Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
|
|
- Νηλεύς Αναγνωστάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη σε συναρτήσεις Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών
2
3 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα & Παραςκευι 11-13
4 Θ: διάλεξη (θεωρία) Ε: Εργαστήριο Q: Τεστ quiz Οκτώβριος 2013 Δ Τ Τ Π Π Θ Θ Θ Νοέμβριος 2013 Δ Τ Τ Π Π 4 E 5 E 6 7 Θ 8 11 E 12 E Θ E 19 E Θ Q Θ 29 Δεκέμβριος 2013 Δ Τ Τ Π Π 2 E 3 E 4 5 Θ 6 9 E 10 E Θ Q Θ 20 Ιανουάριος 2014 Δ Τ Τ Π Π Θ 10 Ημερολόγιο Μακιματοσ Εβδομάδα Θζματα Ύλθ βιβλιογραφίασ Πζ, 17 Οκτωβρίου Ειςαγωγικά μακιματοσ & Δυαδικι αναπαράςταςθ *1+: 1.1, Παράρτθμα 3 *2+: Κεφ. 1, Β, Δ Πζ, 24 Οκτωβρίου Είςοδοσ/Ζξοδοσ δεδομζνων, τφποι δεδομζνων & μεταβλθτϊν Πζ, 31 Οκτωβρίου Προεπεξεργαςτισ, αρικμθτικοί και λογικοί τελεςτζσ, Ροι ελζγχου: if/else Δε Σρ, 4-5 Νοε 1 ο Εργαςτιριο Πζ, 7 Νοεμβρίου Ροι ελζγχου for, while, do-while Δε Σρ, Νοε 2 ο Εργαςτιριο Πζ, 14 Νοεμβρίου υναρτιςεισ, εμβζλεια μεταβλθτϊν και αναδρομι Δε Σρ, Νοε 3 ο Εργαςτιριο Πζ, 21 Νοεμβρίου Επανάλθψθ με Παραδείγματα Δε, 25 Νοε 1 ο Quiz Πζ, 28 Νοεμβρίου Πίνακεσ (μονοδιάςτατοι και πολυδιάςτατοι) Δε Σρ, 2-3 Δεκ 4 ο Εργαςτιριο Πζ, 5 Δεκεμβρίου Ψευδοτυχαίοι αρικμοί και υμβολοςειρζσ Δε Σρ, 9-10 Δεκ 5 ο Εργαςτιριο Πζ, 12 Δεκεμβρίου Χριςθ αρχείων, εγγραφζσ και δομζσ Δε, 16 Δεκ 2 ο Quiz Πζ, 19 Δεκεμβρίου Εφαρμογζσ ςε ταξινομιςεισ και αναηιτθςθ ςτοιχείων Πζ, 9 Ιανουαρίου Επανάλθψθ *1+: 1.2, 1.3, 1.4, 1.5, Παράρτθμα 1 *2+: Κεφ. 2, Γ [1]: 2.1, 2.2 Παράρτθμα 2 *2+: 4.11, 4.12, Α, ΣΤ [1]: 2.2, 2.3 *2+: Κεφ. 4, Κεφ. 5 [1]: 3.1, 3.2, 3.3, 4.1, 4.2, 13.1, 13.2 *2+: Κεφ. 6 [1]: 5.1, 5.2, 5.4 *2+: Κεφ. 7 *1+: Παράρτθμα 4, 9.1, 9.2, 9.3 *2+: 6.7, 6.8, Κεφ. 18 [1]: 6.1, 12.1, 12.2, 12.4 [2]: Κεφ. 21, [1]: 5.3, 13.3 *2+: 7.7, 7.8, 8.6, Κεφ
5 Θ: διάλεξη (θεωρία) Ε: Εργαστήριο Q: Τεστ quiz Οκτώβριος 2013 Δ Τ Τ Π Π Θ Θ Θ Νοέμβριος 2013 Δ Τ Τ Π Π 4 E 5 E 6 7 Θ 8 11 E 12 E Θ E 19 E Θ Q Θ 29 Δεκέμβριος 2013 Δ Τ Τ Π Π 2 E 3 E 4 5 Θ 6 9 E 10 E Θ Q Θ 20 Ιανουάριος 2014 Δ Τ Τ Π Π Θ 10 Ημερολόγιο Μακιματοσ Εβδομάδα Θζματα Ύλθ βιβλιογραφίασ Πζ, 17 Οκτωβρίου Ειςαγωγικά μακιματοσ & Δυαδικι αναπαράςταςθ *1+: 1.1, Παράρτθμα 3 *2+: Κεφ. 1, Β, Δ Πζ, 24 Οκτωβρίου Είςοδοσ/Ζξοδοσ δεδομζνων, τφποι δεδομζνων & μεταβλθτϊν Πζ, 31 Οκτωβρίου Προεπεξεργαςτισ, αρικμθτικοί και λογικοί τελεςτζσ, Ροι ελζγχου: if/else Δε Σρ, 4-5 Νοε 1 ο Εργαςτιριο Πζ, 7 Νοεμβρίου Ροι ελζγχου for, while, do-while Δε Σρ, Νοε 2 ο Εργαςτιριο Πζ, 14 Νοεμβρίου υναρτιςεισ, εμβζλεια μεταβλθτϊν και αναδρομι Δε Σρ, Νοε 3 ο Εργαςτιριο Πζ, 21 Νοεμβρίου Επανάλθψθ με Παραδείγματα Δε, 25 Νοε 1 ο Quiz Πζ, 28 Νοεμβρίου Πίνακεσ (μονοδιάςτατοι και πολυδιάςτατοι) Δε Σρ, 2-3 Δεκ 4 ο Εργαςτιριο Πζ, 5 Δεκεμβρίου Ψευδοτυχαίοι αρικμοί και υμβολοςειρζσ Δε Σρ, 9-10 Δεκ 5 ο Εργαςτιριο Πζ, 12 Δεκεμβρίου Χριςθ αρχείων, εγγραφζσ και δομζσ Δε, 16 Δεκ 2 ο Quiz Πζ, 19 Δεκεμβρίου Εφαρμογζσ ςε ταξινομιςεισ και αναηιτθςθ ςτοιχείων Πζ, 9 Ιανουαρίου Επανάλθψθ *1+: 1.2, 1.3, 1.4, 1.5, Παράρτθμα 1 *2+: Κεφ. 2, Γ [1]: 2.1, 2.2 Παράρτθμα 2 *2+: 4.11, 4.12, Α, ΣΤ [1]: 2.2, 2.3 *2+: Κεφ. 4, Κεφ. 5 [1]: 3.1, 3.2, 3.3, 4.1, 4.2, 13.1, 13.2 *2+: Κεφ. 6 [1]: 5.1, 5.2, 5.4 *2+: Κεφ. 7 *1+: Παράρτθμα 4, 9.1, 9.2, 9.3 *2+: 6.7, 6.8, Κεφ. 18 [1]: 6.1, 12.1, 12.2, 12.4 [2]: Κεφ. 21, [1]: 5.3, 13.3 *2+: 7.7, 7.8, 8.6, Κεφ
6 1 ο Quiz Το 1 ο quiz κα διεξαχκεί τθν Δευτζρα 25 Νοεμβρίου Για όλα τα τμιματα!! 15:00-21:00 ςτα ακόλουκα τμιματα: Ώρεσ Α. Μ. 15:00-15: :45-16: :30-17: :15-18: :00-18: :45-19: :30-20: :15-21: Μζχρι τότε κα πρζπει μόνοι ςασ να γραφτείτε ςτο ecourse του μακιματοσ: Δοκιμάςτε 5 παραπλιςιεσ ερωτιςεισ Σθμειϊςτε: username password 6-4
7 Ενότθτεσ 1-13 ΕΠΑΝΑΛΗΨΗ 6-5
8 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων 6-6
9 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων #include <iostream> int main( ) int x, y, z, sum; double avg; cout << "Enter x,y,z:"; cin >> x >> y >> z; sum = x + y + z; avg = static_cast<double>(sum)/3; // ή avg = sum / 3.0 ; cout << "Avg: " << avg; return 0; 6-7
10 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Κατά τθν είςοδο να γίνεται επαναλθπτικόσ ζλεγχοσ τιμϊν. 6-8
11 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Κατά τθν είςοδο να γίνεται επαναλθπτικόσ ζλεγχοσ τιμϊν. #include <iostream> int main( ) int x, y, z, sum; double avg; do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); sum = x + y + z; avg = static_cast<double>(sum)/3; // ή avg = sum / 3.0 ; cout << "Avg: " << avg; 6-9
12 Μ.Ο. τριϊν ακεραίων Να γραφεί μια ςυνάρτθςθ που δζχεται τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. main(): Καλζςτε από τθν main() τθν ςυνάρτθςθ που φτιάξατε αφοφ πρϊτα διαβάςετε τουσ αρικμοφσ. Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ. 6-10
13 #include <iostream> double avg(int x, int y, int z); int main( ) int x, y, z; double avg; do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); cout << "Avg: " << avg(x, y, z); double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); 6-11
14 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Θα πρζπει να χρθςιμοποιιςετε τουλάχιςτον τρεισ ςυν/ςεισ: μια για διάβαςμα μια για υπολογιςμό μια για εκτφπωςθ Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ. 6-12
15 #include <iostream> void read(int &x, int &y, int &z); double avg(int x, int y, int z); void print(double a); int main( ) int x, y, z; double mo; read(x,y,z); mo = avg(x,y,z); print(mo); void read(int &x, int &y, int &z) do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); void print(double a) cout << "Avg: " << a << endl; double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); 6-13
16 Μ.Ο. τριϊν ακεραίων Να γραφεί ζνα πρόγραμμα που διαβάηει τρεισ κετικοφσ ακεραίουσ και υπολογίηει το μζςο όρο των τριϊν ακεραίων. Θα πρζπει να χρθςιμοποιιςετε τουλάχιςτον τρεισ ςυν/ςεισ: μια για διάβαςμα μια για υπολογιςμό μια για εκτφπωςθ Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ. Να ςυμπεριλάβετε ζνα βρόχο ο οποίοσ κα επιτρζπει ςτο χριςτθ να επαναλαμβάνει τον υπολογιςμό για νζεσ τιμζσ ειςόδου μζχρι ο χριςτθσ να δθλϊςει ότι δεν κζλει να ςυνεχίςει. 6-14
17 #include <iostream> void read(int &x, int &y, int &z); double avg(int x, int y, int z); void print(double a); int main( ) int x, y, z; char ans; double mo; do read(x,y,z); mo = avg(x,y,z); print(mo); cout << "again(y/n)?"; cin >> ans; while(ans == 'y'); double avg(int x, int y, int z) int sum; sum = x + y + z; return ( static_cast<double>(sum) / 3 ); void read(int &x, int &y, int &z) do cout << "Enter x,y,z:"; cin >> x >> y >> z; while( (x < 0) (y < 0) (z <0) ); void print(double a) cout << "Avg: " << a << endl; 6-15
18 Γενικά Όλεσ οι προθγοφμενεσ παραλλαγζσ ςτισ εκφωνιςεισ απαιτοφν και διαφορετικό τρόπο επίλυςθσ Πρόγραμμα Πρόγραμμα με ςυναρτιςεισ Πρόγραμμα με ςυναρτιςεισ και ζλεγχο δεδομζνων Πρόγραμμα με επιμζρουσ ςυναρτιςεισ (προςοχι ςτισ &παραμζτρουσ) Πρόγραμμα με επιμζρουσ ςυναρτιςεισ και επαναλθπτικό υπολογιςμό Θα πρζπει να τουσ καταλαβαίνουμε από τθν εκφϊνθςθ ποιο ολοκλθρωμζνο πρόγραμμα ηθτάμε Στα υπόλοιπα παραδείγματα μόνο κάποια κατθγορία ηθτάμε και επιλφουμε Θα πρζπει ωςτόςο να μποροφμε να διαχειριςτοφμε και τισ υπόλοιπεσ κατθγορίεσ 6-16
19 Τετράγωνο αρικμοφ Το τετράγωνο ενόσ ακεραίου αρικμοφ n μπορεί να υπολογιςτεί προςκζτοντασ όλουσ τουσ ακζραιουσ από το 1 ζωσ το n και επιςτρζφοντασ πάλι πίςω ςτο 1, π.χ. 4 2 = = 16 Να γράψετε ζνα πρόγραμμα με ςυναρτιςεισ που κα εμφανίηει το τετράγωνο οποιουδιποτε ακζραιου n χρθςιμοποιϊντασ τον παραπάνω τρόπο Ο αλγόρικμοσ κα δζχεται ωσ είςοδο τον αρικμό n. Κατά τθν ειςαγωγι κα ελζγχεται θ ςυνκικθ n >
20 #include <iostream> int square(int n); int main( ) int n, sqn; do cout << "Enter n:"; cin >> n; while( n < 0 ); cout << "Square: " << square(n); int square(int n) int res; res = 0; for(int i = 1; i <= n; i++) res = res + i; for(int i = n-1; i >= 1; i--) res = res + i; return res; 6-18
21 Μζγιςτοσ Κοινόσ Διαιρζτθσ Να γραφεί πρόγραμμα που να υπολογίηει τον μέγιστο κοινό διαιρέτη μεταξφ δφο ακεραίων. Σφμφωνα με τον αλγόρικμο του Ευκλείδθ: 1. Αν οι δφο αρικμοί είναι ίςοι, ο μζγιςτοσ κοινόσ διαιρζτθσ ιςοφται μ' αυτοφσ. 2. Αν δεν είναι ίςοι, αντικακιςτοφμε τον μεγαλφτερο με τθ διαφορά τουσ και επαναλαμβάνουμε τθ ςφγκριςθ Δεν είναι ίςοι. Το 84 αντικακίςταται με τθ διαφορά 84-36= Δεν είναι ίςοι. Το 48 αντικακίςταται με τθ διαφορά 48-36= Δεν είναι ίςοι. Το 36 αντικακίςταται με τθ διαφορά 36-12= Δεν είναι ίςοι. Το 24 αντικακίςταται με τθ διαφορά 24-12= Είναι ίςοι. Ο μζγιςτοσ κοινόσ διαιρζτθσ των 36 και 84 είναι το
22 #include <iostream> int mkd(int a, int b); int main( ) int a, b, mkd_ab; cout << "Enter a b:"; cin >> a >> b; mkd_ab = mkd(a, b); cout << "MKD: " << mkd_ab; int mkd(int a, int b) while( a!= b) if( a > b ) a = a-b; else b = b-a; return (a); // ή return (b); 6-20
23 Μζγιςτοσ Κοινόσ Διαιρζτθσ Να γραφεί πρόγραμμα που να υπολογίηει τον μέγιστο κοινό διαιρέτη μεταξφ δφο ακεραίων. Σφμφωνα με τον αλγόρικμο του Ευκλείδθ: 1. Αν οι δφο αρικμοί είναι ίςοι, ο μζγιςτοσ κοινόσ διαιρζτθσ ιςοφται μ' αυτοφσ. 2. Αν δεν είναι ίςοι, αντικακιςτοφμε τον μεγαλφτερο με τθ διαφορά τουσ και επαναλαμβάνουμε τθ ςφγκριςθ Δεν είναι ίςοι. Το 84 αντικακίςταται με τθ διαφορά 84-36= Δεν είναι ίςοι. Το 48 αντικακίςταται με τθ διαφορά 48-36= Δεν είναι ίςοι. Το 36 αντικακίςταται με τθ διαφορά 36-12= Δεν είναι ίςοι. Το 24 αντικακίςταται με τθ διαφορά 24-12= Είναι ίςοι. Ο μζγιςτοσ κοινόσ διαιρζτθσ των 36 και 84 είναι το 12. Θζλουμε να εκτυπϊνουμε και το πλικοσ των επαναλιψεων 6-21
24 #include <iostream> int mkd(int a, int b); int main( ) int a, b, mkd_ab; cout << "Enter a b:"; cin >> a >> b; mkd_ab = mkd(a, b); cout << "MKD: " << mkd_ab; int mkd(int a, int b) while( a!= b) if( a > b ) a = a-b; else b = b-a; return (a); // ή return (b); 6-22
25 #include <iostream> int mkd(int a, int b, int &k); int main( ) int a, b, mkd_ab, n = 0; cout << "Enter a b:"; cin >> a >> b; mkd_ab = mkd(a, b, n); cout << "MKD: " << mkd_ab << "n=" << n; int mkd(int a, int b, int &k) while( a!= b) if( a > b ) a = a-b; else b = b-a; k = k + 1; return (a); // ή return (b); 6-23
26 Μζγιςτοσ Κοινόσ Διαιρζτθσ (αναδρομικά) Να γραφεί πρόγραμμα με αναδρομικι ςυνάρτθςθ που να υπολογίηει τον μέγιστο κοινό διαιρέτη μεταξφ δφο ακεραίων. Σκεφτείτε το υπόλοιπο τθσ διαίρεςθσ x % y : Ζςτω ότι x > y Εάν y = 0 τότε ΜΚΔ(x,y)=x Αλλιϊσ, ΜΚΔ(x,y)=ΜΚΔ(y, x%y) 6-24
27 #include <iostream> int mkd(int a, int b); int main( ) int a, b, mkd_ab; cout << "Enter a b:"; cin >> a >> b; if( a > b ) mkd_ab = mkd(a, b); else mkd_ab = mkd(b, a); cout << "MKD: " << mkd_ab; int mkd(int a, int b) if( b == 0 ) return a; else return ( mkd( b, (a % b) ) ); 6-25
28 Υπολογιςμόσ δφναμθσ Να γραφτεί πρόγραμμα που διαβάηει δφο ακεραίουσ x και y και ςτθ ςυνζχεια υπολογίηει τθν ζκφραςθ x y. [χωρίσ τθ χριςθ τθσ ζτοιμθσ ςυνάρτθςθσ pow() ] Παρατιρθςθ: x y = x x x x x 6-26
29 Υπολογιςμόσ δφναμθσ Να γραφτεί πρόγραμμα που διαβάηει δφο ακεραίουσ x και y και ςτθ ςυνζχεια υπολογίηει τθν ζκφραςθ x y. [χωρίσ τθ χριςθ τθσ ζτοιμθσ ςυνάρτθςθσ pow() ] Παρατιρθςθ: x y = x x x x x #include <iostream> int main( ) int x, y, i, result; cout << "Enter x y:"; cin >> x >> y; result = 1; for( i = 1; i <= y; i++) result = result * x; cout << result; 6-27
30 Υπολογιςμόσ δφναμθσ Τι υπολογίηεται με τισ ακόλουκεσ εντολζσ: for(i = 0; i < y; i++) for(i = 0; i <= y; i++) for(i = y; i >= 0; i--) for(i = y; i > 0; i--) #include <iostream> int main( ) int x, y, i, result; cout << "Enter x y:"; cin >> x >> y; result = 1; for( i = 1; i <= y; i++) result = result * x; cout << result; 6-28
31 Υπολογιςμόσ δφναμθσ Βεβαιωκείτε ότι το πρόγραμμα εκτελείται ςωςτά για κετικζσ ι αρνθτικζσ τιμζσ για τθν βάςθ και για κετικζσ ι αρνθτικζσ τιμζσ για τον εκκζτθ. x= 4, y = -2? #include <iostream> int main( ) int x, y, i, result; cout << "Enter x y:"; cin >> x >> y; result = 1; for( i = 1; i <= y; i++) result = result * x; cout << result; 6-29
32 Υπολογιςμόσ δφναμθσ Βεβαιωκείτε ότι το πρόγραμμα εκτελείται ςωςτά για κετικζσ ι αρνθτικζσ τιμζσ για τθν βάςθ και για κετικζσ ι αρνθτικζσ τιμζσ για τον εκκζτθ. x= 4, y = -2? x -y = 1 / x y 1. Υπολογίηουμε το x y και 2. εξετάηουμε αν το y είναι αρνθτικό για να υπολογίςουμε το 1 / x y. #include <iostream> int main( ) int x, y, i, result; cout << "Enter x y:"; cin >> x >> y; result = 1; for( i = 1; i <= y; i++) result = result * x; cout << result; 6-30
33 Υπολογιςμόσ δφναμθσ Βεβαιωκείτε ότι το πρόγραμμα εκτελείται ςωςτά για κετικζσ ι αρνθτικζσ τιμζσ για τθν βάςθ και για κετικζσ ι αρνθτικζσ τιμζσ για τον εκκζτθ. x= 4, y = -2? x -y = 1 / x y 1. Υπολογίηουμε το x y και 2. εξετάηουμε αν το y είναι αρνθτικό για να υπολογίςουμε το 1 / x y. #include <iostream> #include <cstdlib> int main( ) int x, y, i; double result; cout << "Enter x y:"; cin >> x >> y; result = 1.0; for( i = 1; i <= abs(y); i++) result = result * x; if( y < 0) result = 1.0/result; cout << result; 6-31
34 Υπολογιςμόσ δφναμθσ με αναδρομι Να γραφεί αναδρομικι ςυνάρτθςθ που δζχεται 2 ακεραίουσ a, b και υπολογίηει (επιςτρζφει) το a b. a b = a * (a b-1 ) 6-32
35 Υπολογιςμόσ δφναμθσ με αναδρομι Να γραφεί αναδρομικι ςυνάρτθςθ που δζχεται 2 ακεραίουσ a, b και υπολογίηει (επιςτρζφει) το a b. a b = a * (a b-1 ) Αν b=10 πόςεσ κλιςεισ (επαναλιψεισ) κα κάνει; int power( int a, int b ) if(b == 0) return 1; else return (a * power(a,b-1) ); 6-33
36 Υπολογιςμόσ δφναμθσ με αναδρομι Να γραφεί αναδρομικι ςυνάρτθςθ που δζχεται 2 ακεραίουσ a, b και υπολογίηει (επιςτρζφει) το a b. a b = a * (a b-1 ) Αν b=10 πόςεσ κλιςεισ (επαναλιψεισ) κα κάνει; Πιο γριγορα: a b = (a b/2 ) * (a b/2 ) int power( int a, int b ) if(b == 0) return 1; else return (a * power(a,b-1) ); 6-34
37 Υπολογιςμόσ δφναμθσ με αναδρομι Να γραφεί αναδρομικι ςυνάρτθςθ που δζχεται 2 ακεραίουσ a, b και υπολογίηει (επιςτρζφει) το a b. a b = a * (a b-1 ) Αν b=10 πόςεσ κλιςεισ (επαναλιψεισ) κα κάνει; Πιο γριγορα: a b = (a b/2 ) * (a b/2 ) a b = (a b/2 ) * (a b/2 ), για b άρτιο a b = (a b/2 ) * (a b/2 ) * a, για b περιττό int power( int a, int b ) if(b == 0) return 1; if( b % 2 == 0 ) return ( power(a,b/2) * power(a,b/2) ); else return ( power(a,b/2) * power(a,b/2) * a ); #κλιςεισ δεν μειϊκθκαν 6-35
38 Υπολογιςμόσ δφναμθσ με αναδρομι Να γραφεί αναδρομικι ςυνάρτθςθ που δζχεται 2 ακεραίουσ a, b και υπολογίηει (επιςτρζφει) το a b. a b = a * (a b-1 ) Αν b=10 πόςεσ κλιςεισ (επαναλιψεισ) κα κάνει; Πιο γριγορα: a b = (a b/2 ) * (a b/2 ) a b = (a b/2 ) * (a b/2 ), για b άρτιο a b = (a b/2 ) * (a b/2 ) * a, για b περιττό int power( int a, int b ) int half; if(b == 0) return 1; half = power(a, b/2) ; if( b % 2 == 0 ) return ( half * half ); else return (half * half * a ); 6-36
39 Υπολογιςμόσ αρικμθτικισ ςυνάρτθςθσ Να γραφεί μια ςυνάρτθςθ που δζχεται δφο ακζραιεσ τιμζσ x και n (=άρτιοσ αρικμόσ), και υπολογίηει τθν τιμι τθσ ακόλουκθσ αρικμθτικισ ςυνάρτθςθσ: x 3x 5x ( n 1) x main(): Καλζςτε από τθν main() τθν ςυνάρτθςθ που φτιάξατε αφοφ πρϊτα διαβάςετε τουσ αρικμοφσ. Θα πρζπει κατά τθν είςοδο να ελζγχετε (επαναλθπτικά) για επιτρεπτζσ τιμζσ. n 6-37
40 #include <iostream> double fff(int x, int n); int main( ) int x, n; do cout << "Enter x, n:"; cin >> x >> n; while ( n % 2 == 1); cout << "F(x,n): " << fff(x,n); double fff(int x, int n) double sum = 1.0, xd = 1.0; for( int i = 2; i <= n; i = i + 2) xd = xd * (x * x); sum = sum + (i-1) * xd; return sum; 6-38
41 Φίλιοι αρικμοί Δφο κετικοί ακζραιοι αρικμοί είναι «φίλιοι» αν ο κακζνασ ιςοφται με το άκροιςμα όςων διαιροφν τον άλλον (λαμβάνονται υπόψθ μόνον οι γνιςιοι διαιρζτεσ). Οι πιο διάςθμοι «φίλιοι» αρικμοί είναι οι αρικμοί 220 και 284 (αποδίδονται ςτον Πυκαγόρα). Διαιρζτεσ του 220 : 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 (άκροιςμα=284) Διαιρζτεσ του 284 : 1, 2, 4, 71, 142 (άκροιςμα=220) Να γραφεί μια ςυνάρτθςθ που δζχεται δφο ακεραίουσ και κα επιςτρζφει true ι false ανάλογα αν είναι φίλιοι αρικμοί. 6-39
42 bool filioi(int a, int b) int i, sum1=0, sum2=0; for(i = 1; i < a; i++) if( a%i == 0 ) sum1 = sum1 + i; #include <iostream> bool filioi(int a, int b); int main( ) int a, b; for(i = 1; i < b; i++) if( b%i == 0 ) sum2 = sum2 + i; if( sum1 == b && sum2 == a) return true; else return false; cout << "Enter a, b:"; cin >> a >> b; if( filioi(a, b) ) cout << "Filioi!"; else cout << "Not Filioi!"; 6-40
43 Συναρτιςεισ (ςφνοψθ) Όταν πρόκειται να γράψουμε μια ςυν/ςθ: 1. Κακορίηουμε τον επιςτρεφόμενο τφπο Πχ. int 2. Δίνουμε όνομα ςτθν ςυν/ςθ Πχ. square 3. Δθλϊνουμε τα ορίςματα (τι κα πρζπει να δζχεται θ ςυν/ςθ ωσ είςοδο) Πχ. (int y) 4. Γράφουμε τθν διλωςθ τθσ ςυν/ςθσ Πχ. int square(int y); 5. Υλοποιοφμε τθν μζκοδο ζχοντασ υπόψιν τθν εντολι return Πχ. int square(int y) int result; result = y*y; return result; 6-41
44 Βιβλιογραφία Καλι Μελζτθ [1] W. Savitch, Πλιρθσ C++, Εκδόςεισ Τηιόλα, 2011 [2+ Η. Deitel and P. Deitel, C++ Προγραμματιςμόσ 6θ Εκδοςθ, Εκδόςεισ Μ. Γκιοφρδασ, 2013 Ύλθ βιβλιογραφίασ [1]: Κεφ. 1 4, , Παραρτιματα 1, 2, 3, 4 [2]: Κεφ. 1, 2, 4, 6 Παραρτιματα Α, Β, Γ, Δ, ΣΤ 1o QUIZ (όλα τα τμιματα): Δευτζρα 25 Νοεμβρίου 6-42
45 Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας
46 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Λέκτορας Χάρης Παπαδόπουλος «Εισαγωγή στον Προγραμματισμό». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Επανάληψη Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2018-2019 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Σρίτθ 11-13 Ενότθτεσ 1-24 ΕΠΑΝΑΛΗΨΗ
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εφαρμογές σε ταξινομήσεις και αναζήτηση στοιχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Τμιματα Εργαςτθρίων
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Ροή ελέγχου: if/else, switch, for, while, do-while Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Πίνακες (μονοδιάστατοι και πολυδιάστατοι) Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)
16. Πίνακεσ και Συναρτήςεισ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Αριθμητικοί και λογικοί τελεστές Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 ελίδα Μακιματοσ:
Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9
Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ
17. Πολυδιάςτατοι πίνακεσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Συναρτήσεις και ορίσματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Διαφορά καθολικής μεταβλητής και σταθεράς
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
1 ο Διαγώνιςμα για το Α.Ε.Π.Π.
1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ
ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΑΠΡΙΛΙΟ 2018 ΚΑΘΗΓΗΤΗΣ: Γιώργος Πασσαλίδης ΑΕΠΠ ΟΝΟΜΑΣΕΠΩΝΤΜΟ: ΒΑΘΜΟ : ΘΕΜΑ Α Α1. Για κακεμία από τισ παρακάτω προτάςεισ
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Αλφαριθμητικά και Συμβολοσειρές Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο
343 Ειςαγωγι ςτον Ρρογραμματιςμό
343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Ραπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Ραραςκευι 11-13
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εγγραφές, δομές και χρήση αρχείων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Θ: διάλεξη (θεωρία)
5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ
5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ Να γραφεί πρόγραμμα, το οποίο κα δίνει τισ τιμζσ 5 και 6 ςε δφο μεταβλθτζσ a και b και κα υπολογίηει και κα εμφανίηει το άκροιςμά τουσ sum. ΛΟΓΙΚΟ ΔΙΑΓΡΑΜΜΑ a 5 b 6 sum a+b sum ΑΛΓΟΡΙΘΜΟ
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Σμιματα Εργαςτθρίων
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Σμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2015-2016 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 ελίδα Μακιματοσ:
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 19. Αλφαριθμητικά II. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 19. Αλφαριθμητικά II Ιωάννθσ Κατάκθσ Αλφαρικμθτικά ςτθ C Ζνα string είναι μία ακολουκία αλφαρικμθτικϊν χαρακτήρων, ςθμείων ςτίξθσ κτλ. Π.χ. Hello How are you?
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Η γλώςςα προγραμματιςμού C
Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα
Οντοκεντρικόσ Ρρογραμματιςμόσ
Οντοκεντρικόσ Ρρογραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΥΡΕΦΟΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΕΣΕΙΣ Υπερφόρτωςθ Τελεςτών Ιωάννθσ Χατηθλυγεροφδθσ Ρολυτεχνικι Σχολι Τμιμα Μθχανικών Η/Υ & Ρλθροφορικισ Υπερφόρτωςθ Τελεςτών
Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον
Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )
3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δείκτες Διδάσκοντες: Αν Καθ Δ Παπαγεωργίου, Αν Καθ Ε Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν. Κϊςτασ Αρβανιτάκθσ
Εργαςτιριο Πικανοτιτων Σθμειϊςεισ προγραμματιςμοφ: βαςικζσ γνϊςεισ ανάπτυξθσ εφαρμογϊν Κϊςτασ Αρβανιτάκθσ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2013-2014 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Δευτζρα 11-13 & Παραςκευι 11-13
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Συναρτήσεις, εμβέλεια μεταβλητών και αναδρομή Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ
Ονοματεπϊνυμο.. ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 Ο Α) Ερωτισεις τφπου ωστοφ-λάκους 1. Κάκε βρόχος Για μπορεί να μετατραπεί σε Όσο 2. Κάκε βρόχος που υλοποιείται με τθν εντολι Όσο...επανάλαβε μπορεί να γραφεί και
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Πίνακες στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οντοκεντρικόσ Προγραμματιςμόσ
Οντοκεντρικόσ Προγραμματιςμόσ Ενότθτα 7: C++ TEMPLATES, ΤΠΕΡΦΟΡΣΩΗ ΣΕΛΕΣΩΝ, ΕΞΑΙΡΕΕΙ Templates Ιωάννθσ Χατηθλυγεροφδθσ Πολυτεχνικι χολι Σμιμα Μθχανικών Η/Τ & Πλθροφορικισ Templates Ειςαγωγι Templates o
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Πράξεις με αρχεία Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ανάγνωση και εγγραφή αρχείων με χρήση ρεύματος
Μονάδες 6. Μονάδες ΓΑΨΕ Δεν υπάρχει ρίηα 2. ΑΝ Α>0 ΤΟΤΕ 3. ΤΕΛΟΣ_ΑΝ 4. ΑΛΛΙΩΣ 5. ίηα Τ_(Α)
50 Χρόνια ΦΡΟΝΣΙΣΗΡΙΑ ΜΕΗ ΕΚΠΑΙΔΕΤΗ ΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΣΙ : Φιλολάου & Εκφαντίδου 26 : Σηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΑΝΑΡΤΥΞΗ ΕΦΑΜΟΓΩΝ ΣΕ ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ Γϋ ΛΥΚΕΙΟΥ 2011 ΘΕΜΑ Α I. Η ςειριακι
(Α3 1 ) Σασ δίνεται το παρακάτω αλγορικμικό τμιμα
Μάθημα: Ανάπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκασ Γιώργοσ Ημερομηνία : 28/12/2015 Διάρκεια: 3 ώρεσ ΘΕΜΑ Α /40 (Α1) Να γράψετε ςτο τετράδιό
ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ
ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΘΕΜΑ Α ΑΕΠΠ Α1. Για κακεμία από τισ παρακάτω προτάςεισ να χαρακτθρίςετε με ΣΩΣΤΟ ι ΛΑΘΟΣ 1. Η ζκφραςθ
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα
Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Είσοδος και Έξοδος δεδομένων Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν Ρανεπιςτιμιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μεταφραστές Συντακτικός αναλυτής Διδάσκων: Επικ. Καθ. Γεώργιος Μανής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 7: C++ TEMPLATES, ΥΠΕΡΦΟΡΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΡΕΣΕΙΣ Templates ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό. Ενότητα: Εισαγωγικά μαθήματος και Δυαδική αναπαράσταση
Τίτλος Μαθήματος: Εισαγωγή στον Προγραμματισμό Ενότητα: Εισαγωγικά μαθήματος και Δυαδική αναπαράσταση Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών 343 Ειςαγωγι ςτον Ρρογραμματιςμό Τμιμα Μακθματικϊν
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων. 18. Αλφαριθμητικά. Ιωάννθσ Κατάκθσ. ΕΡΛ 032: Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων
Ρρογραμματιςμόσ Μεκόδων Επίλυςθσ Ρροβλθμάτων 18. Αλφαριθμητικά Ιωάννθσ Κατάκθσ Αλφαρικμθτικά o Ζνα string είναι μία ακολουκία χαρακτιρων, ςθμείων ςτίξθσ κτλ Hello How are you? 121212 *Apple#123*% Σιμερα
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολή if. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΝΕΠΙΣΤΗΜΙΟ ΙΩΝΝΙΝΩΝ ΝΟΙΚΤ ΚΔΗΜΪΚ ΜΘΗΜΤ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολή if Διδάσκοντες: ν. Καθ. Δ. Παπαγεωργίου, ν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Βάςεισ Δεδομζνων Ι. Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ. Δρ. Σςιμπίρθσ Αλκιβιάδθσ Σμιμα Μθχανικών Πλθροφορικισ ΣΕ
Βάςεισ Δεδομζνων Ι Ενότθτα 10: Συνακροιςτικζσ ςυναρτιςεισ Δρ. Σςιμπίρθσ Αλκιβιάδθσ Άδειεσ Χριςθσ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό υλικό, όπωσ εικόνεσ,
x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Δομές Ελέγχου ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές Ελέγχου Εισαγωγή Πριν
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 9: Μνήμη Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων. 15. Πίνακεσ ΙI. Ιωάννθσ Κατάκθσ. ΕΠΛ 032: Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 15. Πίνακεσ ΙI Ιωάννθσ Κατάκθσ Σιμερα o Ειςαγωγι o Διλωςθ o Αρχικοποίθςθ o Πρόςβαςθ o Παραδείγματα Πίνακεσ - Επανάλθψθ o Στθν προθγοφμενθ διάλεξθ κάναμε μια
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 5: H ΓΛΩΣΣΑ C++ Εισαγωγή στην C++ ΔΙΔΑΣΚΟΝΤΕΣ:Iωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής H Γλώσσα C++ ΙΣΤΟΡΙΑ 1967:
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 7: C++ TEMPLATES, ΥΠΕΡΦΟΡΤΩΣΗ ΤΕΛΕΣΤΩΝ, ΕΞΑΙΡΕΣΕΙΣ Υπερφόρτωση Τελεστών ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ
Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 9: C++ ΕΙΣΟΔΟΣ - ΕΞΟΔΟΣ / ΑΛΦΑΡΙΘΜΗΤΙΚΑ / ΑΡΧΕΙΑ Διαχείριση Αρχείων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2017-2018 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Σελίδα Μακιματοσ:
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο
Πληροφορική ΙΙ Θεματική Ενότητα 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
343 Ειςαγωγι ςτον Προγραμματιςμό
343 Ειςαγωγι ςτον Προγραμματιςμό Τμιμα Μακθματικϊν Πανεπιςτιμιο Ιωαννίνων Ακαδθμαϊκό Ζτοσ 2016-2017 Χάρθσ Παπαδόπουλοσ 207δ, B όροφοσ e-mail: charis@cs.uoi.gr Ωρεσ Γραφείου: Πζμπτθ 11-13 Τμιματα Εργαςτθρίων
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 2: Η ΓΛΩΣΣΑ JAVA Σύγκριση JAVA-C ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής ΣΥΓΚΡΙΣΗ JAVA - C ΤΥΠΟΙ
Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;..
Επιλογή - Επανάληψη Η εντολή if-else Ο τελεστής παράστασης συνθήκης H εντολή switch Η εντολές for και while Η εντολή do-while Η εντολές break - continue - goto Μαθηματικές συναρτήσεις Λέξεις κλειδιά στη
4 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ - for
4 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ - for Υπάρχουν προβλιματα, ςτα οποία ο αρικμόσ των επαναλιψεων κάποιων εντολϊν είναι γνωςτόσ εκ των προτζρων, όπωσ ςτο επόμενο παράδειγμα : 4. 1 Πρόγραμμα για τον Υπολογιςμό του Αθροίςματοσ
Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Δείκτες Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμητική δεικτών στη C++ 1 2 3 4 5 6 7 8 9 10 11 12 13
Αρχές Προγραμματισμού
Αρχές Προγραμματισμού Ενότητα: Εργαστηριακή Άσκηση 1 Παλιουράς Βασίλης, Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1. Σκοποί ενότητας----------------------------------------------------------------------------------------------------------
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 7: Συναρτήσεις Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στον δομημένο προγραμματισμό
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στον δομημένο προγραμματισμό Ενότητα 12 η : Δυναμική Ανάθεση Θέσης Αν. καθηγητής Στεργίου Κώστας e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ 1) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί ςτο παρακάτω διάγραμμα ροισ. 2) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.
Προγραμματισμός Η/Υ. Ενότητα 5: Εντολές Επανάληψης
Προγραμματισμός Η/Υ Ενότητα 5: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής του προγράμματος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βιολογία Ι. Φροντιστήριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Βιολογία Ι Φροντιστήριο Διδάσκοντες: Σ. Γεωργάτος, Θ. Τζαβάρας, Ε. Κωλέττας, Χ. Αγγελίδης, Π. Κούκλης, Σύρρου M. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Δομζσ Δεδομζνων. Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3
Δομζσ Δεδομζνων Αναηιτθςθ και Ταξινόμθςθ Διάλεξθ 3 Περιεχόμενα Αλγόρικμοι αναηιτθςθσ Σειριακι αναηιτθςθ Αναηιτθςθ κατά ομάδεσ Δυαδικι Αναηιτθςθ Ταξινόμθςθ Ταξινόμθςθ με παρεμβολι (insertion sort) Ταξινόμθςθ