τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή"

Transcript

1 Η ιδέα, ότι όλα τα υλικά πράγµατα συντίθενται από αυτά τα τέσσερα πρωταρχικά στοιχεία, αποδίδεται στον προγενέστερό Εµπεδοκλή, Έλληνα φιλόσοφο, ποιητή και πολιτικό [ π.χ.] που γεννήθηκε στον Ακράγαντα της Σικελίας και ήταν µαθητής του Πυθαγόρα και του Παρµενίδη. Ο Εµπεδοκλής θεωρούσε πως τίποτε δεν δηµιουργείται ούτε καταστρέφεται αλλά εν µέρει µετασχηµατίζεται, µε βάση την αναλογία των βασικών συστατικών µεταξύ τους τα οποία ήταν η φωτιά, ο αέρας, το νερό και η γη [Β-Β] αλλά ο Πλάτων επιχειρεί να αιτιολογήσει µε µαθηµατικό συλλογισµό την ύπαρξη, τον αριθµό και την αµοιβαία σύνδεσή τους. Γράφει πως ότι είναι σώµα, δηλαδή ότι έχει όγκο, οφείλει να αποτελείται από φωτιά, για να είναι ορατό, και γη για να είναι στερεό. ύο πράγµατα είναι ωστόσο αδύνατον να συνδεθούν χωρίς την παρουσία ενός τρίτου, που θα λειτουργήσει ως συνδετικός κρίκος [Β-6, 32 β]. Και ο πιο ωραίος δεσµός, σύµφωνα µε τον Τίµαιο, είναι η γεωµετρική αναλογία. «Ας πάρουµε τρεις αριθµούς ή τρεις όγκους ή τρεις δυνάµεις [α,µ,β] τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή, οπότε και αντιστρόφως θα ισχύει ότι. Τότε εάν εναλλάξουµε θέσεις στα άκρα α, β και στον µέσο µ, θα εξακολουθήσουν κατ ανάγκη να ισχύουν οι ίδιες σχέσεις, κάτι που σηµαίνει ότι συναποτελούν όλοι µια ενότητα. [Β-6, σελ 205] Οι γεωµετρικοί µέσοι είναι πιθανότατα πυθαγόρειας προέλευσης [Β-6] και ο Πλάτων τους χρησιµοποιεί για να εξηγήσει την παρουσία δύο ακόµη στοιχείων που χρησιµεύουν για να συνδέουν, ωσάν γεωµετρικοί µέσοι τη γη και τη φωτιά. Αυτά είναι το νερό και ο αέρας. Έτσι, σύµφωνα µε τον Πλάτωνα, ο Θεός έφτιαξε το σώµα του κόσµου, οτιδήποτε είναι ορατό και απτό, µε την εξής αναλογία των τεσσάρων στοιχείων [Β-6] Συνεχίζοντας, ο Τίµαιος δίνει στο σώµα του κόσµου το σχήµα της σφαίρας, γιατί στο έµβιο ον που θα περιλάβει όλα τα άλλα ταίριαζε εκείνο το σχήµα που περικλείει όλα τα υπόλοιπα σχήµατα. Επιπλέον εκθειάζει τη συµµετρία της σφαίρας αποκαλώντας την «πάντων τελεώτατον οµοιότατον τε αυτό εαυτώ σχηµάτων», δηλαδή το πιο πλήρες, σε αντιστοιχία µε την πληρότητα του σύµπαντος, και πιο οµοιόµορφο σχήµα και επιπλέον δηλώνει ότι χίλιες φορές πιο ωραίο είναι το οµοιόµορφο από το ανοµοιόµορφο («µυρίω κάλλιον όµοιον ανοµοίον») [Β-6, 33b] Τα σχήµατα που περικλείονται στη σφαίρα είναι ακριβώς τα κανονικά πολύεδρα, τα πλατωνικά στερεά. Μια άλλη εξήγηση της απόδοσης της σφαίρας στο σώµα του κόσµου είναι, σύµφωνα µε τον Πρόκλο, ότι η σφαίρα έχει τον µεγαλύτερο όγκο από όλα τα στερεά µε το ίδιο εµβαδόν [Β-6, σελ 366]

2 Τα τέσσερα στοιχεία τώρα, από τα οποία δηµιουργείται το κάθε τι, είναι στερεά σώµατα, οπότε, γράφει ο Πλάτων, θα περικλείονται από επίπεδες επιφάνειες που µε τη σειρά τους θα δηµιουργούνται από τρίγωνα. [B-6, 53c] Όλα τα τρίγωνα συντίθεται από δύο είδη στοιχειωδών τριγώνων: το ορθογώνιο ισοσκελές και το ορθογώνιο σκαληνό. Από όλα τα ορθογώνια σκαληνά προκρίνει αυτό που έχει την υποτείνουσα διπλάσια από την µικρότερη κάθετη, δηλαδή το µισό ισόπλευρο τρίγωνο, όπως στο σχήµα. Έτσι, ο Πλάτων θεωρεί ότι σε τελευταία ανάλυση τα πάντα συντίθενται από δύο είδη ορθογωνίων τριγώνων, το ισοσκελές και το µισό ισόπλευρο. Ο λόγος για τον οποίο επιλέγει αυτά είναι πιθανότατα η συµµετρική διαιρετότητά τους, ότι δηλαδή µπορούν να υποδιαιρεθούν δίχως όριο σε µικρότερα τρίγωνα τα οποία πάντα διατηρούν την ίδια αναλογία πλευρών [Β-6, σελ 450]. Με αυτόν το τρόπο ίσως να επεδίωκε να κρατήσει σταθερή την αναλογία, οπότε τα «ατοµικά» τρίγωνα είναι θεµελιώδη για την εξήγηση όχι της σύστασης των αισθητών σωµάτων αλλά της διάταξης τους. Γι αυτό και πουθενά ο Τίµαιος δεν αναφέρεται σε µεγέθη. Κατόπιν, δίνει τον γεωµετρικό τρόπο κατασκευής, από αυτά τα στοιχειώδη τρίγωνα, των τεσσάρων κανονικών πολύεδρων: του τετράεδρου, του οκτάεδρου του εικοσάεδρου και του κύβου. Τα τρία πρώτα κατασκευάζονται από το ορθογώνιο σκαληνό του σχήµατος, ενώ ο κύβος από το ορθογώνιο ισοσκελές. Για το πέµπτο κανονικό στερεό, το δωδεκάεδρο, µας δίνει ελάχιστες πληροφορίες λέγοντας ότι αυτήν την κατασκευή ο Θεός την προέβαλε στο σύµπαν και το διακόσµησε περιχαράσσοντας το µε αυτή «έτι δε ούσης συστάσεως µιας πέµπτης, επί το πάν ο θεός αυτή κατεχρήσατο εκείνο διαζωγραφών» [B6-55c]. ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΠΟΛΥΕ ΡΩΝ ΑΠΟ ΤΟΝ ΠΛΑΤΩΝΑ

3 Για παράδειγµα, η γεωµετρική κατασκευή του κανονικού τετράεδρου έχει ως εξής: δύο σκαληνά ορθογώνια τρίγωνα συνενώνονται στις υποτείνουσές τους σχηµατίζοντας τραπέζιο και αυτό επαναλαµβάνεται τρεις φορές. Τρία τέτοια τραπέζια συνθέτονται έτσι ώστε οι υποτείνουσες και οι µικρότερες πλευρές [των τριγώνων] να ενωθούν στο ίδιο κεντρικό σηµείο. Οπότε δηµιουργείται το ισόπλευρο τρίγωνο του σχήµατος, που αποτελείται από έξι στοιχειώδη ορθογώνια σκαληνά. [B6-54e] Είναι βέβαια άξιο απορίας γιατί χρησιµοποιεί έξι τέτοια τρίγωνα για να κατασκευάσει το ισόπλευρο αφού το τελευταίο µπορεί να σχηµατιστεί µόνο από δύο. Με βάση αυτό το ισόπλευρο τρίγωνο ο Τίµαιος κατασκευάζει το τετράεδρο όπως και άλλα δύο πολύεδρα, το οκτάεδρο και το εικοσάεδρο. «Στη συνέχεια, παίρνουµε τέσσερα τέτοια ισόπλευρα τρίγωνα και τα συνθέτουµε κατά τέτοιο τρόπο ώστε οι επίπεδες γωνίες τους να σχηµατίζουν ανά τρεις µια στερεά γωνία, το µέγεθος της οποίας προσεγγίζει οριακά την αµβλύτερη επίπεδη γωνία. Όταν δηµιουργηθούν τέσσερις τέτοιες γωνίες έχουµε κατασκευάσει το πρώτο είδος στερεού, που διαιρεί την περιγεγραµµένη σφαίρα σε τέσσερα ίσα και όµοια µέρη» [Β-6, 55]. Αυτό είναι το κανονικό τετράεδρο. Με ανάλογους συλλογισµούς και χρησιµοποιώντας το ίδιο ισόπλευρο τρίγωνο περισσότερες φορές και σε περισσότερες γωνίες, ο Τίµαιος κατασκευάζει το οκτάεδρο και το εικοσάεδρο.

4 Αντίθετα για το εξάεδρο, δηλαδή τον κύβο, και µόνον γι αυτόν χρησιµοποιεί το ορθογώνιο ισοσκελές τέσσερις φορές για να κατασκευάσει ένα τετράγωνο όπως στο σχήµα. «Τέσσερα ισοσκελή τρίγωνα συνενώθηκαν φέρνοντας τις ορθές τους γωνίες στο κέντρο και σχηµάτισαν ένα ισόπλευρο τετράγωνο». [Β- 6, 55b] Συνδυάζοντας σε ορθές γωνίες έξι τέτοιες έδρες κατασκευάζει τον κύβο. «Η σύνθεση έξι τέτοιων τετραγώνων απέδωσε οκτώ στερεές γωνίες που αποτελούνται από τρεις επίπεδες ορθές». [B6-55c]

5 ΙΑΝΟΜΗ ΤΩΝ ΣΤΕΡΕΩΝ ΣΤΑ ΣΤΟΙΧΕΙΑ Έχοντας κατασκευάσει τα τέσσερα αυτά πολύεδρα ο Πλάτων τα διένειµε στη φωτιά, τη γη, το νερό και τον αέρα, χρησιµοποιώντας λογικοφανείς εξηγήσεις. Στη φωτιά έδωσε το τετράεδρο επειδή είναι «το πιο ευκίνητο, το πιο κοφτερό και οξύ προς κάθε κατεύθυνση και το πλέον ελαφρύ, αφού αποτελείται από τον µικρότερο αριθµό ίσων µερών» [Β6-56b]. Με όµοιο σκεπτικό, έδωσε στη γη τη µορφή του κύβου επειδή είναι η πιο δυσκίνητη και πιο η πιο εύπλαστη, στον αέρα έδωσε το σχήµα του οκτάεδρου επειδή είναι το ενδιάµεσο τόσο σε µέγεθος όσο και σε οξύτητα, ενώ στο νερό αντιστοίχισε το εικοσάεδρο, για το οποίο γράφει πως είναι το µεγαλύτερο σε µέγεθος και το λιγότερο οξύ. Με την ιδέα ότι τα τέσσερα στερεά σχηµατίζονται από στοιχειώδη τρίγωνα και µάλιστα από δύο είδη, ο Πλάτων δικαιολογεί την άποψή του πώς τρία µόνο από τα πολύεδρα, το τετράεδρο, το εικοσάεδρο και το οκτάεδρο έχουν τη δυνατότητα να µετασχηµατίζονται αµοιβαία. Πρόκειται για την ιδέα της µετάβασης από µείζονα σε σµικρά και αντίστροφα [Β-6, σελ 439]. Μικρότερος αριθµός µεγαλύτερων σωµάτων, π.χ. νερού αποσυντίθεται στα συστατικά του σκαληνά τρίγωνα τα οποία συντίθενται σε µεγάλο αριθµό µικρών σωµάτων, όπως η φωτιά. Αντίστροφα, µεγάλος αριθµός µικρών µορίων αποσυντίθενται στα στοιχειώδη σκαληνά τρίγωνα τα οποία µε τη σειρά τους διαρθρώνονται κατάλληλα ώστε να σχηµατίσουν ένα µεγάλο µόριο άλλου είδους όπως του νερού. Αντίθετα, ο Πλάτων πιστεύει ότι «είναι αδύνατο στα µέρη της γης να µετασχηµατιστούν σε µέρη άλλου είδους» [Β-6, 56d], επειδή στο στοιχείο της γης έχει αποδώσει τον κύβο που παράγεται από διαφορετικό είδος τριγώνου, το ισοσκελές.

6 ΥΪΣΜΟΣ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΕ ΡΩΝ Η άποψη του Πλάτωνα είναι λανθασµένη όσον αφορά τα γεωµετρικά σχήµατα που κατασκευάζει. Στην πραγµατικότητα, ο κύβος και το οκτάεδρο είναι αλληλοπαραγόµενα, δηλαδή ο κύβος µετασχηµατίζεται µε λογικό τρόπο σε οκτάεδρο και αντίστροφα. Το φαινόµενο αυτό λέγεται δυϊσµός. Τα κέντρα των επιφανειών του κύβου συµπίπτουν µε τις κορυφές του δυϊκού του και αν τα ενώσουµε τότε θα προκύψει το οκτάεδρο. ηλαδή το πλήθος των εδρών γίνεται πλήθος κορυφών και αντίστροφα, ενώ το πλήθος των ακµών δεν αλλάζει αφού και τα δύο έχουν το ίδιο, όπως είδαµε στον πίνακα 1. Όµοια, το εικοσάεδρο µε το δωδεκάεδρο είναι ζεύγος δυϊκών στερεών. Αν πάρουµε τα κέντρα των είκοσι εδρών του εικοσάεδρου και τα ενώσουµε θα προκύψει το δωδεκάεδρο µε τις είκοσι κορυφές. Αντίστροφα, τα κέντρα των εδρών του δωδεκάεδρου είναι οι δώδεκα κορυφές του εικοσάεδρου. Το τετράεδρο είναι αυτοπαραγόµενο, δηλαδή εάν ενώσουµε τα κέντρα των εδρών του, προκύπτει πάλι τετράεδρο. Τα σχήµατα που ακολουθούν δείχνουν ακριβώς αυτό. Ο δυϊσµός των κανονικών πολύεδρων µας επιτρέπει να συµπεράνουµε ότι κάθε συµµετρία ενός κανονικού πολύεδρου είναι συµµετρία και του δυϊκού του, αφού όπως φαίνεται και από τα παραπάνω σχήµατα κάθε ισοµετρία γνήσια ή µη που αφήνει αναλλοίωτο το ένα σχήµα, θα αφήνει αναλλοίωτο και το δυϊκό του. Άρα κάθε συµµετρία του κύβου είναι συµµετρία και του οκτάεδρου και αντίστροφα κάθε συµµετρία του οκτάεδρου είναι συµµετρία και του κύβου. Μιλώντας µε τη ορολογία του 2 ου κεφαλαίου περί συµµετρίας, µπορούµε να πούµε ότι ο κύβος και το οκτάεδρο έχουν την ίδια οµάδα συµµετρίας, την οκταεδρική. Όµοια το εικοσάεδρο µε το δωδεκάεδρο ως δυικά θα έχουν τις ίδιες συµµετρίες, άρα και την ίδια οµάδα συµµετρίας, που λέγεται συνήθως εικοσαεδρική. Τέλος, το τετράεδρο, που όπως είπαµε αναπαράγει τον εαυτό

7 του, έχει την τετραεδρική οµάδα συµµετρίας. O Weyl αποδεικνύει ότι αυτές οι τρεις οµάδες µαζί µε τις κυκλικές οµάδες των περιστροφών γύρω από έναν άξονα ε, και τις οµάδες, που αποτελούνται από όλες τις προηγούµενες γνήσιες περιστροφές και επιπλέον όλες τους κατοπτρισµούς, που στο χώρο ισοδυναµούν µε στροφές κατά 180 µοίρες (οπότε στο χώρο η οµάδα γίνεται οµάδα γνήσιων περιστροφών), συνιστούν όλες τις δυνατότητες που υπάρχουν για οµάδες γνήσιων µόνο ισοµετριών του χώρου. [Β-1, σελ 103, Παράρτηµα Α] Σε αντίθεση µε το επίπεδο, όπου το τρίγωνο, το τετράγωνο και το πεντάγωνο δεν είναι δυνατό να παραχθούν το ένα από το άλλο, στις τρεις διαστάσεις, στο χώρο, µπορούµε να περάσουµε από το δωδεκάεδρο ή το εικοσάεδρο στον κύβο, από τον κύβο στο τετράεδρο. Η Ghyka στο βιβλίο της γράφει: «Για παράδειγµα, οι 12 κορυφές του εικοσάεδρου, καθώς και οι 6 από τις ακµές του, βρίσκονται πάνω στην επιφάνεια ενός νοητού κύβου. Οι 8 κορυφές αυτού του κύβου συµπίπτουν µε 8 κορυφές ενός δωδεκάεδρου το οποίο έχει την ακµή του ίση µε του εικοσαέδρου. Οι υπόλοιπες 12 κορυφές του δωδεκάεδρου και 6 από τις ακµές του βρίσκονται στην επιφάνεια ενός άλλου περιέχοντος κύβου, τέτοιου ώστε η ακµή του και η ακµή του πρώτου κύβου πρέπει να είναι σε αναλογία Φ= =1,618. Με τον ίδιο τρόπο, οι 6 ακµές κάθε τετραέδρου µπορούν να οριστούν ως διαγώνιες στις 6 έδρες ενός κύβου, και οι 4 κορυφές του τετραέδρου να συµπίπτουν µε 4 από τις κορυφές του κύβου (οι υπόλοιπες 4 κορυφές του κύβου και οι 6 άλλες διαγώνιες παράγουν ακόµη ένα τετράεδρο). Ακόµη: οι 20 κορυφές του δωδεκάεδρου είναι επίσης οι κορυφές πέντε τετραέδρων, ή πέντε κύβων (2 κορυφές κύβου για κάθε κορυφή δωδεκάεδρου)». [Β-4[ ΣΥΜΜΕΤΡΙΕΣ Τα πέντε κανονικά στερεά, πέρα από τη χρήση τους στον Πλάτωνα ως µέρος της κοσµολογίας του, µελετήθηκαν εκτενώς και χρησιµοποιήθηκαν κατά την περίοδο της αναγέννησης από τους γεωµέτρες-καλλιτέχνες λόγω της συµµετρίας τους. Εδώ θα προσπαθήσουµε να διερευνήσουµε τις συµµετρίες του κύβου και του τετράεδρου. Οι Συµµετρίες του Κύβου Ας ξεκινήσουµε από τον κύβο επειδή έχει το πιο οικείο σχήµα. Ο κύβος έχει οκτώ κορυφές και σε κάθε του κορυφή συναντώνται τρεις ακµές.

8 ΠΕΡΙΣΤΡΟΦΙΚΕΣ Στον κύβο υπάρχουν 3 κάθετες ευθείες που διέρχονται από τα κέντρα των εδρών του κύβου ως προς τις οποίες ο κύβος έχει 4 δυνατές περιστροφικές συµµετρίες σε κάθε µία. ηλαδή γίνεται να περιστρέψουµε τον κύβο γύρω από µια τέτοια κάθετη ευθεία σε αυτόν κατά τρεις διαφορετικές γωνίες (,,, ) χωρίς να αλλάξει ο προσανατολισµός του κύβου, δηλαδή θα µείνει αναλλοίωτος στη µορφή, όπως φαίνεται στο σχήµα. Συνολικά έχουµε 3 x 4 = 12 περιστροφικές συµµετρίες ως προς κάθε µια κάθετη ευθεία. Ακόµη υπάρχουν τέσσερις διαγώνιες ευθείες ως προς τις οποίες ο κύβος έχει τρεις περιστροφικές συµµετρίες για κάθε µια διαγώνιο. ηλαδή µπορούµε να περιστρέψουµε τον κύβο, γύρω από κάθε µια τέτοια διαγώνιο, κατά τρεις

9 διαφορετικές γωνίες, χωρίς να αλλάξει ο προσανατολισµός του κύβου, δηλαδή θα µείνει φαινοµενικά αναλλοίωτος. Συνολικά υπάρχουν 4 x 3 = 12 περιστροφικές συµµετρίες ως προς τις διαγώνιες αυτές. Άρα έχουµε = 24 δυνατές περιστροφικές συµµετρίες ως προς όλες αυτές τις ευθείες. ΚΑΤΟΠΤΡΙΣΜΟΙ Επίσης, κάθε µια από τις κάθετες ευθείες ορίζει τέσσερα διαφορετικά και ανά δύο κάθετα επίπεδα ως προς το οποία ο κύβος έχει κατοπτρική συµµετρία. ηλαδή εάν τα επίπεδα αυτά τα θεωρήσουµε ως αµφίπλευρους καθρέπτες, τότε κάθε πλευρά του καθρέπτη θα απεικονίζει το υπόλοιπο µισό του κύβου, όπως στα σχήµατα που ακολουθούν. Έχουµε τέσσερις κατοπτρικές συµµετρίες για

10 κάθε µια από τις τρεις κάθετες ευθείες, οπότε υπάρχουν συνολικά 3 x 4 = 12 κατοπτρικές συµµετρίες ακόµη.

11 Τέλος, για κάθε µια από τις τέσσερις διαγώνιες ευθείες ορίζονται τρία επίπεδα ανάκλασης, δηλαδή τρία επίπεδα ως προς τα οποία ο κύβος είναι αµφίπλευρα (κατοπτρικά) συµµετρικός, όπως φαίνεται στα παρακάτω σχήµατα. Οπότε έχουµε ακόµη 4 x 3 = 12 κατοπτρικές συµµετρίες.

12

13 Άρα συνολικά βρήκαµε = 48 συµµετρίες, εκ των οποίων οι 24 είναι περιστροφικές και άλλες τόσες είναι κατοπτρικές. Όπως έχουµε πει προηγουµένως, οι συµµετρίες του κύβου σχηµατίζουν οµάδα, την λεγόµενη οκταεδρική µε τάξη 48 [O Weyl λεει 24]. Οι συµµετρίες του τετράεδρου Το τετράεδρο έχει, όπως έχουµε δει, τέσσερα ίσα ισόπλευρα τρίγωνα ως έδρες και 4 κορυφές που σε κάθε µια προσπίπτουν 3 ακµές. Οι δυνατές συµµετρίες του τετράεδρου, µε ανάλογο τρόπο όπως στον κύβο, είναι περιστροφές και ανακλάσεις.

14 ΠΕΡΙΣΤΡΟΦΕΣ Το κέντρο κάθε έδρας και η απέναντι από αυτήν κορυφή ορίζουν έναν άξονα περιστροφής γύρω από τον οποίο το τετράεδρο έχει τριπλή περιστροφική

15 συµµετρία. Προφανώς, υπάρχουν 4 τέτοιοι άξονες περιστροφικής συµµετρίας, ε1, ε2, ε3, ε4, όπως φαίνεται στο σχήµα. Για κάθε έναν άξονα υπάρχουν τρεις δυνατές γωνίες ( ) κατά τις οποίες γίνεται να στρέψουµε το τετράεδρο γύρω από τον άξονα περιστροφής χωρίς να αλλάξει ο προσανατολισµός του σχήµατος. Συνολικά, έχουµε 4 * 3 = 12 περιστροφικές συµµετρίες. Ακόµη, σε κάθε ένα τέτοιο άξονα αντιστοιχούν 3 επίπεδα κατοπτρισµού, δηλαδή 3 επίπεδα ως προς το οποία το τετράεδρο είναι αµφίπλευρα κατοπτρικό. Το παρακάτω σχήµα υποδεικνύει ακριβώς τις τρεις κατοπτρικές

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN

ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN ΣΥΜΜΕΤΡΙΑ ΑΠΟ ΤΟΝ ΤΙΜΑΙΟ ΩΣ ΤΟΝ FELIX KLEIN KAI ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΟΥ ERLANGEN 4. Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΧΩΡΟ ΠΟΛΥΕ ΡΑ Στις τρεις διαστάσεις, η συµµετρία έχει την πιο ενδιαφέρουσα εφαρµογή της στα πολύεδρα και δη

Διαβάστε περισσότερα

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας.

Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + 2). Την εποχή της Στερεομετρίας. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Κέρκυρας Χαράλαμπος Δημητριάδης Μαθηματικός Θέμα: «Κωνσταντίνος και Ελένη. Ήσαν Άγιοι και οι δύο.» (Κ + Ε = Α + ). Την εποχή της Στερεομετρίας. Μέγιστο γινόμενο,

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής. Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ

Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής. Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ Αρβανίτη Μαρία Ελένη Κρυσταλλίδης Περικλής Μάθημα : «Θέμα» Επιβλέπουσα : Λαμπροπούλου Σοφία ΣΕΜΦΕ 2016-2017 ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ Εισαγωγή Τα Πλατωνικά στερεά Τα Πλατωνικά στερεά και τα στοιχεία της φύσης Η

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου.

συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. συµµετρίες που αντιστοιχούν σε έναν από τους άξονες συµµετρίας του τετράεδρου. Σε κάθε άξονα αντιστοιχούν 3 κατοπτρισµοί, οπότε έχουµε 4 * 3 = 12 κατοπτρισµούς συνολικά. Συνολικά, η οµάδα των συµµετριών

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου

ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ. Του Αλέκου Χαραλαμπόπουλου ΔΙΑΘΛΑΣΗ ΚΑΙ ΦΟΡΤΙΟ. ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΟΙ ΟΥΡΑΝΟΙ Του Αλέκου Χαραλαμπόπουλου Όσοι διαβάσατε «ΤΟ ΙΔΙΟΝ» www.omas-e.gr, θα διαπιστώσατε ότι στο κέντρο των συμπάντων υπάρχει η φυσαλίδα που στέλνει

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα

Διαβάστε περισσότερα

1. Γενικά για τα τετράπλευρα

1. Γενικά για τα τετράπλευρα 1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος»

Ονοματεπώνυμο... Β. Να γράψετε τον αριθμό κάθε πρότασης στο γραπτό σας και δίπλα να την χαρακτηρίσετε σαν «Σωστό» ή «Λάθος» ο Γενικό Λύκειο Χανίων ΣΧΟΛ. ΕΤΟΣ - Τάξη ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙ Τα θέματα ΔΕΝ θα μεταφερθούν στο καθαρό. Να απαντήσετε σε όλα τα θέματα Οι απαντήσεις να γραφούν στο καθαρό

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ

Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Η ΔΗΜΙΟΥΡΓΙΑ ΤΩΝ ΠΟΛΛΑΠΛΩΝ ΚΟΣΜΩΝ Του Αλέκου Χαραλαμπόπουλου Όπως διατυπώθηκε στην κοσμοθεωρία μας ΤΟ ΙΔΙΟΝ, ο κόσμος μας, το σύμπαν μας είναι μία ολογραφία, περίπου ένα επίπεδο τετράγωνο. Υπάρχουν έξι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια Στερεά

Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια Στερεά Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια τερεά (Κανονικά και Ηµικανονικά Πολύεδρα) Λίγα Ιστορικά στοιχεία ηµ. Μπουνάκης χ. ύµβουλος Μαθηµατικών dimitrmp@sch.gr Ιούνιος 2011 Κανονικό Πολύεδρο είναι το

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ 1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. ** Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι

Διαβάστε περισσότερα

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν. Ερωτήσεις πολλαπλής επιλογής 1 * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α ισοσκελές Β ισόπλευρο Γ ορθογώνιο αµβλυγώνιο Ε τυχόν * Κάθε παραλληλεπίπεδο έχει ακµές Α Β 6 Γ 8 10 Ε

Διαβάστε περισσότερα

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε) 9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.

Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος. ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας

Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14

ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Ιούνιος 14 ΟΓΚΟΣ ΣΤΕΓΗΣ ιαχειριστής Έργου ΣΟΥΓΑΡΗΣ ΙΩΑΝΝΗΣ Περιεχόμενα 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 4 I. ΠΥΡΑΜΙΔΑ 4 II. ΤΕΤΡΑΕΔΡΟ 5 III. ΟΓΚΟΣ ΠΥΡΑΜΙΔΑΣ 5 2. ΜΟΡΦΕΣ ΙΣΟΚΛΙΝΟΥΣ ΣΤΕΓΗΣ 6 I. ΔΥΡΙΧΤΗ 6 II. ΤΕΤΡΑΡΙΧΤΗΜΕ ΤΕΤΡΑΓΩΝΗ

Διαβάστε περισσότερα

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες

Διαβάστε περισσότερα

VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ

VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ Μην γυρίσετε την επόμενη σελίδα πριν σας το πουν. Για το test αυτό πρέπει να γνωρίζετε ότι: Δεν επηρεάζει τη βαθμολογία σου στο σχολείο. Χρησιμοποιείται αποκλειστικά

Διαβάστε περισσότερα

Ειδικά θέματα στη ροπή αδράνειας του στερεού.

Ειδικά θέματα στη ροπή αδράνειας του στερεού. Ειδικά θέματα στη ροπή αδράνειας του στερεού Η συνική ροπή αδράνειας ως άθροισμα επί μέρους ροπών αδράνειας Έστω το τυχαίο στερεό του σχήματος που αποτελείται από επιμέρους τμήματα Α,Β,Γ,Δ Η ροπή αδράνειας

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ

3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ 1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Είδη τριγώνων ως προς τις πλευρές

Είδη τριγώνων ως προς τις πλευρές ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 41 Είδη τριγώνων ως προς τις πλευρές Ενότητα 5 β τεύχος Είδη τριγώνων ως προς τις πλευρές 41 1η Άσκηση Να αντιστοιχίσεις: Το σκαληνό τρίγωνο έχει Το ισοσκελές τρίγωνο

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ

1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296

1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296 Πολιτιστικό πρόγραµµα: Επίσκεψη στο Μουσείο Ηρακλειδών 21/2/2012 Σ.Πατσιοµίτου Η επίσκεψη στο Μουσείο

Διαβάστε περισσότερα

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ

Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ Η ΧΡΥΣΗ ΤΟΜΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΤΗ ΣΤΕΡΕΟΜΕΤΡΙΑ Μέσος και άκρος λόγος σε τµήµα Το Φ προκύπτει µαθηµατικά, αλλά απαντάται και στη φύση, µε αρκετούς διαφορετικούς τρόπους. Θεωρείται ότι δίνει αρµονικές αναλογίες

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

Κανονικά πολύγωνα Τουρναβίτης Στέργιος

Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα στη φύση, τέχνη, ανθρώπινες κατασκευές, Μαθηματικά Κανονικά πολύγωνα στη φύση Η κηρήθρα είναι ένα φυσικό θαύμα αρχιτεκτονικής Οι μέλισσες έχουν

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα