Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
|
|
- Εὐκλείδης Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μάθημα 3ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης
2 Εξελικτικός Υπολογισμός Ορισμός Βασικές Αρχές Βελτιστοποίησης Κλασικοί Αλγόριθμοι Βελτιστοποίησης Βασικές Έννοιες Εξελικτικού Υπολογισμού Γενετικοί Αλγόριθμοι Βελτιστοποίηση Σμήνους Σωματιδίων Εναλλακτικοί Αλγόριθμοι Εξελικτικού Υπολογισμού 2
3
4 Πρόκειται από ένα σύνολο αλγορίθμων (κυρίως βελτιστοποίησης) που εξομοιώνουν νόμους και αρχές οι οποίες διέπουν φυσικά φαινόμενα και ζωντανούς οργανισμούς (ανθρώπους, πληθυσμούς εντόμων, κ.α.). 4
5 , Η γενική μορφή ενός προβλήματος βελτιστοποίησης το οποίο χαρακτηρίζεται από μία αντικειμενική n συνάρτηση f :, είναι η ακόλουθη: min f ( x) g i x α, i = 1,2,3,...,m. i Όπου x = x 1,x 2,x 3,...,x n είναι το διάνυσμα των παραμέτρων βελτιστοποίησης πλήθους n, ενώ g i x και αi i = 1,2,3,...,m είναι (αλγεβρικές) συναρτήσεις περιορισμών και σταθερές, αντίστοιχα. 5
6 Προβλήματα βελτιστοποίησης: Χωρίς περιορισμούς Με περιορισμούς Περιορισμοί ισοτήτων Περιορισμοί ανισοτήτων Γραμμικά Μη-γραμμικά Η διαδικασία βελτιστοποίησης αναζητεί βέλτιστες τιμές των μεταβλητών x μέσα στον χώρο (αναζήτησης) των λύσεων που ελαχιστοποιούν την αντικειμενική συνάρτηση και, ταυτόχρονα, ικανοποιούν τους περιορισμούς. 6
7 Μία συνάρτηση λέγεται κυρτή αν: 1 1 f ( x x ) f x f x
8 Η κυρτότητα αποτελεί σημαντική ιδιότητα μιάς αντικειμενικής συνάρτησης προς βελτιστοποίηση διότι το ελάχιστο μίας κυρτής συνάρτησης στο πεδίο ορισμού της είναι ολικό ελάχιστο και όχι μόνον τοπικό ελάχιστο. Αυτό σημαίνει ότι η λύση του προβλήματος είναι η βέλτιστη λύση. Ωστόσο, οι αντικειμενικές συναρτήσεις συχνά δεν είναι κυρτές. 8
9 Όταν το πρόβλημα βελτιστοποίησης περιλαμβάνει περισσότερες από μία αντικειμενικές συναρτήσεις, τότε είναι ένα πρόβλημα πολλαπλών στόχων. Συνήθως οι πολλαπλές αντικειμενικές συναρτήσεις βρίσκονται σε αντίφαση μεταξύ τους, δηλ. η βελτίωση μιας αντικειμενικής συνάρτησης συνεπάγεται επιδείνωση μιας άλλης. 9
10 Επαναληπτικοί αλγόριθμοι κατάβασης x k+1 = x k + ηδxk k: επανάληψη η: μέγεθος βήματος x: άγνωστος Δxk: κατεύθυνση αναζήτησης Αν Δx = -f x k k τότε αλγόριθμος ονομάζεται αλγόριθμος κατάβασης βαθμίδας. 10
11 Ύπαρξη αντικειμενικής συνάρτησης Σε περιπτώσεις πολύπλοκων προβλημάτων, δεν υπάρχει πάντοτε μια αντικειμενική συνάρτηση Παραδοχή της κυρτότητας της αντικειμενικής συνάρτησης Μια αντικειμενική συνάρτηση συχνά δεν είναι κυρτή Παγίδευση σε τοπικό ελάχιστο Ύπαρξη της πρώτης και δεύτερης παραγώγου της αντικειμενικής συνάρτησης 11
12 Ο όρος ΕΥ αυτός χρησιμοποιήθηκε για να περιγράψει ένα σύνολο αλγόριθμων όπου κάθε αλγόριθμος βασίζεται σε έναν πληθυσμό υποψήφιων λύσεων, η καθεμιά από τις οποίες ονομάζεται άτομο (του πληθυσμού). Σε κάθε επανάληψη, μεταξύ των ατόμων του πληθυσμού εφαρμόζονται κατάλληλοι τελεστές, εμπνευσμένοι από την Δαρβινική θεωρία της εξέλιξης, ώστε να παράγονται καλύτερες λύσεις σε κάθε επανάληψη. 12
13 Ένα πρόβλημα το οποίο μπορεί να εμφανιστεί σε όλους τους αλγόριθμους εξελικτικού υπολογισμού είναι η πρόωρη σύγκλιση. Μία μεθόδευση για την αποφυγή πρόωρης σύγκλισης είναι η διατήρηση της ποικιλομορφίας, δηλ. μιας καλώς ορισμένης διαφορετικότητας των ατόμων του πληθυσμού ως αποτέλεσμα της εφαρμογής τελεστών. 13
14 Οι Γενετικοί Αλγόριθμοι (ΓΑ) αποτελούν τους δημοφιλέστερους από τους εξελικτικούς αλγόριθμους και βασίζονται σε αρχές της εξέλιξης των ειδών που εισήγαγε ο Δαρβίνος με το βιβλίο του «Η Καταγωγή των Ειδών». Οι ΓΑ προτάθηκαν την δεκαετία του 1960 από τον John Holland και τους συνεργάτες του. Η βασική ιδέα για την ανάπτυξη των ΓΑ προέρχεται από το γεγονός ότι οι ζωντανοί οργανισμοί είναι πετυχημένα παραδείγματα βελτιστοποίησης μέσω της εφαρμογής τελεστών εξέλιξης. 14
15 Οι ζωντανοί οργανισμοί εξελίσσονται χρησιμοποιώντας δύο βασικούς μηχανισμούς (τελεστές) που περιλαμβάνουν, τη φυσική επιλογή και την διασταύρωση. «Επιτυχημένα άτομα» τείνουν να παράγουν μεγαλύτερο πλήθος απογόνων, ενώ τα αδύναμα «πεθαίνουν». Η διασταύρωση επιτυχημένων ατόμων (γονέων) μπορεί να αναπαράγει απογόνους που να είναι περισσότερο επιτυχημένοι από τους γονείς τους. Με αυτό τον τρόπο, τα άτομα εξελίσσονται από γενεά σε γενεά προσπαθώντας να προσαρμόζονται βέλτιστα στο περιβάλλον τους. 15
16 16
17 Δημιουργία Αρχικού Πληθυσμού Κωδικοποίηση Λύσεων Δυαδική κωδικοποίηση (δημοφιλέστερη) Δυαδική κωδικοποίηση δυο χρωμοσωμάτων αποτελούμενα από τρεις μεταβλητές Μεταβλητή Α Μεταβλητή Β Μεταβλητή Γ Χρωμόσωμα Α Χρωμόσωμα Β
18 Υπολογισμός Καταλληλότητας Η συνάρτηση καταλληλότητας ποσοτικοποιεί την αποτελεσματικότητα της υποψήφιας λύσης, η οποία αναπαριστάνεται από το συγκεκριμένο χρωμόσωμα. Σε κάποια προβλήματα οι τιμές της συνάρτησης καταλληλότητας των χρωμοσωμάτων κυμαίνονται σε πολύ μεγάλο εύρος. Σε αυτές τις περιπτώσεις εφαρμόζουμε κανονικοποίηση ώστε να αποφεύγεται η δημιουργία χρωμοσωμάτων που λειτουργούν ώς υπεράτομα. 18
19 Επιλογή (selection) Επιλογή της ρουλέτας (δημοφιλέστερη) 19
20 Διασταύρωση (crossover) (πιθανότητα διασταύρωσης P c ) Διασταύρωση σημείων (δημοφιλέστερη) Παραδείγματα εφαρμογής των μεθόδων διασταύρωσης. Διασταύρωση Δύο Σημείων Αριθμητική Διασταύρωση Ομοιόμορφη Διασταύρωση Γονέας Γονέας Μάσκα Γόνος (AND) Γόνος (XOR)
21 Μετάλλαξη (mutation) (πιθανότητα μετάλλαξης P m ) Εφαρμογή του τελεστή μετάλλαξης για τρεις διαφορετικές κωδικοποιήσεις. Αρχικό Χρωμόσωμα Μεταλλαγμένο Χρωμόσωμα Δυαδική Κωδικοποίηση Κωδικοποίηση Μετάθεσης Κωδικοποίηση Τιμών
22 Ελιτισμός (elitism) Ένας προκαθορισμένος αριθμός χρωμοσωμάτων που κρίνονται «πλέον κατάλληλα», επαναλαμβάνονται αυτούσια στον νέο πληθυσμό. Επανατοποθέτηση (reinsertion) Νέα χρωμοσώματα αντικαθιστούν παλαιά χρωμοσώματα στον πληθυσμό διατηρώντας, τυπικά, σταθερό το μέγεθος του πληθυσμού. Kριτήρια Tερματισμού προκαθορισμένος αριθμός γενεών, και προκαθορισμένη ακρίβεια βελτιστοποίησης της αντικειμενικής συνάρτησης. 22
23 Ο αλγόριθμος βελτιστοποίησης σμήνους σωματιδίων (ΒΣΣ) προτάθηκε από τους Kennedy και Eberhart το Ο αλγόριθμος αυτός εξομοιώνει την ομαδική μετακίνηση σμήνους ζωντανών οργανισμών όπως ψάρια, πουλιά, κ.λπ. αποφεύγοντας συγκρούσεις μεταξύ ατόμων στο σμήνος κατά την κίνηση. Στον αλγόριθμο ΒΣΣ δεν υπάρχουν τελεστές διασταύρωσης ή/και μετάλλαξης, ενώ σε κάθε λύση, η οποία ονομάζεται σωματίδιο (του σμήνους), αντιστοιχίζεται μία ταχύτητα η οποία αρχικοποιείται τυχαία. 23
24 Ο αλγόριθμος ΒΣΣ απομνημονεύει όχι μόνον την ολικά καλύτερη λύση του πληθυσμού αλλά και την ατομικά καλύτερη επίδοση κάθε σωματιδίου (του σμήνους) ξεχωριστά. Πλεονέκτημα του αλγορίθμου ΒΣΣ είναι η απλότητά του η οποία επιτρέπει όχι μόνον την γρήγορη υλοποίησή του, αλλά και την εκτέλεσή του χωρίς σημαντικές απαιτήσεις σε μνήμη και σε υπολογιστική ισχύ. 24
25 Ο αλγόριθμος ΒΣΣ θεωρεί ότι κάθε σωματίδιο i του πληθυσμού κατέχει μία θέση και μία ταχύτητα x T n n x,x,x,..,x ui u i,u i,u i,..,ui i i i i i T Ο αλγόριθμος ΒΣΣ αναζητάει λύσεις κινούμενος στον χώρο αναζήτησης των λύσεων μέσω της προσαρμογής των τροχιών που διαγράφουν τα σωματίδια. 25
26 Εξίσωση (3.6) i t+1 i t 1 * i t 2 * i i t u ωu αr g - x βr x - x Εξίσωση (3.7) i t+1 i t i t+1 x x u 2 α,β r, r 01, 1 2 ΨΕΥΔΟΚΩΔΙΚΑΣ 26
27 Αλγόριθμος Στρατηγικής Εξέλιξης (Evolutionary Strategies) Αλγόριθμος Διαφορικής Εξέλιξης (Differential Evolution) Αλγόριθμος Βελτιστοποίησης Αποικίας Μυρμηγκιών (Ant Colony Optimization) Αλγόριθμος Τεχνητής Αποικίας Μελισσών (Artificial Bee Colony) Βαρυτικός Αλγόριθμος Αναζήτησης (Gravitational Search Algorithm) Αλγόριθμο ςτης Πυγολαμπίδας (Firefly Algorithm) Μέθοδος Αναζήτησης του Κούκου (Cuckoo Search) Αλγόριθμος της νυχτερίδας (Bat-inspired Algorithm) Βελτιστοποίηση Βιογεωγραφίας (Biogeography-based Optimization) 27
28 Μηχανική Μάθηση Εκπαίδευση μοντέλων Αναγνώριση Προτύπων Επιλογή χαρακτηριστκών διάκρισης Επεξεργασία Σημάτων Ανάπτυξη βέλτιστων φίλτρων Επεξεργασία εικόνας Αυτόματος Έλεγχος Σχεδίαση ελεγκτών Εύρωστος έλεγχος Γενικά όπου υπάρχει ανάγκη βελτιστοποίησης διαδικασιών 28
29
30 f n x i x i 2 10 n 10 cos2 x 5.12 x i1 i Ολικό ελάχιστο : x i x 0 0 f 30
31 %% Αρχικοποίηση του περιβάλλοντος MATLAB clear all; close all; clc; %% Ρυθμίσεις του προβλήματος nvar = 2; %Πλήθος αγνώστων LB = -5.12*ones(1,nVar); %Ελάχιστη τιμή των αγνώστων UB = 5.12*ones(1,nVar); %Μέγιστη τιμή των αγνώστων CostFunction %Συνάρτηση κόστους/αντικειμενική %% Ρυθμίσεις του Γενετικού Αλγορίθμου npop = 50; %Μέγεθος πληθυσμού MaxIt = 50; %Αριθμός γενεών options = gaoptimset('populationsize',npop,'popinitrange',[lb;ub],'elitecount',2,'crossoverfraction',0.8,'genera tions',maxit,'plotfcns',{@gaplotbestf}); %% Εκτέλεση του Γενετικού Αλγόριθμου [x, fval, exitflag, output] = ga(costfunction,nvar,[],[],[],[],lb,ub,[],options); %% Προβολή βέλτιστης λύσης disp(['minimum = ' num2str(fval) ' for x1=' num2str(x(1)) ' x2=' num2str(x(2))]); 31
32 Publisher: Yarpiz ( clc; clear; close all; %% Problem Definition rastriginsfcn(x); % Cost Function nvar=2; % Number of Decision Variables VarSize=[1 nvar]; % Size of Decision Variables Matrix VarMin=-5.12; % Lower Bound of Variables VarMax= 5.12; % Upper Bound of Variables %% PSO Parameters MaxIt=50; % Maximum Number of Iterations npop=50; % Population Size (Swarm Size) % PSO Parameters w=1; % Inertia Weight wdamp=0.99; % Inertia Weight Damping Ratio c1=1.5; % Personal Learning Coefficient c2=2.0; % Global Learning Coefficient 32
33 Τηλ Γραφείο Β 1 22 (Κτήριο βιβλιοθήκης) 33
34
Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά
ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση σπανίως
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Νικόλαος - Σπυρίδων Αναστασίου Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Χρήση Εξελικτικών Αλγορίθμων για την εκπαίδευση
Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές
Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση
Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση:Προχωρημένες Μέθοδοι Χρήστος Μακρόπουλος, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών
Γενετικοί Αλγόριθμοι. Εισαγωγή
Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η στοχική συνάρτηση σπανίως
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση
Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό
Βελτιστοποιημένος χρονοπρογραμματισμός επιχειρηματικών διαδικασιών με χρήση τεχνικών τεχνητής νοημοσύνης
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διπλωματική Εργασία Βελτιστοποιημένος χρονοπρογραμματισμός επιχειρηματικών διαδικασιών με χρήση τεχνικών τεχνητής νοημοσύνης Βανδουλάκης Γιάννης
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Προβλήματα Βελτιστοποίησης Περιγραφή προβλήματος με αρχική κατάσταση, τελική
Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική
ΣΧΕΔΙΑΣΗ ΕΠΙΠΕΔΩΝ ΣΤΟΙΧΕΙΟΚΕΡΑΙΩΝ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ (ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ) ΣΧΕΔΙΑΣΗ ΕΠΙΠΕΔΩΝ ΣΤΟΙΧΕΙΟΚΕΡΑΙΩΝ ΜΕ ΧΡΗΣΗ ΕΞΕΛΙΚΤΙΚΩΝ
Συστήματα Επιχειρηματικής Ευφυίας
Συστήματα Επιχειρηματικής Ευφυίας Γενετικοί αλγόριθμοι (GA) : Από τον Δαρβίνο (1859) στον J. Holland (1975). (Ένα ταξίδι στον υπέροχο κόσμο της επιλογής, της διασταύρωσης και της μετάλλαξης). Charles Darwin
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική
ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο
ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο EVOLOTIONARY ALGORITHMS 1 ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Η Λογική (1/2) Ο Εξελικτικός Υπολογισµός (evolutionary computation) χρησιµοποιεί τα υπολογιστικά µοντέλα εξελικτικών
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 2ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Ασαφή Συστήματα 2 Η ασαφής λογική προτάθηκε το 1965 από τον Prof. Lotfi Zadeh
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Τεχνικές αναζήτησης - Search tools in MATLAB - Διερεύνηση λύσης NCM ΤΕΧΝΙΚΕΣ ΑΝΑΖΗΤΗΣΗΣ Στόχος: Ο σταδιακός
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Πληροφορικής» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Εφαρμογές του αλγορίθμου της νυχτερίδας σε πολυκριτηριακά
i=1 f i = F i SF [0, f 1 ), [f 1, f 1 + f 2 ), [f 1 + f 2, f 1 + f 2 + f 3 ),..., [f 1 + f f P 1, 1) i 1
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ (216-17) Εργασία 4 Πολύ συχνά, ένα υπολογιστικό πρόβλημα έχει περισσότερες από μία λύση. Για παράδειγμα, αν θέλουμε να βρούμε ένα υποσύνολο ενός συνόλου ακεραίων, που το άθροισμα
Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA
Γενετικοί αλγόριθµοι - ΓΑ Genetic algorithms - GA ΕΦΑΡΜΟΓΗ στην ΕΠΕΞΕΡΓΑΣIΑ ΣΗΜΑΤΟΣ και στην ΑΣΑΦΗ ΛΟΓIΚΗ Σ. Φωτόπουλος ΠΑΝΕΠ. ΠΑΤΡΩΝ Τµ. ΦΥΣΙΚΗΣ ΠΜΣ ΗΕΠ ΓΑ - Εισαγωγικά Γενετικοί αλγόριθµοι (Genetic algorithms)
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΕΝΕΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ ΚΑΙ ΓΡΑΜΜΑΤΙΚΗ ΕΞΕΛΙΞΗ - ΜΕΛΕΤΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΣΕ ΠΑΙΧΝΙΔΙΑ ΓΡΙΦΩΝ
ΑΡΤΑ, ΣΕΠΤΕΜΒΡΙΟΣ 2017 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΕΝΕΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ ΚΑΙ ΓΡΑΜΜΑΤΙΚΗ ΕΞΕΛΙΞΗ - ΜΕΛΕΤΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΣΕ ΠΑΙΧΝΙΔΙΑ ΓΡΙΦΩΝ ΝΙΚΟΛΑΟΣ ΚΟΡΝΕΛΑΚΗΣ
ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ
ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί
Υπολογιστική Νοηµοσύνη
Υπολογιστική Νοηµοσύνη Σηµερινό Μάθηµα Η θεωρία της Εξέλιξης των Ειδών οµή Γενετικού Αλγόριθµου Κύρια χαρακτηριστικά ενός Γενετικού Αλγορίθµου (ΓΑ) Γενετική ιαδικασία 1 Η θεωρία της Εξέλιξης των Ειδών
Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως
Σπύρος Καζαρλής Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως ως αλγόριθμοι γενικής βελτιστοποίησης
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ
ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ»
ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ» Κωνσταντίνος Π. Φερεντίνος Διδάσκων ΠΔ 407/80 Οι σημειώσεις αυτές αναπτύχθηκαν στα πλαίσια του προγράμματος «ΕΠΕΑΕΚ 2 Πρόγραμμα Αναβάθμισης
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 6 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
Οι τεχνικές της σύγχρονης επιστήμης μιμούνται και τις δύο αυτές μηχανές :
Σπύρος Καζαρλής Ποια είναι η πιο ισχυρή «μηχανή» αναζήτησης λύσεων, σύλληψης νέων ιδεών, θεωριών και εφευρέσεων στο σύμπαν? Α. Ο ανθρώπινος εγκέφαλος (που εφηύρε τον τροχό, την σύγχρονη επιστήμη τους υπολογιστές
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Πειραματική μελέτη των παραμέτρων των εξελικτικών αλγορίθμων SL-PSO και εdeag πάνω στην επίλυση μη-γραμμικών προβλημάτων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πειραματική μελέτη των παραμέτρων των εξελικτικών αλγορίθμων SL-PSO και
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ
ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος
Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
Υπολογιστική Νοημοσύνη
Υπολογιστική Νοημοσύνη Εξελικτική Βελτιστοποίηση Γενετικοί Αλγόριθμοι Αναστάσιος Ντούνης, Καθηγητής Εργαστήριο Υπολογιστικής Νοημοσύνης Ευφυούς Ελέγχου Τμήμα Μηχανικών Αυτοματισμού Σχολή Τεχνολογικών Εφαρμογών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Η Μέθοδος της Διαφορικής Εξέλιξης στη Μονοκριτηριακή και Πολυκριτηριακή Αεροδυναμική Βελτιστοποίηση,
Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες
ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες Πτυχιακή εργασία Φοιτήτρια: Ριζούλη Βικτώρια
Ανάπτυξη εξελικτικού αλγορίθμου για πολυκριτηριακή βελτιστοποίηση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΛΕΓΧΟΥ Ανάπτυξη εξελικτικού αλγορίθμου για πολυκριτηριακή βελτιστοποίηση ΜΕΤΑΠΤΥΧΙΑΚΗ
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 9 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κεφάλαιο 3: Εξελικτικός Υπολογισμός
Κεφάλαιο 3: Εξελικτικός Υπολογισμός Ένα σημαντικό ζητούμενο σε πρακτικές εφαρμογές ΥΝ αποτελεί κάποιου είδους βελτιστοποίηση (optmzaton), η οποία τυπικά μεθοδεύεται μέσω της ελαχιστοποίησης μιας καλώς
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που
Θεµελίωση Γενετικών Αλγορίθµων
Θεµελίωση Γενετικών Αλγορίθµων Σηµερινό Μάθηµα Προβληµατισµοί Σχήµατα Τάξη Οριστικό Μήκος ΘεώρηµατωνΣχηµάτων Υπόθεση δοµικών Στοιχείων Πλάνη 1 Προβληµατισµοί Τι προβλέψεις µπορούν να γίνουν για τη χρονική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ Τμήμα Ψηφιακών Συστημάτων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ με τίτλο: ΣΥΣΤΗΜΑ ΒΕΛΤΙΣΤΗΣ ΑΝΑΠΤΥΞΗΣ ΥΠΗΡΕΣΙΩΝ (SERVICE DEPLOYMENT) ΣΕ ΠΟΛΥΠΛΟΚΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Κυριακόπουλος Χρήστος Αριθμός Μητρώου:
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (ΕΕΟΤ)»
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ Ε.Π.Ε.Α.Ε.Κ «ΑΡΧΙΜΗΔΗΣ ΙΙ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΤΕΙ (ΕΕΟΤ)» ΥΠΟΕΡΓΟ 4: ΑΝΑΠΤΥΞΗ ΝΕΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΑΛΥΣΗ, ΠΡΟΣΟΜΟΙΩΣΗ, ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΓΙΑ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΒΕΛΤΙΣΤΟΥ ΣΧΕΔΙΑΣΜΟΥ ΓΡΑΜΜΗΣ ΠΡΟΪΟΝΤΩΝ Επιβλέπων καθηγητής: Τσαφαράκης Στέλιος Εκπόνηση:
Γενετικοί Αλγόριθμοι
Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Γενετικοί Αλγόριθμοι Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο, Μάρτιος 2011 1 The Gene
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μαθηματικά των Υπολογιστών και των Αποφάσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μεταπτυχιακό Δίπλωμα Ειδίκευσης Μαθηματικά των Υπολογιστών και των Αποφάσεων ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΓΕΝΕΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ ΣΠΟΥΔΑΣΤΗΣ:
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΜΠΝΕΥΣΜΕΝΩΝ ΑΠΟ ΤΗΝ ΦΥΣΗ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΟΜΕΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΜΠΝΕΥΣΜΕΝΩΝ ΑΠΟ ΤΗΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 25 Αυγούστου 26 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Τίτλος Διατριβής Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή (Ελληνικά) Ελαχιστοποίηση κόστους λειτουργίας αιολικού πάρκου με χρήση του αλγορίθμου της πυγολαμπίδας
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO
Μεταπτυχιακή Εργασία «Εφαρμογή του αλγόριθμου Τεχνητής αποικίας Μελισσών σε προβλήματα χωροθέτησης εγκαταστάσεων»
Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Τομέας Επιχειρησιακής Έρευνας Μεταπτυχιακή Εργασία «Εφαρμογή του αλγόριθμου Τεχνητής αποικίας Μελισσών σε προβλήματα χωροθέτησης εγκαταστάσεων»
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις
Γενετικός Προγραμματισμός
Γενετικός Προγραμματισμός Εισαγωγή Κεντρικός στόχος της Τεχνητής Νοημοσύνης αποτελεί η ανάπτυξη μεθόδων και τεχνικών που θα καταστήσουν τους Ηλεκτρονικούς Υπολογιστές ικανούς να επιλύουν προβλήματα με
ΒΕΛΤΙΣΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΜΟΝΑΔΩΝ ΔΙΕΣΠΑΡΜΕΝΗΣ ΠΑΡΑΓΩΓΗΣ ΜΕ ΧΡΗΣΗ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΚΑΙ ΒΕΛΤΙΣΤΗΣ ΡΟΗΣ ΦΟΡΤΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΒΕΛΤΙΣΤΗ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΜΟΝΑΔΩΝ ΔΙΕΣΠΑΡΜΕΝΗΣ ΠΑΡΑΓΩΓΗΣ ΜΕ ΧΡΗΣΗ ΓΕΝΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΚΑΙ ΒΕΛΤΙΣΤΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή
Συστήματα Επιχειρηματικής Ευφυίας. Ενδεικτική επίλυση του προβλήματος school timetabling με PSO
Συστήματα Επιχειρηματικής Ευφυίας Ενδεικτική επίλυση του προβλήματος school timetabling με PSO Έκτη Διάλεξη Περιεχόμενα (1) Συνοπτική παρουσίαση του προβλήματος school timetabling Ορισμός του προβλήματος
Συστήματα Αναμονής (Queuing Systems)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΕΜΠ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ
ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Μη Συµβολικές Μέθοδοι
Μη Συµβολικές Μέθοδοι! Η Συµβολική (symbolic AI): # Προσοµοιώνει τον τρόπο σκέψης του ανθρώπου, χρησιµοποιώντας ως δοµικές µονάδες τα σύµβολα. # Ένα σύµβολο µπορεί να αναπαριστά µία έννοια ή µία σχέση
Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος
Τα μικρά Υδροηλεκτρικά Εργα γνωρίζουν τα τελευταία χρόνια σημαντική ανάπτυξη, τόσο στην Ευρώπη όσο και στον κόσμο ολόκληρο, είτε με την κατασκευή νέων ή με την ανανέωση του εξοπλισμού των υπαρχόντων σταθμών
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Γενετικός Αλγόριθμος Ταξινόμησης Genetic AIRS Ονοματεπώνυμο Φοιτητή Πατρώνυμο
Λελούδας Παναγιώτης. Επιβλέπων Καθηγητής: Σπυρίδων Λυκοθανάσης. Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Πανεπιστήμιο Πατρών
Σχεδιασμός, Ανάλυση και Υλοποίηση Ευφυών Αλγορίθμων Υπολογιστικής Νοημοσύνης για την Εύρεση Βέλτιστου Ωρολογίου Προγράμματος Εργασίας Οδηγών και Χρονοδρομολόγησης Λεωφορείων σε Υπεραστικά και Αστικά ΚΤΕΛ
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε10 Η μέθοδος augmented