ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ
|
|
- Λαυρέντιος Ζυγομαλάς
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των ελέγχων: έλεγχος πρόσηµου (sign-test), ο έλεγχος προσηµασµένης διάταξης του Wilcoxon (signed-rank test), ο έλεγχος αθροίσµατος διατάξεων του Wilcoxon (rank sum test) ή Wilcoxon Mann Whitney. Να σκιαγραφηθούν άλλοι γνωστοί µη-παραµετρικοί έλεγχοι. Τέλος να κατανοηθεί µε βάση τα πλεονεκτήµατα και µειονεκτήµατα των µεθόδων πότε γίνεται η χρήση τους. 1 ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ Στους παραµετρικούς ελέγχους (π.χ. t-test ανεξάρτητων δειγµάτων) η κατανοµή της/των µεταβλητών είναι κανονική ή τουλάχιστον προσεγγίζει την κανονική και εκτιµούνται οι άγνωστοι παράµετροι (π.χ. µ) Οι µη-παραµετρικοί εφαρµόζονται όταν δεν γνωρίζουµε την κατανοµή στις µετρήσεις. Για τα παραπάνω καλούνται και µέθοδοι ελεύθερης κατανοµής (distribution-free-methods). Οι έλεγχοι που θα εξετασθούν βασίζονται κυρίως στην διάταξη των µετρήσεων και όχι στις ίδιες τις µετρήσεις. Οι µη παραµετρικοί έλεγχοι που εξετάζονται είναι σε αντιστοιχία όπως και στα t-test ως ανεξάρτητων και ζευγαρωτών µετρήσεων. 2 1
2 Ο προσηµικός έλεγχος (Sign test) Εφαρµόζεται όταν οι µετρήσεις είναι κατά ζεύγη (αν και µπορεί να εφαρµοσθεί σε ένα δείγµα). Στη µηδενική υπόθεση δεχόµαστε ότι η διάµεσος διαφορά είναι 0. ιαφορετικά αν οι τιµές των µεταβλητών προέρχονται από την ίδια κατανοµή ότι ο αριθµός των θετικών διαφορών είναι ίσο µε τον αριθµό των αρνητικών διαφορών. εχόµαστε ότι ο αριθµός των θετικών (αρνητικών) προσήµων του δείγµατος ακολουθεί τη ιωνυµική κατανοµή µε Bi(n, p1/2). ιαφορετικά ότι αναµένουµε µε βάση τη Ho npn/2 θετικά πρόσηµα. Χρησιµοποιούµε την προσέγγιση της κανονικής κατανοµής + n D 2 n /4 D αριθµός θετικών διαφορών Αλλιώς υπολογίζουµε µε βάση τη διωνυµική κατανοµή. 3 Έλεγχος προσηµασµένης διάταξης Wilcoxon (Wilcoxon signed-rank test) Εφαρµόζεται όταν οι µετρήσεις είναι κατά ζεύγη. Στη µηδενική υπόθεση δεχόµαστε ότι η διάµεσος διαφορά είναι 0. Ίδια υπόθεση µε τον προσηµικό έλεγχο. Οι διατάξεις ορίζονται µε βάση την απόλυτη τιµή της διαφοράς, ενώ οι προσηµασµένες διατάξεις προκύπτουν από τη διάταξη επί το πρόσηµο της διαφοράς. Το άθροισµα των θετικών προσηµασµένων διατάξεων προσεγγίζει την κανονική κατανοµή. T T σ Τ µ τ T: άθροισµα προσηµασµένων διατάξεων n (n+1) nn ( + 1)(2n+ 1) µ Τ σ Τ 4 24 Αλλιώς υπολογίζουµε µε βάση στατιστικούς πίνακες. 4 2
3 Παράδειγµα 1. Μια µελέτη διεξήχθη για να διερευνήσει εάν η βρόµη βοηθάει να ελαττωθεί το επίπεδο χοληστερόλης στον ορό σε άνδρες µε υψηλή χοληστερόλη. Σε ένα τυχαίο δείγµα από 14 άνδρες χορηγήθηκαν δύο δίαιτες. Η µία αφορούσε την κατανάλωση πρωινού µε βάση τη βρόµη και η άλλη τον αραβόσιτο. Στη µελέτη καταγράφονται τα επίπεδα χαµηλής πυκνότητας λιποπρωτείνης (LDL) χοληστερόλης, µετά από δύο εβδοµάδες. Στη συνέχεια ο κάθε άνδρας ακολούθησε την άλλη δίαιτα. Μετά από άλλες δύο εβδοµάδες καταγράφηκαν και πάλι τα LDL επίπεδα. Άτο µο Αραβόσιτο ς 4,61 6,42 5,40 4,54 3,98 3,82 5,01 Βρώµη 3,84 5,57 5,85 4,80 3,68 2,96 4,41 Άτο µο Αραβόσιτο ς 4,34 3,80 4,56 5,35 3,89 2,25 4,24 Βρώµη 3,72 3,49 3,84 5,26 3,73 1,84 4,14 5 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (ΠΡΟΣΗΜΙΚΟ ΤΕΣΤ) Βήµα 1ο. Ηο: µ 1 µ 2 (n + n ) Ηα: µ 1 µ 2 (n + µ 2 ) Βήµα 2ο. Εκτίµηση του αριθµού των πρόσηµων, του DΣ+ D Σ+12 Αναµενόµενα θετικά πρόσηµα: np14/27. Βήµα 3ο. Χρήση του προσεγγιστικού -στατιστικού για τη διωνυµική κατανοµή Βήµα 4ο. Σύγκριση µε την κρίσιµη z τιµή 1,96. + n D n /4 14/4 Βήµα 5ο. Επειδή Ζ >1,96 η Ηο απορρίπτεται. υπάρχει διαφορά στις δύο δίαιτες. ιαφορετικά P(D 12)2*(P(D12)+P(D13)+P(D14)) * * 0,
4 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (Wilcoxon ΠΡΟΣΗΜΑΣΜΕΝΗΣ ΙΑΤΑΞΗΣ ) Βήµα 1ο. Ηο: µ χ -µ y 0 εναντίον Ηα: µ χ -µ υ 0 Βήµα 2ο. Εκτίµηση του αθροίσµατος των θετικών προσηµασµένων διατάξεων T 94 µ Τ 52,5 σ15,9 Βήµα 3ο. Χρήση του προσεγγιστικού -στατιστικού T µ Τ 94 52,5 2,54 σ 15,9 Βήµα 4ο. Σύγκριση µε την κρίσιµη z τιµή 1,96. Βήµα 5ο. Επειδή Ζ 2,54 >1,96 η Ηο απορρίπτεται. υπάρχει διαφορά στις δύο δίαιτες. ιαφορετικά ελέγχω από Πίνακες για Wilcoxon Τ 7 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (EXCEL) Προσηµικό test. Χρήση των συναρτήσεων RANK, NORMSINV, NORMSDIST, BINOMDIST 8 4
5 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (EXCEL) Wilcoxon test. Χρήση των συναρτήσεων RANK, NORMSINV, NORMSDIST. 9 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Επιλογή από Analyze-Non Parametric Tests-2 Related Samples 10 5
6 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Descriptive Statistics CORN OATS N Mean Std. Deviation Minimum Maximum 14 4,44,97 2,25 6, ,08 1,06 1,84 5,85 Frequencies OATS - CORN a. OATS < CORN b. OATS > CORN c. OATS CORN Negative Differences Positive Differences Ties c Total b a N Test Statistics b NPAR TEST /WILCOXONcorn WITH oats (PAIRED) /SIGN corn WITH oats (PAIRED) /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. Exact Sig. (2-tailed) OATS - CORN,013 a a. Binomial distribution used. b. Sign Test 11 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 1 (SPSS) Ranks OATS - CORN a. OATS < CORN b. OATS > CORN c. OATS CORN Negative Ranks Positive Ranks Ties Total N Mean Rank Sum of Ranks 12 a 7,75 93,00 2 b 6,00 12,00 0 c 14 Test Statistics b OATS - CORN -2,542 a Asymp. Sig. (2-tailed),011 a. Based on positive ranks. b. Wilcoxon Signed Ranks Test 12 6
7 Έλεγχος Αθροίσµατος διατάξεων του Wilcoxon (Wilcoxon rank sum test) ή (Wilcoxon-Mann-Whitney) Εφαρµόζεται όταν οι µετρήσεις είναι από ανεξάρτητα δείγµατα Προϋπόθεση εφαρµογής είναι οι κατανοµές των δύο δειγµάτων να έχουν την ίδια γενική µορφή. Μηδενική υπόθεση: Οι διάµεσοι των ηλικιών είναι ίδιες Όλες οι τιµές των δειγµάτων διατάσσονται κατά αύξουσα σειρά. Το µικρότερο άθροισµα διατάξεων (W) ακολουθεί προσεγγιστικά κανονική κατανοµή W µ n w S( ns + nl + 1) nn s L( ns + nl + 1) w µ W σ W σ όπου 2 12 w Όπου n S, n L οι αριθµοί των δειγµάτων µε το µικρότερο και µεγαλύτερο άθροισµα διατάξεων αντίστοιχα. Αλλιώς υπολογίζουµε µε βάση στατιστικούς πίνακες. 13 Παράδειγµα 2. Εξετάστηκαν και για τα δύο φύλα, τα χαρακτηριστικά των βρεφών µε χαµηλό βάρος κατά τη γέννηση που πέθαναν από σύνδροµο αιφνίδιου θανάτου. Οι ηλικίες κατά το χρόνο θανάτου για δείγµατα 11 κοριτσιών και 16 αγοριών, παρουσιάζονται στον παρακάτω πίνακα. Ελέγξτε εάν διαφοροποιούνται οι διάµεσοι χρόνοι επιβίωσης. Ηλικία (Ηµέρες) Αγό ρια Κο ρίτσ ια
8 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (Wilcoxon Μann - Whitney) Βήµα 1ο. Ηο: X και Υ έχουν την ίδια κατανοµή Ηα: Χ και Υ δεν έχουν την ίδια κατανοµή Βήµα 2ο. Εκτίµηση του αθροίσµατος των θετικών διατάξεων W L 221 W k 157 N s 11 N L 16 µ W 154 s w 20,265 Βήµα 3ο. Υπολογισµός του w W µ w ,148 σ 20,265 w Βήµα 4ο. Υπολογισµός της κρίσιµης τιµής crit. crit Βήµα 5o. H Ho είναι αποδεκτή. Η κατανοµή των Χ, Υ είναι ίδια. Συνεπώς οι διάµεσοι χρόνοι επιβίωσης για τα δύο φύλα είναι ίδιοι. 15 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (EXCEL) Συναρτήσεις που χρησιµοποιήθηκαν RANK Π.χ. RANK(B2; $B$2:$B$28; 1) NORMSINV NORMSDIST 16 8
9 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (SPSS) Επιλογή από Analyze-Non Parametric Tests-2 Independent Samples 17 ΛΥΣΗ ΠΑΡΑ ΕΙΓΜΑΤΟΣ 2 (SPSS) Ranks SURV GENDER Female Male Total N Mean Rank Sum of Ranks 11 14,27 157, ,81 221,00 27 Test Statistics b Mann-Whitney U Wilcoxon W Asymp. Sig. (2-tailed) Exact Sig. [2*(1-tailed Sig.)] a. Not corrected for ties. SURV 85, ,000 -,148,882,904 a b. Grouping Variable: GENDER SURV GENDER Descriptive Statistics N Mean Std. DeviationMinimumMaximum ,48 51, ,59, NPAR TESTS /M-W surv BY gender(0 1) /STATISTICS DESCRIPTIVES /MISSING ANALYSIS. 18 9
10 ΓΝΩΣΤΟΙ ΜΗ ΠΑΡΑΜΕΤΡΙΚΟΙ ΕΛΕΓΧΟΙ Kruskal-Wallis. Μη παραµετρικός έλεγχος αντίστοιχος της ανάλυσης διασποράς. Εξετάζει αν τα δείγµατα προέρχονται από την ίδια κατανοµή. Friedman. Μη παραµετρικός έλεγχος. Γενίκευση του προσηµικού test για περισσότερα από 2 συσχετισµένα δείγµατα. Kolmogorov-Smirnov 2 δειγµάτων. Χρησιµοποιείται για ανεξάρτητα δείγµατα και ελέγχει εάν προέρχονται από την ίδια κατανοµή χ 2 -καλής προσαρµογής. Ελέγχει εάν οι πειραµατικές τιµές ακολουθούν µια γνωστή κατανοµή. χ 2 -για πίνακες συνάφειας. Ελέγχει εάν υπάρχει συσχέτιση σε ένα πίνακα συνάφειας µεταξύ δύο µεταβλητών Mc-Nemar. Ελέγχει εάν υπάρχει µεταβολή σε πίνακες συνάφειας 2x2. Εφαρµόζεται σε επαναληπτικές διαδικασίες. 19 ΣΥΖΗΤΗΣΗ Ποιους ελέγχους θα πρέπει να χρησιµοποιώ; Παραµετρικούς ή µη παραµετρικούς; ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ εν απαιτούν περιοριστικές υποθέσεις. Μεγαλύτερη ταχύτητα στους υπολογισµούς. Είναι λιγότερο ευαίσθητοι στις ακραίες τιµές ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ Όταν ισχύουν οι προϋποθέσεις για τους παραµετρικούς παρουσιάζουν µικρότερη ισχύ. Πως θα ελέγξω την κανονικότητα των δεδοµένων; Άλλη αντιµετώπιση Μετασχηµατισµός των µετρήσεων 20 10
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης
Διαβάστε περισσότεραΈλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.
Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή
Διαβάστε περισσότεραΜη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια
Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους
Διαβάστε περισσότεραΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ
ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού
Διαβάστε περισσότεραΈλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα
ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
Διαβάστε περισσότεραέρευνας και στατιστική» παραμετρικές συγκρίσεις»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Μεθοδολογία έρευνας και στατιστική» Μάθημα μεταπτυχιακού κύκλου σπουδών Διάλεξη: «Μη παραμετρικές συγκρίσεις» ΔΙΔΑΣΚΩΝ: Δρ. Αθανάσιος
Διαβάστε περισσότεραΠοιοτική και ποσοτική ανάλυση ιατρικών δεδομένων
Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό
Διαβάστε περισσότεραΤίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ
Διαβάστε περισσότεραΜη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2. Μη Παραμετρικοί Έλεγχοι Παραμετρικοί είναι οι κλασικοί έλεγχοι υποθέσεων της Στατιστικής οι οποίοι διεξάγονται κάτω από κάποιες προϋποθέσεις για τις παραμέτρους
Διαβάστε περισσότεραΤίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ
Διαβάστε περισσότεραΈλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις
Διαβάστε περισσότεραΜενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Διαβάστε περισσότεραΕπιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Διαβάστε περισσότεραΜη Παραµετρικοί Έλεγχοι
Μη Παραµετρικοί Έλεγχοι Επιστηµονική Επιµέλεια: ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας Viola adorata Καταρχήν Μη Παραµετρικοί Έλεγχοι εν απαιτούν κανονικότητα
Διαβάστε περισσότεραΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ
ΚΕΦΑΛΑΙO 5 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΔΥΟ ΚΑΤΑΝΟΜΩΝ Στο προηγούμενο κεφάλαιο εξετάσαμε διάφορες μορφές ελέγχου της υπόθεσης ότι ένα δείγμα παρατηρήσεων προέρχεται από κάποια συγκεκριμένη κατανομή. Στην
Διαβάστε περισσότεραΜεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική
Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μη παραμετρικοί στατιστικοί έλεγχοι Καθηγητής ΔΠΘ Κων/νος Τσαγκαράκης Δευτέρα 6 Μαρτίου 13:00-16:00 Ώρα για εξ αποστάσεως συνεργασία Τρίτη 7 Μαρτίου 12:00-14:00
Διαβάστε περισσότεραΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΣΥΓΚΡΙΣΕΙΣ
ΚΕΦΑΛΑΙΟ 16 ΜΗ ΠΑΡΑΜΕΤΡΙΚΕΣ ΣΥΓΚΡΙΣΕΙΣ Η ερευνητική πρακτική έχει δείξει ότι όταν υπάρχει σοβαρή παραβίαση (violation) της παραδοχής τής κανονικότητας (assumption of normality) ή και της παραδοχής τής
Διαβάστε περισσότεραΜαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Διαβάστε περισσότεραΤίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραΈλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 2 και διακύμανση σ, άγνωστη.
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 1 Παλινδρόµηση Έλεγχοι Υποθέσεων ΙI ΕΠΙΜΕΛΕΙΑ ΣΗΜEΙΩΣΕΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΗΜΗΤΡΙΟΥ ΒΑΣΙΛΕΙΟΣ
Διαβάστε περισσότεραΑσκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
Διαβάστε περισσότερα1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή
Διαβάστε περισσότεραΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Διαβάστε περισσότεραΧαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)
ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Αναλυτική στατιστική Σύγκριση ποιοτικών
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες
Διαβάστε περισσότεραΤμήμα Λογιστικής και Χρηματοοικονομικής. Δρ. Αγγελίδης Π. Βασίλειος
Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής Εφαρμοσμένη Στατιστική 2 Περιεχόμενα Εισαγωγή Επαγωγική Στατιστική Έλεγχος κανονικότητας Έλεγχος
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Διαβάστε περισσότεραΕπαγωγική Στατιστική
Στατιστικό πακέτο SPSS Επαγωγική Στατιστική users.auth.gr/agpapana/spss_stat_inference.pdf Παπάνα Αγγελική, ρ. papanagel@yahoo.gr, agpapana@gen.auth.gr Η επαγωγική στατιστική αποτελείται μία σειρά μεθόδων
Διαβάστε περισσότεραΈλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...
Διαβάστε περισσότεραΣτατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο
Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr
Διαβάστε περισσότεραΕισαγωγή στη Στατιστική
Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων
Διαβάστε περισσότεραΑν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Διαβάστε περισσότεραο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
Διαβάστε περισσότεραT-tests One Way Anova
William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά
Διαβάστε περισσότεραΣτατιστική. 9 ο Μάθημα: Εφαρμογές Στατιστικής ΙΙ: Στατιστικοί Έλεγχοι. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 9 ο Μάθημα: Εφαρμογές Στατιστικής ΙΙ: Στατιστικοί Έλεγχοι Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
Διαβάστε περισσότεραΚεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
Διαβάστε περισσότεραΣτατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή
Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά
Διαβάστε περισσότερα1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Διαβάστε περισσότερα3. Ανάλυση Ποσοτικών εδοµένων: Συγκρίσεις µεταξύ οµάδων
3. Ανάλυση Ποσοτικών εδοµένων: Συγκρίσεις µεταξύ οµάδων Σελίδα 1 Συµπερασµατολογική στατιστική (inferential statistics) 3 1.1 Εισαγωγή 3 1.2 ιαστήµατα εµπιστοσύνης 3 1.3 Ο έλεγχος στατιστικής υπόθεσης
Διαβάστε περισσότεραΑνάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος
Ανάλυση ποσοτικών δεδομένων ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος Εισαγωγή στη στατιστική Στατιστική: σύνολο αρχών και μεθοδολογιών που χρησιμοποιούνται για:
Διαβάστε περισσότεραΟ ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ
Ο ΡΟΛΟΣ ΤΩΝ SOCIAL MEDIA ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΣΤΟ ΤΟΥΡΙΣΤΙΚΟ ΚΛΑΔΟ Ονοματεπώνυμο: ΜΟΙΡΑΣΓΕΤΗ ΦΩΤΕΙΝΗ Σειρά: 10 Επιβλέπων Καθηγητής: ΑΔΑΜ ΒΡΕΧΟΠΟΥΛΟΣ Δεκέμβριος 2013 ΕΙΣΑΓΩΓΗ Σκοπός της έρευνας
Διαβάστε περισσότεραΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Γ: κατά Ζεύγη t test Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότερα2.1 Μεγάλο δείγµα: ο έλεγχος-ζ µιας οµάδας Υπολογισµός του Ε για µια µέση τιµή όταν το δείγµα είναι µικρό. 9
3. Ανάλυση Ποσοτικών εδοµένων: Συγκρίσεις µεταξύ οµάδων Σελίδα 1 Εισαγωγή 3 1.1 Συµπερασµατολογική στατιστική (statistical inference) 3 1.2 ιαστήµατα εµπιστοσύνης 3 1.3 Ο έλεγχος στατιστικής υπόθεσης (hypothesis
Διαβάστε περισσότεραΠίνακας 1. Επίπεδα PRAME mrna (αντίγραφα/ κύτταρα) σε άτοµα σε διαφορετικές φάσεις της CML. n Ελάχιστη-µέγιστη
3. ΑΝΑΛΥΣΗ ΠΟΣΟΤΙΚΩΝ Ε ΟΜΕΝΩΝ: ΣΥΓΚΡΙΣΕΙΣ ΜΕΤΑΞΥ ΟΜΑ ΩΝ Σκοπός είναι στο τέλος του µαθήµατος να - µπορείτε να ερµηνεύσετε αποτελέσµατα απλών ποσοτικών ελέγχων υποθέσεων (one sample t-test, independent
Διαβάστε περισσότεραΕνότητα 5 η : Επαγωγική Στατιστική ΙΙ Ανάλυση ποσοτικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 5 η : Επαγωγική
Διαβάστε περισσότεραΑΡΧΙΜΙ ΗΣ ΙΙΙ. Ενίσχυση Ερευνητικών Οµάδων στο ΤΕΙ Πάτρας ΓΙΩΡΓΟΣ ΒΛΑΧΟΠΟΥΛΟΣ 28/05/2015
ΑΡΧΙΜΙ ΗΣ ΙΙΙ Ενίσχυση Ερευνητικών Οµάδων στο ΤΕΙ Πάτρας ΓΙΩΡΓΟΣ ΒΛΑΧΟΠΟΥΛΟΣ 8/05/05. Εισαγωγή Τοµείς Στατιστικής. Περιγραφική Στατιστική. Επαγωγική Στατιστική Περιγραφική Στατιστική Ασχολείται µε την
Διαβάστε περισσότεραΑπαραμετρική Στατιστική. Το βαθμονομικό κριτήριο του Wilcoxon, για ζευγαρωτες παρατηρήσεις Ο βαθμονομικός συντελεστής συσχέτισης του Spearman
Απαραμετρική Στατιστική Το βαθμονομικό κριτήριο του Wilcoxon, για ζευγαρωτες παρατηρήσεις Ο βαθμονομικός συντελεστής συσχέτισης του Spearman Το βαθμονομικό κριτήριο του Wilcoxon, για ζευγαρωτες παρατηρήσεις
Διαβάστε περισσότεραΜεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι
Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι Εργαστήριο 9 1. Να χρησιμοποιηθεί το αρχείο data_kids. Τα δεδομένα του προέρχονται από την έρευνα των Chase και Dummer (1992), μελέτησαν τον ρόλο των
Διαβάστε περισσότεραΜονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
Διαβάστε περισσότερα09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών,
Διαβάστε περισσότεραΑπαραμετρική Στατιστική. Έλεγχοι για k 2 ανεξάρτητους πληθυσμούς
Απαραμετρική Στατιστική Έλεγχοι για k 2 ανεξάρτητους πληθυσμούς Πολλά από τα κριτήρια της στατιστικής συμπερασματολογίας βασίζονται σε περιοριστικές υποθέσεις για την κατανομή των πληθυσμών από τους οποίους
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική
Διαβάστε περισσότεραΠρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1
Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές
Διαβάστε περισσότεραΣυνοπτικά περιεχόμενα
b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
Διαβάστε περισσότεραΚεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t
Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Διαβάστε περισσότεραΒοήθημα Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων
Βοήθημα Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων 2 1. Περιγραφική Στατιστική Θα δίνονται το ιστόγραμμα των σχετικών συχνοτήτων και τα στατιστικά. 1. Να μπορείτε να εξάγετε
Διαβάστε περισσότεραΑΣΚΗΣΗ 7 (ΛΥΣΗ) Στο αρχείο του SPSS θα υπάρχουν οι µεταβλητές,
ΑΣΚΗΣΗ 7 (ΛΥΣΗ) Στο αρχείο του SPSS θα υπάρχουν οι µεταβλητές, Time: η ώρα γέννησης (4 ψηφία, τα δύο πρώτα είναι ώρες και τα άλλα δυο λεπτά), Sex: το φύλο (:κορίτσι, :αγόρι), Weight: το βάρος του νεογέννητου
Διαβάστε περισσότεραΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ
ΚΕΦΑΛΑΙΟ 6 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΙΣΟΤΗΤΑ ΚΑΤΑΝΟΜΩΝ ΒΑΣΙΖΟΜΕΝΟΙ ΣΕ ΠΕΡΙΣΣΟΤΕΡΑ ΑΠΟ ΔΥΟ ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Οι έλεγχοι που εξετάζονται στο κεφάλαιο αυτό αποτελούν επεκτάσεις για την περίπτωση περισσοτέρων
Διαβάστε περισσότεραΠΡΑΚΤΙΚΗ ΚΑΘΟΔΗΓΗ ΣΤΟ SPSS
ΠΡΑΚΤΙΚΗ ΚΑΘΟΔΗΓΗ ΣΤΟ SPSS Σημειώσεις: Μπεττίνα Χάιδιτς, Επίκουρη Καθηγήτρια Υγιεινής-Ιατρικής Στατιστικής, Τμήμα Ιατρικής ΑΠΘ 1 Προσδιορισμός μεταβλητών και εισαγωγή δεδομένων Ανοίξτε το SPSS και επιλέξτε
Διαβάστε περισσότεραΚεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική
Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς
Διαβάστε περισσότεραΠανεπιστήμιο Πάτρας Τμήμα Βιολογίας. Ανάλυση Περιβαλλοντικών Δεδομένων: συνοπτικός οδηγός για βιολόγους. Σίνος Γκιώκας
Πανεπιστήμιο Πάτρας Τμήμα Βιολογίας Ανάλυση Περιβαλλοντικών Δεδομένων: συνοπτικός οδηγός για βιολόγους Σίνος Γκιώκας Πάτρα 2007 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 2 Βήματα για μια πετυχημένη ανάλυση των δεδομένων 3
Διαβάστε περισσότεραΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα
Διαβάστε περισσότεραΙατρικά Μαθηματικά & Βιοστατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon
ΠΑΡΑΡΤΗΜΑ ΠΙΝΑΚΕΣ Πίνακας. Διωνυμική Κατανομή Πίνακας. Τυποποιημένη Κανονική Κατανομή Πίνακας. Ποσοστιαία Σημεία της Κατανομή t Πίνακας. Ποσοστιαία Σημεία της Κατανομής X Πίνακας 5. Ποσοστιαία Σημεία της
Διαβάστε περισσότεραΕίδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
Διαβάστε περισσότεραΠεριγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Διαβάστε περισσότεραΚεφάλαιο 3: Ανάλυση μιας μεταβλητής
Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.
Διαβάστε περισσότεραΤι κάνουμε μετά τη συλλογή των δεδομένων
Περιεχόμενα Τι κάνουμε μετά τη συλλογή των δεδομένων... 2 Χρήση λογισμικού... 3 Παραμετρικός ή μη παραμετρικός έλεγχος;... 15 Παραμετρικοί έλεγχοι... 15 Μη παραμετρικοί έλεγχοι... 20 Ποιο έλεγχο να επιλέξουμε...
Διαβάστε περισσότεραΛυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21
Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using
Διαβάστε περισσότεραΑπλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Διαβάστε περισσότεραΚλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας
Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΙωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30
Ιωάννης Ντζούφρας Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα Ανάλυση εδομένων ιαφάνεια 4-30 Έστωότιέχουμεμετρήσειςγιαταίδιαάτομα Σε 2 παρόμοιες μεταβλητές (π.χ. Με ίδιες
Διαβάστε περισσότεραΥ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Διπλωματική Εργασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Διπλωματική Εργασία Σχολική Αποτυχία Η περίπτωση του Νομού Λέσβου Επιβλέπων Καθηγητής : Τσομπάνογλου
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
Διαβάστε περισσότεραΣτατιστικοί έλεγχοι του Χ 2
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-015 Στατιστικοί έλεγχοι του Χ ΠΟΛΥΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-015 1. Στατιστικός έλεγχος του Χ Ανάλυση με μια κατηγορική μεταβλητή
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών
Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),
Διαβάστε περισσότεραΕισαγωγή στη Στατιστική
Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών
Διαβάστε περισσότεραΗ ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑTΡΙΚΗ ΣΧΟΛΗ Η ΣΤΑΤΙΣΤΙΚΗ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΣΠΕΡΜΑΤΟΣ Έλενα Κριτσέλη, MPH PhD Επιστημονικός Συνεργάτης Επιδημιολόγος Χρόνιων Παθήσεων, Α Πανεπιστημιακή Παιδιατρική
Διαβάστε περισσότεραBiostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Διαβάστε περισσότεραΑ Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Διαβάστε περισσότεραΈλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square)
Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Το Chi Square τεστ αποτελεί ένα μη παραμετρικό τεστ και εφαρμόζεται σε ονομαστικές μεταβλητές, βάσει των οποίων τα
Διαβάστε περισσότεραΙατρικά Μαθηματικά & Βιοστατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης
Διαβάστε περισσότερα