Άσκηση 1 ΕΡΓΑΣΙΑ 4 Ενδεικτική Λύση (α-1.5) Σωστό. Το διάγραμμα στελέχους φύλλου, ως ειδική περίπτωση ιστογράμματος,
Διαβάστε περισσότεραΜεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 : Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότερα8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη
Διαβάστε περισσότερα