Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
|
|
- Ἄγγελος Καραμήτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνητή Νοημοσύνη 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος 1
2 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας Εκδοτική, 2006 και Artificial Intelligence A Modern Approach των S. Russel και P. Norvig, 2η έκδοση, Prentice Hall, Τα περισσότερα σχήματα των διαφανειών προέρχονται από αντίστοιχες διαφάνειες των δύο βιβλίων.
3 Τι θα ακούσετε σήμερα Προσομοιωμένη ανόπτηση. Beam search. Γενετικοί αλγόριθμοι. Οι έννοιες του γραμμικού και ακέραιου γραμμικού προγραμματισμού. Αποσαφήνιση εννοιών λέξεων μέσω ακέραιου γραμμικού προγραμματισμού.
4 Προσομοιωμένη ανόπτηση (simulated annealing) Εμπνευσμένη από τεχνική μεταλλουργίας. Θέρμανση μετάλλου ή γυαλιού και αργή ψύξη. Επιλέγουμε τυχαία ένα γείτονα. Αν η αξία του είναι μεγαλύτερη από της τρέχουσας κατάστασης (ΔΕ > 0), πηγαίνουμε σε αυτόν. Διαφορετικά, πηγαίνουμε με πιθανότητα e ΔΕ/Τ. ΔΕ < 0. Όσο μικρότερη γίνεται η αξία πηγαίνοντας στο γείτονα, τόσο δυσκολότερα πηγαίνουμε. Σε υψηλές θερμοκρασίες (T), δηλαδή στην αρχή της αναζήτησης, πηγαίνουμε ευκολότερα σε χειρότερους γείτονες. Σε χαμηλότερες θερμ/σίες (αργότερα), πηγαίνουμε δυσκολότερα σε χειρότερους γείτονες (κατηφορίζουμε δυσκολότερα). Σταματάμε όταν η θερμοκρασία μηδενιστεί. Αν η θερμοκρασία T πέφτει αργά, η πιθανότητα εύρεσης ολικού μεγίστου τείνει στο 1.
5 Προσομοιωμένη ανόπτηση 1. Επιλογή τυχαίας αρχικής κατάστασης και αρχικοποίηση T. 2. Αν T = 0, επίστρεψε την τρέχουσα κατάσταση. 3. Διάλεξε τυχαία ένα γείτονα και υπολόγισε το ΔΕ. 4. Αν ΔΕ > 0, κάνε τρέχουσα κατάσταση το γείτονα. 5. Διαφορετικά κάνε τον τρέχουσα κατάσταση με πιθανότητα e ΔΕ/Τ. 6. Μείωσε τη θερμοκρασία και πήγαινε στο βήμα 2.
6 (Local) Beam search m 300 m * * * * * 100 m m 200 m
7 (Local) Beam search m 300 m * * * * ** * * * 100 m 200 m 300 m
8 (Local) Beam search Όπως ο HC, αλλά κρατάμε k καταστάσεις στο μέτωπο. Αρχικά k τυχαίες καταστάσεις στο μέτωπο. Σε κάθε βήμα, επεκτείνουμε όλες τις k καταστάσεις του μετώπου και αξιολογούμε τα παιδιά. Αν έχουμε κριτήρια τελικών καταστάσεων και παραχθεί τελική κατάσταση, σταματάμε. Από όλα τα παιδιά που προκύπτουν, κρατάμε στο μέτωπο τα k καλύτερα και επαναλαμβάνουμε. Μέχρι ένα μέγιστο αριθμό επαναλήψεων. Αν τα παιδιά μιας κατάστασης του μετώπου υπερέχουν όλων των άλλων παιδιών, μπορεί να επικεντρωθούμε σε μια περιορισμένη περιοχή του χώρου αναζήτησης. Έλλειψη ποικιλίας. Πιθανό πρόβλημα και στους γενετικούς αλγορίθμους.
9 Γενετικοί αλγόριθμοι Μιμούνται στοιχεία του φυσικού μηχανισμού εξέλιξης. Πληθυσμός καταστάσεων Παριστάνονται ως χρωμοσώματα. Συνάρτηση καταλληλότητας: αξιολογεί τις καταστάσεις του πληθυσμού. Αναπαραγωγή: Ζεύγη καταστάσεων του πληθυσμού παράγουν απογόνους. Συνδυάζουν χαρακτηριστικά των προγόνων τους. Επιλογή: Οι καταλληλότερες καταστάσεις έχουν περισσότερες πιθανότητες να αναπαραχθούν. Σταδιακά υπερισχύουν στον πληθυσμό οι καταστάσεις με τα καλύτερα χαρακτηριστικά. Απαιτείται προσεκτική επιλογή παράστασης καταστάσεων, συνάρτησης καταλληλότητας κλπ.
10 Χρωμοσώματα γονίδιο χρωμόσωμα κατάσταση Κάθε χρωμόσωμα παριστάνει μια κατάσταση. Κάθε γονίδιο παριστάνει τη θέση μιας βασίλισσας στη στήλη της. Έχουμε απαλλαγεί από καταστάσεις όπου υπάρχουν δύο ή περισσότερες βασίλισσες ανά στήλη, αφού δεν αποτελούν λύσεις. Χρειάζεται προσοχή, ώστε η αναπαραγωγή να οδηγεί σε χρωμοσώματα που παριστάνουν επιτρεπτές καταστάσεις.
11 Διασταύρωση και μετάλλαξη (Β) (Α) διασταύρωση Το σημείο στο οποίο κόβουμε τα χρωμοσώματα επιλέγεται τυχαία μετάλλαξη
12 Διασταύρωση και μετάλλαξη Αν δεν υπάρχει αρκετή ποικιλία στον πληθυσμό, όλοι οι απόγονοι θα είναι πολύ παρόμοιοι. Συγκλίνουμε προς μια λύση. Πρόβλημα αν συμβεί νωρίς, γιατί περιοριζόμαστε σε μικρή περιοχή του χώρου αναζήτησης. Μετάλλαξη: Για κάθε γονίδιο του απογόνου, υπάρχει μια μικρή πιθανότητα να πάρει τυχαία τιμή. Μπορεί να βοηθήσει να ξεφύγουμε από τοπικό μέγιστο.
13 Συνάρτηση καταλληλότητας Συνάρτηση καταλληλότητας: συνήθως απεικονίζει κάθε χρωμόσωμα σε έναν πραγματικό [0, 1]. Η τιμή της συνάρτησης καταλληλότητας μπορεί να παριστάνει την αξία του χρωμοσώματος. Π.χ. κόστος υλοποίησης προγράμματος εξετάσεων. Ή μπορεί να αποτελεί ευρετική εκτίμηση της απόστασης από μια τελική κατάσταση. Π.χ. ποσοστό περιορισμών που παραβιάζονται. Μπορεί να είναι προτιμότερη μια λιγότερο ακριβής συνάρτηση καταλληλότητας που μπορεί όμως να υπολογισθεί γρηγορότερα. Περισσότερες αναπαραγωγές στον ίδιο χρόνο.
14 24/78 = 31% Γενετικοί αλγόριθμοι 78 Σε κάθε αναπαραγωγή επιλέγουμε τους δύο γονείς με πιθανότητα ανάλογη της αξίας τους. Χρωμοσώματα με μεγάλη αξία έχουν μεγάλη πιθανότητα να ζευγαρώσουν πολλές φορές. Χρωμοσώματα με μικρή αξία είναι πιθανότερο να μη ζευγαρώσουν καθόλου.
15 Απλός γενετικός αλγόριθμος πληθυσμός τυχαίο σύνολο χρωμοσωμάτων βρόχος νέος-πληθυσμός {} για i = 1 ως μέγεθος(πληθυσμός) / 2 x επιλογή-από(πληθυσμός) y επιλογή-από(πληθυσμός) <παιδί 1, παιδί 2 > αναπαραγωγή(x, y) με μικρές πιθανότητες, μετάλλαξη των παιδί 1, παιδί 2 πρόσθεσε τα παιδί 1, παιδί 2 στο νέο-πληθυσμό πληθυσμός νέος-πληθυσμός μέχρι ένα χρωμόσωμα να είναι αρκετά καλό ή τέλος χρόνου ή σύγκλιση (π.χ. σχεδόν όλα τα χρωμοσώματα τα ίδια) επιστροφή του καλύτερου χρωμοσώματος
16 Χάσμα γενεών Χάσμα γενεών: Το ποσοστό των χρωμοσωμάτων του πληθυσμού που ανανεώνεται μετά από κάθε φάση αναπαραγωγής. Στον αλγόριθμο που είδαμε πριν, το ποσοστό ήταν 100%. Σε αλγορίθμους με ποσοστό ανανέωσης < 100%, συνυπάρχουν απόγονοι με προγόνους. Επιλογή γονέων που θα αποχωρήσουν πριν κάθε φάση αναπαραγωγής. Π.χ. τυχαία ή με πιθανότητα αντιστρόφως ανάλογη της καταλληλότητάς τους.
17 Παράδειγμα: εύρεση μεγίστου 3 2,5 2 1,5 1 0, ,5 0 0,5 1 1,5 2-0,5-1 Ζητείται το x που μεγιστοποιεί την f(x) = x sin(10π x) στο (-1, 2] με ακρίβεια 6 δεκαδικών (εκατομμυριοστού).
18 Εύρεση με γενετικό αλγόριθμο Ένα χρωμόσωμα για κάθε μία υποψήφια λύση δυνατές τιμές του x Με δυαδική παράσταση του x απαιτούνται 22 δυφία (2 21 < < 2 22 ). Συνάρτηση καταλληλότητας: η ίδια η f(x). Τυχαίος αρχικός πληθυσμός, επιλογή γονέων, διασταύρωση, μετάλλαξη κλπ. Μέγιστο για x 1.85, με f(1.85) = 2.85.
19 Παρατηρήσεις για τους Γ.Α. Παρόμοιοι με beam search. Ο πληθυσμός αντιστοιχεί στο μέτωπο του beam search. Αλλά οι νέες καταστάσεις είναι συνδυασμοί στοιχείων δύο καταστάσεων του μετώπου. Ενδιαφέρουσες ομοιότητες με τη φυσική εξέλιξη. Η φυσική εξέλιξη είναι πιο περίπλοκη (βλ. βιβλιογραφία). Έχουν χρησιμοποιηθεί πολύ σε προβλήματα βελτιστοποίησης. Π.χ. διάταξη κυκλωμάτων, πρόγραμμα εργασιών. Συχνά δεν είναι καθαρό αν και πότε υπερτερούν άλλων μηχανισμών αναζήτησης.
20 Γραμμικός προγραμματισμός (linear programming, LP) Ιδιαίτερη περίπτωση βελτιστοποίησης, όπου: κάθε κατάσταση μπορεί να παρασταθεί ως ένα διάνυσμα: Ԧx = x 1, x 2, x 3,, x n R n ψάχνουμε μέγιστο μια «αντικειμενικής» συνάρτησης f Ԧx που είναι γραμμικός συνδυασμός των x i : f Ԧx = c 1 x c n x n, θέλουμε να ικανοποιούνται γραμμικές ανισότητες: a 11 x 1 + a 12 x a 1n x n b 1 a i1 x 1 + a i2 x a in x n b i a m1 x 1 + a m2 x a mn x n b m
21 Γραμμικός προγραμματισμός συνέχεια Yπάρχουν αλγόριθμοι που βρίσκουν γρήγορα λύση. Αλγόριθμος Simplex: στη χειρότερη περίπτωση εκθετική πολυπλοκότητα (ως προς τον αριθμό μεταβλητών), αλλά στην πράξη πολύ γρήγορος. Υπάρχουν και αλγόριθμοι πολυωνυμικής πολυπλοκότητας. Αλλά αν οι μεταβλητές x i επιτρέπεται να έχουν μόνο ακέραιες τιμές, το πρόβλημα γίνεται NP-hard. Και μιλάμε για «ακέραιο (γραμμικό) προγραμματισμό» (integer linear programming, ILP). Υπάρχουν, όμως, πολύ καλές μέθοδοι λύσης (και υλοποιήσεις), που στην πράξη συχνά βρίσκουν γρήγορα λύση. Περισσότερα στο μάθημα «Επιχειρησιακή Έρευνα». Εδώ «προγραμματισμός» σημαίνει «βελτιστοποίηση».
22 Παράδειγμα χρήσης ILP Ποια είναι η σωστή έννοια κάθε εμφάνισης λέξεως σε ένα κείμενο (word sense disambiguation, WSD). o Δυνητικώς χρήσιμο σε πολλές εφαρμογές (π.χ. ανάκτηση πληροφοριών, μηχανική μετάφραση). o Π.χ. το «bank» να μεταφραστεί ως «τράπεζα» ή ως «όχθη»; o To «άπειρος» σημαίνει «infinite» ή «inexperienced»; o Συχνά γνωρίζουμε όλες τις δυνατές έννοιες των λέξεων (π.χ. από λεξικό, βλ. π.χ. Θεωρούμε ότι διαθέτουμε μια συνάρτηση συνάφειας (relatedness) που δείχνει πόσο συναφείς είναι δύο έννοιες. o o Π.χ. πόσο σχετίζεται η μαθηματική έννοια της λέξης «άπειρος» με την αστρονομική έννοια της λέξης «διάστημα». Π.χ. εξετάζει πόσο συχνά συν-εμφανίζονται οι δύο έννοιες σε ένα σώμα κειμένων, του οποίου οι λέξεις έχουν επισημειωθεί χειρωνακτικά με τις σωστές τους έννοιες.
23 Αποσαφήνιση εννοιών λέξεων w 1 S 11 S 12 S 13 S 1K w 4 S 41 S 42 S 43 rel(s 4N, s 12 ) rel(s 12, s 31 ) rel(s 12, s 23 ) S 21 S 22 S 23 w 2 S 4N rel(s 4N, s 23) rel(s 31, s 23 ) S 2L rel(s 4N, s 31 ) S 31 S 32 S 33 S 3M w 3 Διάλεξε ακριβώς μία έννοια s ij κάθε λέξης w i της πρότασης (ή παραγράφου), ώστε η συνολική συνάφεια όλων των ζευγών επιλεγμένων εννοιών να είναι μέγιστη.
24 Προς μια μέθοδο αποσαφήνισης μέσω ILP w 1 S 11 S 12 S 13 S 1K s 1j : Δυνατές έννοιες της w 1. a 1j : Δείχνει αν επιλέγεται (a 1j =1) ή όχι (a 1j = 0) η s 1j. w 4 S 41 S 42 S 43 rel(s 4N, s 12 ) rel(s 12, s 31 ) rel(s 12, s 23 ) S 21 S 22 S 23 w 2 S 4N rel(s 4N, s 23) rel(s 31, s 23 ) S 2L rel(s 4N, s 31 ) S 31 S 32 S 33 S 3M s 2j : Δυνατές έννοιες της w 2. a 2j : Δείχνει αν επιλέγεται (a 2j =1) ή όχι (a 2j = 0) η s 2j. max σ i,j,i,j,i<i rel(s ij, s i j ) a ij a i j s.t. a ij 0,1, i, j and σ j a ij = 1, i w 3 a i j Μεγιστοποίησε τη συνολική συνάφεια των επιλεγόμενων εννοιών, διαλέγοντας ακριβώς μία έννοια ανά λέξη. Αλλά τετραγωνική αντικειμενική...
25 Μεταβλητές και στις ακμές s 1j : Δυνατές έννοιες της w 1. a 1j : Δείχνει αν επιλέγεται (a 1j =1) ή όχι (a 1j = 0) η s 1j. s 2j : Δυνατές έννοιες της w 2. a 2j : Δείχνει αν επιλέγεται (a 2j =1) ή όχι (a 2j = 0) η s 2j. δ ij,i j : Δείχνει αν είναι ενεργή (1) η ακμή ή όχι (0). Ενεργή αν και μόνο αν και οι δύο έννοιες που συνδέει επιλέγονται (a ij = a i j =1). 25
26 Ένα ILP μοντέλο για WSD max σ i,j,i,j,i<i rel(s ij, s i j ) δ ij,i j s.t. a ij 0,1, i, j and σ j a ij = 1, i and δ ij,i j 0,1, i, j, i, j and δ ij,i j = δ i j,ij, i, j, i, j and σ j δ ij,i j = a ij, i, j, i Μεγιστοποίησε τη συνολική συνάφεια αθροίζοντας τις συνάφειες εννοιών που συνδέονται με ενεργές ακμές. Αν το s ij επιλέγεται (a ij = 1), τότε πρέπει να υπάρχει ακριβώς μία ενεργή ακμή από το s ij προς τις έννοιες κάθε άλλης λέξης w i. Αν το s ij δεν επιλέγεται (a ij = 0), τότε δεν πρέπει να υπάρχει καμία ενεργή ακμή από το s ij προς έννοια άλλης λέξης w i. 26
27 Βιβλιογραφία Russel & Norvig: σελ ενότητας 4.3, ενότητα 4.4 (θα επανέλθουμε σε επόμενες διαλέξεις). Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) επιπλέον τα τμήματα του κεφαλαίου 4 που εξαιρέθηκαν, καθώς και το κεφάλαιο 5. Το κεφάλαιο 5 μπορεί να σας δώσει ιδέες για να βελτιώσετε το σύστήμα σας στην 1 η εργασία, αν ασχοληθείτε με το ωρολόγιο πρόγραμμα μαθημάτων. Βλαχάβας κ.ά.: ενότητες και 4.2.4, κεφάλαιο 7. Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) επιπλέον τα τμήματα του κεφαλαίου 4 που εξαιρέθηκαν, καθώς και το κεφάλαιο 6. Το κεφάλαιο 6 μπορεί να σας δώσει ιδέες για να βελτιώσετε το σύστήμα σας στην 1 η εργασία, αν ασχοληθείτε με το πρόγραμμα μαθημάτων. 27
28 Βιβλιογραφία συνέχεια Ο φυσικός μηχανισμός της εξέλιξης είναι πιο περίπλοκος από τους γενετικούς αλγορίθμους που εξετάσαμε. Κάθε άνθρωπος έχει 23 ζεύγη χρωμοσωμάτων, τα ίδια σε (σχεδόν) όλα τα κύτταρα. Κάθε ζεύγος περιλαμβάνει ένα χρωμόσωμα με γονίδια του πατέρα και ένα με γονίδια της μητέρας, με ενδεχομένως αντικρουόμενες «οδηγίες» (π.χ. χρώμα ματιών). Ειδικά τα ωάρια και τα σπερματοζωάρια έχουν μόνο 23 χρωμοσώματα (όχι ζεύγη). Κάθε χρωμόσωμά τους είναι ένας συνδυασμός γονιδίων των δύο μελών του αντίστοιχου ζεύγους. Τα γονίδια των έμβιων όντων μοιάζουν με συμβολοσειρές με αλβάβητο τεσσάρων γραμμάτων (νουκλεοτιδίων: A, T, C, G). Το βιβλίο The Selfish Gene του R. Dawkins, Oxford University Press, 2006 (30 th Anniversary Edition) είναι μια εξαιρετικά ενδιαφέρουσα εισαγωγή στη θεωρία της εξέλιξης. Κυκλοφορεί στα ελληνικά με τον τίτλο Το Εγωιστικό Γονίδιο, εκδόσεις Κάτοπτρο,
29 Βιβλιογραφία συνέχεια To μοντέλο ILP για την αποσαφήνιση εννοιών λέξεων περιγράφεται στο άρθρο των Β. Παναγιωτοπούλου, Η. Βαρλάμη, Γ. Τσατσαρώνη, Ι. Ανδρουτσόπουλου, «Word Sense Disambiguation as an ILP Problem» (ΣΕΤΝ 2012). Βλ. 29
Τεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Ε ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 16η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Προβλήματα Βελτιστοποίησης Περιγραφή προβλήματος με αρχική κατάσταση, τελική
Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης Χρησιμοποιούν
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 14η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση σπανίως
Γενετικοί Αλγόριθμοι. Εισαγωγή
Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.
Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 21η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: «Artificial Intelligence A Modern Approach» των. Russel
Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση:Προχωρημένες Μέθοδοι Χρήστος Μακρόπουλος, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2
1 ο Φροντιστήριο Υπολογιστική Νοημοσύνη 2 Άσκηση Δίνεται ο αρχικός πληθυσμός, στην 1 η στήλη στον παρακάτω πίνακα και οι αντίστοιχες καταλληλότητες (στήλη 2). Υποθέστε ότι, το ζητούμενο είναι η μεγιστοποίηση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά
ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η στοχική συνάρτηση σπανίως
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 15η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.
Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός
ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ
ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΜΕΙΟΝΕΚΤΗΜΑ
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω
Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 12η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό
Συστήματα Επιχειρηματικής Ευφυίας
Συστήματα Επιχειρηματικής Ευφυίας Γενετικοί αλγόριθμοι (GA) : Από τον Δαρβίνο (1859) στον J. Holland (1975). (Ένα ταξίδι στον υπέροχο κόσμο της επιλογής, της διασταύρωσης και της μετάλλαξης). Charles Darwin
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Βιολογία Κατεύθυνσης Γ Λυκείου
Βιολογία Κατεύθυνσης Γ Λυκείου Επιμέλεια: Δημήτρης Κοτρόπουλος ΘΕΜΑ A Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω ημιτελείς προτάσεις A1 έως A5 και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως
Σπύρος Καζαρλής Γενετικοί Αλγόριθμοι (ΓΑ) Genetic Algorithms (GAs) Είναι το πιο αντιπροσωπευτικό και δημοφιλές είδος Εξελικτικού Αλγόριθμου Χρησιμοποιούνται κυρίως ως αλγόριθμοι γενικής βελτιστοποίησης
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 12: Αντιμετώπιση Περιορισμών Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής
Συστήματα Επιχειρηματικής Ευφυίας. Οι αλγόριθμοι Hill Climbing, Simulated Annealing, Great Deluge, VNS, Tabu Search
Συστήματα Επιχειρηματικής Ευφυίας Οι αλγόριθμοι Hill Climbing, Simulated Annealing, Great Deluge, VNS, Tabu Search Τέταρτη Διάλεξη Περιεχόμενα 1. Το πρόβλημα της πρόωρης σύγκλισης (premature convergence)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΩΡΟΘΕΤΗΣΗΣ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΑΙ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΜΙΜΗΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ Μανινάκης Ανδρέας 1 Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Επιβλέπων καθηγητής:
Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex
Β. Βασιλειάδης Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex Περιεχόμενα Ο αλγόριθμος Simplex Βασικά Βήματα Παραδείγματα Συμπεράσματα 1o Bήμα: εξάλειψη των ανισοτήτων Στη μαθηματική διατύπωση του
ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο
ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ: θεωρητικό Πλαίσιο EVOLOTIONARY ALGORITHMS 1 ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Η Λογική (1/2) Ο Εξελικτικός Υπολογισµός (evolutionary computation) χρησιµοποιεί τα υπολογιστικά µοντέλα εξελικτικών
Τεχνητή Νοημοσύνη ( )
Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:
Ασκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Κεφάλαιο 5: ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ
Κεφάλαιο 5: ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ -ΘΕΩΡΙΑ- Κληρονομικότητα: Η ιδιότητα των ατόμων να μοιάζουν με τους προγόνους τους. Κληρονομικοί χαρακτήρες: Οι ιδιότητες που κληρονομούνται στους απογόνους. Γενετική:
Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μη Συµβολικές Μέθοδοι
Μη Συµβολικές Μέθοδοι! Η Συµβολική (symbolic AI): # Προσοµοιώνει τον τρόπο σκέψης του ανθρώπου, χρησιµοποιώντας ως δοµικές µονάδες τα σύµβολα. # Ένα σύµβολο µπορεί να αναπαριστά µία έννοια ή µία σχέση
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι
Υπολογιστική Νοηµοσύνη
Υπολογιστική Νοηµοσύνη Σηµερινό Μάθηµα Η θεωρία της Εξέλιξης των Ειδών οµή Γενετικού Αλγόριθµου Κύρια χαρακτηριστικά ενός Γενετικού Αλγορίθµου (ΓΑ) Γενετική ιαδικασία 1 Η θεωρία της Εξέλιξης των Ειδών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΤΡΙΤΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος: 2011-2012
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Ασκήσεις μελέτης της 16 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 16 ης διάλεξης 16.1. (α) Έστω ένα αντικείμενο προς κατάταξη το οποίο
Θεωρία Αλγόριθμοι Γραμμικής Βελτιστοποίησης 3/4/2012. Lecture08 1
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Μεθοδολογία αλγορίθμων τύπου simplex (5) Βήμα 0: Αρχικοποίηση (Initialization). Στο βήμα
ΧΡΗΣΤΟΣ ΚΑΚΑΒΑΣ 1 ΒΙΟΛΟΓΟΣ
ΚΕΦΑΛΑΙΟ 5ον ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΤΙ ΠΡΕΠΕΙ ΝΑ ΞΕΡΩ 1. Τι είναι κυτταρικός κύκλος, και τα δυο είδη κυτταρικής διαίρεσης. 2. Από τα γεγονότα της μεσόφασης να μην μου διαφεύγει η αντιγραφή του γενετικού
ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1ο 1. β 2. β 3. α 4. α 5. β
ΘΕΜΑ 1ο 1. β 2. β 3. α 4. α 5. β 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 21 ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: BΙΟΛΟΓΙΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ)
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ 16.00-19.00 (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος
Branch and Bound. Branch and Bound
Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος
ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων
ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις