Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής
|
|
- Σπάρτακος Γλυκύς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στους Δασκάλους μας, που μας βοήθησαν να φτάσουμε μέχρι εδώ Γιώργος Άγγελος Λευτέρης 1
2 ΠΕΡΙΣΤΡΟΦΗ ΣΥΣΤΗΜΑΤΟΣ ΤΟ ΟΠΟΙΟ ΠΕΡΙΛΑΜΒΑΝΕΙ ΔΥΟ ΡΑΒΔΟΥΣ & ΈΝΑΝ ΚΥΚΛΙΚΟ ΔΙΣΚΟ Ο ΟΠΟΙΟΣ ΣΤΗ ΣΥΝΕΧΕΙΑ ΕΚΤΕΛΕΙ ΚΥΛΙΣΗ ΧΩΡΙΣ ΟΛΙΣΘΗΣΗ (ΤΕΛΙΚΑ Ο ΔΙΣΚΟΣ ΘΑ ΠΕΣΕΙ ΣΤΟ ΠΗΓΑΔΙ;) Δυο ομογενείς ράβδοι ΚΛ (m1=3kg, l1=1m) & ΛΜ (m2=4kg, l2=1,5m), εκ των οποίων η ΛΜ φέρει στο άκρο της Μ καρφί αμελητέας μάζας, είναι ενωμένες στο κοινό τους άκρο Λ, έτσι ώστε να σχηματίζουν ορθή γωνία Λ 90. Μεταξύ των δύο ράβδων, υπάρχει ομογενής κυκλικός δίσκος μάζας m=2kg και ακτίνας R= 2 10 m, o οποίος εξαρτάται από το κοινό σημείο των ράβδων (σημείο ένωσης) μέσω μη εκτατού νήματος όπως φαίνεται στο σχήμα. Το σημείο επαφής (Γ) μεταξύ του δίσκου και της ράβδου ΚΛ, απέχει από την άρθρωση (σημείο Κ) απόσταση (5l1)/6. Κ Μ C1 φ φ C1 C C2 Λ C Γ (Αρχική θέση) Γ Λ h1=r/ημφ C2 C (Τυχαία θέση) επίπεδο μηδενικής δυναμικής ενέργειας U=0 φ Μ C C C d2 d1 C r Αρχικά η όλη διάταξη βρίσκεται σε ισορροπία (το άκρο Μ της ράβδου ΛΜ συνδέεται με σταθερό σημείο, μέσω μη εκτατού 2
3 νήματος), με την ράβδο ΚΛ να σχηματίζει γωνία φ 45 με τη κατακόρυφο που διέρχεται από το σημείο Κ. Την χρονική στιγμή t 0, σπάει το νήμα στο σημείο Μ, και το όλο σύστημα ράβδοι κύλινδρος αρχίζει να περιστρέφεται χωρίς τριβές, περί οριζόντιο άξονα κάθετο στο επίπεδο ΚΛΜ, που διέρχεται από το άκρο Κ της ράβδου ΚΛ. Όταν το σύστημα διαγράψει γωνία 90, η ράβδος ΛΜ έρχεται σε επαφή με το οριζόντιο επίπεδο και στερεώνεται. Την στιγμή που το σύστημα ακινητοποιείται, το νήμα στο σημείο Λ σπάει και ο δίσκος αρχίζει να κυλίεται χωρίς να ολισθαίνει κατά μήκος της ράβδου ΛΜ (σχηματίζεται κεκλιμένο επίπεδο). Α. Αν η στατική τριβή μεταξύ της ράβδου ΛΜ και του δίσκου είναι Τ1, να υπολογιστούν: 1. η τάση του νήματος στο σημείο Μ και η κατακόρυφη συνιστώσα της δύναμης που ασκεί η άρθρωση στο άκρο Κ της ράβδου ΚΛ. 2. η ροπή αδράνειας του συστήματος ως προς οριζόντιο άξονα, κάθετο στο επίπεδο ΚΛΜ, ο οποίος διέρχεται από το Κ. 3. η αρχική (όταν κόβεται το νήμα στο σημείο Μ) και η τελική (όταν η ράβδος ΛΜ στερεώνεται στο έδαφος) γωνιακή επιτάχυνση του συστήματος. 4. η γωνιακή ταχύτητα του συστήματος, τη στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος. 5. η γραμμική ταχύτητα τους σημείου Μ, τη στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος. 6. η ελάχιστη τιμή του συντελεστή στατικής τριβής μ1, ώστε ο δίσκος να κυλίεται χωρίς να ολισθαίνει. 7. η γωνιακή επιτάχυνση & η επιτάχυνση του κέντρου μάζας του κυκλικού δίσκου. 8. η ταχύτητα του κέντρου μάζας του δίσκου, η γωνιακή του ταχύτητα, ο αριθμός των στροφών που έχει εκτελέσει και η κατακόρυφη μετατόπιση του, την στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου. 9. για το σύστημα, τη στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος, ο ρυθμός μεταβολής της κινητικής ενέργειας και ο ρυθμός μεταβολής της στροφορμής, 3
4 10. για το δίσκο, τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου, οι ρυθμοί μεταβολής της στροφικής και μεταφορικής κινητικής ενέργειας, ο ρυθμός μεταβολής της στροφορμής και ο ρυθμός μεταβολής της ορμής. Β. Ο κυκλικός δίσκος μόλις φτάσει στη βάση του κεκλιμένου επιπέδου, περνά χωρίς απώλειες ενέργειας σε οριζόντιο επίπεδο, ενώ ταυτόχρονα δέχεται στο κέντρο μάζας του οριζόντια δύναμη F=5N με φορά προς τα δεξιά. Στην συνέχεια μετά από απόσταση S=3m, ο δίσκος εγκαταλείπει το οριζόντιο επίπεδο ενώ ταυτόχρονα παύει να εφαρμόζεται η δύναμη F. 1. Αν η στατική τριβή μεταξύ του δίσκου και του οριζοντίου επιπέδου είναι Τ2 και ο συντελεστής στατικής τριβής μ2=0,1, να εξετάσετε εάν ο δίσκος εκτελεί κύλιση χωρίς ολίσθηση, για όσο χρόνο βρίσκεται σε επαφή με το οριζόντιο επίπεδο. 2. Αν σε απόσταση d1=2m από το σημείο που ο δίσκος εγκαταλείπει το οριζόντιο επίπεδο, υπάρχει πηγάδι διαμέτρου r=1m, να εξετάσετε αν ο δίσκος θα πέσει στο πηγάδι. Επιπλέον το πηγάδι βρίσκεται σε απόσταση d2=1m, κάτω από το οριζόντιο επίπεδο. Δίνεται: Ι ά ml, Ι ί mr, g10m, 2 1,4 Απάντηση: Α. 1W W VF W2W1W N WW2TTy114
5 Ερώτημα Α.1: Στο σύστημα ασκούνται οι εξής δυνάμεις: Το βάρος W1 της ράβδου ΚΛ, το βάρος W2 της ράβδου ΛΜ, το βάρος W του κυκλικού δίσκου, η τάση του νήματος Τν στο σημείο Μ και η δύναμη F που ασκεί η άρθρωση στο άκρο Κ της ράβδου ΚΛ, την οποία αν την αναλύσουμε σε συνιστώσες, η μια από αυτές θα είναι κατακόρυφη με φορά προς τα πάνω. Αρχικά η διάταξη ισορροπεί άρα το αλγεβρικό άθροισμα των ροπών των δυνάμεων, ως προς το Κ θα είναι μηδέν, δηλαδή: Στ 0F0W l 2 ηµφ W l ηµφ l ηµφ 2 W l ηµφ T l ηµφ l ηµφ 0 W l 2W l l 2 2Wl 2T l l 0 W 2W 2W l W l 2T l l T W 2W 2W l W l 2l l T N T 42 N Σχόλιο! F είναι η δύναμη που ασκεί η άρθρωση, στο άκρο K της ράβδου KΛ. Επιπλέον λόγω της ισορροπίας θα ισχύει και ΣF 0 ΣF 0F T W W W0 F W W WT F N F 48N Ερώτημα Α.2: Η ροπή αδράνειας του συστήματος ως προς οριζόντιο άξονα, κάθετο στο επίπεδο ΚΛΜ, ο οποίος διέρχεται από το Κ, θα είναι: I I K I I ί Εφαρμόζοντας το θεώρημα Steiner, για κάθε περίπτωση θα έχουμε: Ράβδος ΚΛ 5
6 I K I m l 2 l I K 1 12 m l 1 4 m l I K 1 3 m l I K Kgr m I K 1 Kg m Ράβδος ΛΜ I I m KC l I 1 12 m l m KC από Πυθαγόρειο Θεωρηµα KC ΛC ΚΛ l 2 l I 1 12 m l m l 1 4 m l I 1 3 m l m l I Kg m I 7 Kg m Κυκλικός Δίσκος I I mkc R I 1 2 mr mkc από Πυθαγόρειο Θεωρηµα KC ΚΓ ΓC 5l 6 R I 1 2 mr m 5l 6 mr I 3 2 mr m 5l 6 I Kg m I 1.5 Kg m Τελικά I 171.5Kgm I 9,5 Kg m Ερώτημα Α.3: Αρχική γωνιακή επιτάχυνση του συστήματος Από το θεμελιώδη νόμο της στροφικής κίνησης, θα έχουμε: Στ K. I α.. F0W l 2 ηµφ W l ηµφ l 2 ηµφ Wl ηµφ I α.. W l 2 ηµφ W l ηµφ l 2 ηµφ W l ηµφ I α.. 6
7 α.. W 2W 2W l W l ηµφ 2I α α.. 7,8 rad 2 229,5 rad Τελική γωνιακή επιτάχυνση του συστήματος Από το θεμελιώδη νόμο της στροφικής κίνησης, θα έχουμε: Στ K. I α.. F0W l 2 ηµφ W l ηµφ l 2 ηµφ Wl ηµφ R ηµφ I α.. W l 2 ηµφ W l ηµφ l 2 ηµφ Wl ηµφ R ηµφ I α.. α.. W 2W 2Wl W l 2WR ηµ φ ηµφ 2I α ,5 α.. 2,9 rad 0 rad Σχόλιο! Το αρνητικό πρόσημο σημαίνει ότι μειώνεται η στροφική κινητική ενεργεία του συστήματος από κάποιο σημείο και μετά (ποιο συγκεκριμένα όταν η ράβδος ΚΛ διαγράψει γωνία μεγαλύτερη ή ίση των 45 0, το σύστημα αρχίζει να επιβραδύνεται). Ερώτημα Α.4: Τελική γωνιακή ταχύτητα του συστήματος Έστω ότι το σύστημα, τη στιγμή που στερεώνεται η ράβδος ΛΜ στο έδαφος, έχει γωνιακή ταχύτητα ω1. Εφαρμόζοντας την Αρχή Διατήρησης της Μηχανικής ενέργειας θα έχουμε: Κ. U. Κ. U. 0W l ηµφ l 2 ηµφ W l ηµφ l 2 ηµφ W l ηµφ h 7
8 1 2 I Kω W l ηµφ l 2 ηµφ W l 2 ηµφ W l ηµφ 3 2 W l ηµφ W h 1 2 I Kω W l ηµφ I Kω W l ηµφ W h ω 2 I K W l ηµφ W h ω ω 2W l ηµφ W h I K , rad R µ ω 3 rad Ερώτημα Α.5: H γραμμική ταχύτητα του σημείου Μ, σε κάθε στιγμή θα δίνεται από την σχέση u M ωρ, όπου ρ η ακτίνα περιστροφής. Την χρονική στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος, η ταχύτητα του σημείου Μ είναι: u M ω ΚΜ ΚΜ ΚΛ ΛΜ ΚΜ l l u M ω l l u M m u M 5,4 m Ερώτημα Α.6: Δικαιολόγηση της φοράς της τριβής που δέχεται ο κυκλικός δίσκος. Οι δυνάμεις που δέχεται ο δίσκος είναι οι εξής: το βάρος του W, την κάθετη αντίδραση Ν1 από τη ράβδο και την στατική τριβή Τ1, η οποία έστω ότι έχει φορά προς τα πίσω. Από το θεμελιώδη νόμο της στροφικής κίνησης θα έχουμε: Στ I α. W0N 0T RI α.. R T R I α. α T R R α 2T m I 8
9 T Ακόµα ΣF mα W T ma Wηµφ T m 2T m 3T WηµφT 1 3 Wηµφ T N T 4,7 N 0 Η τριβή Τ1 είναι θετική. άρα έχει φορά προς τα πίσω. Ο κυκλικός δίσκος για να κυλίεται χωρίς να ολισθαίνει, πρέπει να ισχύει: T Τ T µ Ν W T µ W T µ Wσυνφ µ T T Wµ µ Wσυνφ εφφ 3 µ 1 3 άραµ 1 3 Ερώτημα Α.7: Επιτάχυνση του κέντρου μάζας του δίσκου α 2T m 2 1 T 1 α 3 Wηµφ α 3 Wηµφ m 2Wηµφ 3m α m α 4,7 m Γωνιακή επιτάχυνση του δίσκου α α. Rα. α R α. 4, α. 33,3 rad rad Ερώτημα Α.8: Ταχύτητα του κέντρου μάζας του δίσκου τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου Η κίνηση του κέντρου μάζας, περιγράφεται από τις σχέσεις: u α t & x 1 2 α t Η απόσταση που διανύει ο δίσκος, μέχρι να φτάσει στη βάση του 9
10 κεκλιμένου είναι: x l R. Οπότε: x l R l R 1 2 α t t 2l R α u α t t u α u 2l R u α α 2α l R u 2 4, m u 3,6 m Για τον υπολογισμό της ταχύτητας του κέντρου μάζας του δίσκου, μπορούμε να εφαρμόσουμε και την Αρχή Διατήρησης της Μηχανικής Ενέργειας (η στατική τριβή που είναι υπεύθυνη για την κύλιση δεν παράγει έργο):...., Αριθμός των περιστροφών που εκτελεί ο δίσκος, μέχρι να φτάσει στη βάση του κεκλιμένου επιπέδου Σε 1 περιστροφή ο δίσκος διαγράφει γωνία 2π Σε n1 περιστροφές ο δίσκος διαγράφει γωνία θ1 1 n 2π θ n θ 2π Επιπλέον για το δισκο ισχύει ω α. t & θ 1 2 α. t Αρα θ 1 2 α. t & θ 1 2 α. t θ 1 2 α. u θ α 2π 1 4π α. u α 10
11 n 1 4π α. u α n 1 n 4,9 π στροφές 4π 33,3 3,6 1 4,7 στροφές Κατακόρυφη μετατόπιση του δίσκου, μέχρι να φτάσει στη βάση του κεκλιμένου επιπέδου ηµφ h l R hηµφl R h m h0,96 m Γωνιακή ταχύτητα του δίσκου, τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου ωα. t, ω α. t ω α. u ω α. u α ω u R ω 10 rad 3,6 2 ω 25,4 rad α Ερώτημα Α.9: Ρυθμός μεταβολής στροφικής κινητικής ενέργειας του ΔK. συστήματος, τη στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος: ΔW ΔΣτ θ ΔK. ΔK. ΔK. Στ Δθ Στ ω Ι α. ω Ι α. ω Ι α.. ω... ΔK. 9,52,9 3 J... 82,6 J... 11
12 Ρυθμός μεταβολής της στροφορμής του συστήματος, τη στιγμή που η ράβδος ΛΜ στερεώνεται στο έδαφος: ΔL ΔΙ ω Ι Δω. ΔL Ι α. ΔL... Ι α.. ΔL 9,52,9Κg m... ΔL 27,5 Κg m... Ερώτημα Α.10: Ρυθμός μεταβολής στροφικής κινητικής ενέργειας του δίσκου, ΔK. τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου ΔW ΔΣτ θ ΔK. Στ Δθ Στ ω Ι α. ω Ι α. ω ΔK. Ι α. ω ΔK ,3 25,4 J ΔK. 16,9 J Ρυθμός μεταβολής μεταφορικής κινητικής ενέργειας του δίσκου, τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου ΔK µ. ΔW F ΔΣF x ΣF Δx ΣF F u 12
13 ΔK µ. mα u ΔK µ. mα u ΔK µ. 2 4,7 3,6 J ΔK µ. 33,8 J Ρυθμός μεταβολής της στροφορμής του δίσκου, τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου ΔL ΔΙ ω Ι Δω. ΔL Ι α. σταθ. ΔL ,3 Κg m ΔL m 0,6 Κg Ρυθμός μεταβολής της ορμής του δίσκου, τη στιγμή που φτάνει στη βάση του κεκλιμένου επιπέδου ΔP Δm u m Δu mα σταθ. ΔP ΣF mα ΔP 24,7 Κg m ΔP 9,4 Κg m Β. T2 u NcF2W F T0 2u W cn2g g 13
14 Ερώτημα Β.1: Η μετάβαση του κυκλικού δίσκου από το κεκλιμένο επίπεδο στο οριζόντιο γίνεται χωρίς απώλειες ενέργειας. Άρα η ταχύτητα του κέντρου μάζας του δίσκου, τη στιγμή που αρχίζει να κινείται στο οριζόντιο επίπεδο θα είναι: u. u u. 3,6 m Από το θεμελιώδη νόμο της μηχανικής θα έχουμε: ΣF X mα FT mα ΣF 0N W Από το θεμελιώδη νόμο της μηχανικής θα έχουμε: Στ Ι α. T RΙ α. Έστω ότι ο δίσκος εκτελεί κύλιση χωρίς ολίσθηση, κατά την κινησή του στο οριζόντιο επίπεδο (εισάγουμε την υπόθεση ότι ο δίσκος εκτελεί κύλιση χωρίς ολίσθηση για να χρησιμοποιήσουμε την σχέση. FT mα T RΙ α FT. T R m 1 2 mr α α. R. FT 2 T R R FT 2FT T 2T T F 3 Ο κυκλικός δίσκος για να κυλίεται χωρίς να ολισθαίνει, πρέπει να ισχύει: T Τ T µ Ν W T µ W F 3 µ W F3µ WF N F6NF 6 N Από την υπόθεση της άσκησης η δύναμη F που ασκούμε είναι 5 Ν < Fmax. Άρα ο δίσκος εκτελεί κύλιση χωρίς ολίσθηση κατά μήκος του οριζοντίου επιπέδου. 14
15 Ερώτημα Β.2: Η κίνηση του κέντρου μάζας του κυκλικού δίσκου, για όσο χρονικό διάστημα βρίσκεται σε επαφή με το οριζόντιο επίπεδο, θα περιγράφεται από τις σχέσεις u u. α t & x u. t 1 2 α t όπου α FT /m α 51/2 α 2 m/ Τη στιγμή που ο δίσκος εγκαταλείπει το οριζόντιο επίπεδο, έχει διανύσει απόσταση S. Oπότε στις παραπάνω σχέσεις ένα θέσω xc = S, t = t1 & u = u1, θα προκύψουν τα εξής: x u. t 1 2 α t S, Su. t 1 2 α t 1 2 2t 3,6t 30t 3,6t 30 Δβ 4αγ Δ 12, t β Δ 2α t 3, ,6 5 t 2 ή t 3, ,. 0 δεκτή t 3,6 5 2 t 0,7 Άρα την απόσταση S, ο δίσκος την διανύει σε χρόνο 0,7. Η ταχύτητα του κέντρου μάζας του εκείνη τη στιγμή, πού είναι η ταχύτητα με την οποία εγκαταλείπει το οριζόντιο επίπεδο (παύει να ασκείται και η δύναμη F) είναι: u u. α t u u. α t u 3,6 2 0,7 m u 5m Για να εξετάσουμε εάν ο δίσκος θα πέσει στο πηγάδι, θα πρέπει να προσδιορίσουμε την μέγιστη και ελάχιστη ταχύτητα που πρέπει να έχει το 15
16 κέντρο μάζας του όταν εγκαταλείπει το οριζόντιο επίπεδο, ώστε να πέσει στο πηγάδι. Εν συνεχεία θα συγκρίνουμε τις ταχύτητες αυτές με την ταχύτητα. Δηλαδή: αν τότε ο δίσκος θα πέσει στο πηγάδι Όταν ο δίσκος εγκαταλείψει το οριζόντιο επίπεδο, η κίνηση του κέντρου μάζας του θα περιγράφεται από τις εξής σχέσεις: Κατά τον άξονα x, o δίσκος δεν δέχεται καμία δύναμη (α 0. Άρα: u u σταθ. & x u t Κατά τον άξονα y, o δίσκος δέχεται την δύναμη του βάρους (δεν υπάρχει αρχική ταχύτητα κατά τον άξονα y, η επιτάχυνση είναι α g. Άρα: u g t & y 1 g t 2 Για να πέσει μέσα στο πηγάδι ο δίσκος πρέπει d d Rx d d R Ru td d R & & y d R 1 2 gt d R d R t t 2d R g u d d R t & 21 0,14 10 t0,47 2 0,14 0,47 m u 210,14 m 0,47 4,55 m u 6,08 m u, 6,08 m u, 4,55 m Επομένως αφού u 5m ο δίσκος θα πέσει μέσα στο πηγάδι Επιμέλεια Θεμάτων: 16
Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:
Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ
Διαβάστε περισσότερα"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ".
"Η απεραντοσύνη του σύμπαντος εξάπτει τη φαντασία μου. Υπάρχει ένα τεράστιο σχέδιο, μέρος του οποίου ήμουν κι εγώ". "Ότι ανόητο είπα μπορεί και να είναι ένα ρέψιμο κάποιου ξεχασμένου αστέρα..." "Δεν κάνει
Διαβάστε περισσότεραΑφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος
Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος Είτε είμαστε άνθρωποι είτε είμαστε αστρική σκόνη, όλοι μαζί χορεύουμε στη μελωδία ενός αόρατου ερμηνευτή. A. Einstein
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΘΕΜΑ 1ο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότεραΦυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός
Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία
Διαβάστε περισσότεραΠέµπτη, 05 Ιουνίου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ
Πέµπτη, 05 Ιουνίου 00 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή
Διαβάστε περισσότερα2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται
Διαβάστε περισσότεραΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ
ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.
Διαβάστε περισσότεραΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ 01-013 Μπίλιας Κων/νος Φυσικός
Διαβάστε περισσότεραΣΧΟΛΙΚΟ ΕΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. Ονοματεπώνυμο Τμήμα
Σελίδα 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότερα3. ίνεται ότι το πλάτος µιας εξαναγκασµένης µηχανικής ταλάντωσης µε απόσβεση υπό την επίδραση µιάς εξωτερικής περιοδικής δύναµης είναι µέγιστο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις
Διαβάστε περισσότεραΠαραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.
Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραEισηγητής: Μουσουλή Μαρία
Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια
Διαβάστε περισσότεραΦυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Λυκείου 3 ο Κεφάλαιο Ηλεκτρικό Πεδίο. Ηλεκτρικό πεδίο. Παρασύρης Κώστας Φυσικός Ηράκλειο Κρήτης
Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο 3 Ηλεκτρικό πεδίο Πρσύρης Κώστς Φσικός Ηράκλειο Κρήτης Φσική Θετικής & Τεχνολογικής Κτεύθνσης Β Λκείο 3 ο Κεφάλιο Ηλεκτρικό Πεδίο
Διαβάστε περισσότεραΟι γέφυρες του ποταμού... Pregel (Konigsberg)
Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα
Διαβάστε περισσότεραΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983
20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000
Διαβάστε περισσότεραΑποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.
Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα
Διαβάστε περισσότεραEισηγητής: Μουσουλή Μαρία
Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε
Διαβάστε περισσότεραΤαξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότερα17 Μαρτίου 2013, Βόλος
Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.
Διαβάστε περισσότερα21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου
Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 - Λύσεις 1. Εστω ο πίνακας Α = [12, 23, 1, 5, 7, 19, 2, 14]. i. Να δώσετε την κατάσταση
Διαβάστε περισσότερα«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»
HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος
Διαβάστε περισσότερα1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και
ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Εαρινό Εξάμηνο 0 Ασκήσεις για προσωπική μελέτη Είναι απολύτως απαραίτητο να μπορείτε να τις λύνετε, τουλάχιστον τις υπολογιστικές! Εστω ότι A, B, C είναι γενικοί πίνακες,
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να
Διαβάστε περισσότεραΗ ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.
A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με
Διαβάστε περισσότεραΕπίλυση ειδικών μορφών ΣΔΕ
15 Επίλυση ειδικών μορφών ΣΔΕ Σε αυτό το κεφάλαιο θα δούμε κάποιες ειδικές μορφές ΣΔΕ για τις οποίες υπάρχει μέθοδος επίλυσης. Περισσότερες μπορεί να δει κανείς στο Kloeden and Plaen (199), 4.-4.4. Θα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο
Διαβάστε περισσότεραΕκφωνήσεις και Λύσεις των Θεμάτων
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων
Διαβάστε περισσότεραΓενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016
Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα
Διαβάστε περισσότεραΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ ΑΠΟΦΑΣΗ. Άσκηση με θέμα τη μεγιστοποίηση της χρησιμότητας του καταναλωτή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 07 08 ΛΕΥΚΑΔΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Η ΚΑΤΑΝΑΛΩΤΙΚΗ
Διαβάστε περισσότεραΕπίλυση δικτύων διανομής
ΑστικάΥδραυλικάΈργα Υδρεύσεις Επίλυση δικτύων διανομής Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διατύπωση του προβλήματος Δεδομένου ενός δικτύου αγωγών
Διαβάστε περισσότεραΕξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018
ΕΚΠΑ, Τμήμα Φυσικής Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018 ΘΕΜΑ 1 Γραμμική κατανομή φορτίου εκτείνεται από h έως +h κατά μήκος του άξονα z με ετερογενή πυκνότητα λ 0 < 0 για h z < 0 και λ 0 >
Διαβάστε περισσότεραΔ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων
Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α 1η σειρά ασκήσεων Ονοματεπώνυμο: Αριθμός μητρώου: Ημερομηνία παράδοσης: Μέχρι την Τρίτη 2 Απριλίου 2019 Σημειώστε τις ασκήσεις για τις οποίες έχετε παραδώσει λύση: 1
Διαβάστε περισσότεραΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.
ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το
Διαβάστε περισσότεραΜεγέθη ταλάντωσης Το απλό εκκρεμές
Μεγέθη ταλάντωσης Το απλό εκκρεμές 1.Σκοποί: Οι μαθητές Να κατανοήσουν τις έννοιες της περιοδικής κίνησης και της ταλάντωσης Να κατανοήσουν ότι η περιοδική κίνηση δεν είναι ομαλή Να γνωρίσουν τα μεγέθη
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας
Διαβάστε περισσότερα{ i f i == 0 and p > 0
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις
Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε
Διαβάστε περισσότεραΠροτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της
Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν
Διαβάστε περισσότεραΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.
ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται
Διαβάστε περισσότεραΣτοχαστικές διαφορικές εξισώσεις
14 Στοχαστικές διαφορικές εξισώσεις 14.1 Γενικά Στοχαστική διαφορική εξίσωση λέμε μια εξίσωση της μορφής dx = µ(, X ) d + σ(, X ) db, X = x, (14.1) με µ, σ : [, ) R R μετρήσιμες συναρτήσεις, x R, και B
Διαβάστε περισσότεραΈννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν
1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ
ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο
Διαβάστε περισσότεραΑς υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού
Διαβάστε περισσότεραΕισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες
Διαβάστε περισσότεραΔιανυσματικές Συναρτήσεις
Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ
Διαβάστε περισσότεραΕστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.
2 Μέτρα 2.1 Μέτρα σε μετρήσιμο χώρο Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο. Ορισμός 2.1. Μέτρο στον (X, A) λέμε κάθε συνάρτηση µ : A [0, ] που ικανοποιεί τις
Διαβάστε περισσότεραΑσκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε
Διαβάστε περισσότεραΑναλυτικές ιδιότητες
8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι
Διαβάστε περισσότεραΦροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10
Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό
Διαβάστε περισσότεραΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία
ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο
Διαβάστε περισσότεραCSE.UOI : Μεταπτυχιακό Μάθημα
Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &
Διαβάστε περισσότεραΕισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών
Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov
Διαβάστε περισσότεραΑρτιες και περιττές συναρτήσεις
Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη
Διαβάστε περισσότεραΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα
ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΝΤΙ ΠΥΡΚΑΓΙΑΣ ΜΕΣΩ ΜΕΘΟΔΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΠΑΡΑΡΤΗΜΑ Γ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΝΑΝΤΙ ΠΥΡΚΑΓΙΑΣ ΜΕΣΩ ΜΕΘΟΔΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Στο Κεφάλαιο V του παρόντος Πρακτικού Οδηγού παρουσιάστηκαν προσεγγιστικές βήμα προς βήμα επιλύσεις που δύνανται
Διαβάστε περισσότεραΣυντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ
Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη
Διαβάστε περισσότεραΤο υπόδειγμα IS-LM: Εισαγωγικά
1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και
Διαβάστε περισσότεραΣχέσεις και ιδιότητές τους
Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση
Διαβάστε περισσότεραΕνδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 23 Μαΐου 2016
Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 3 Μαΐου 06 ΘΕΜΑ Α Α β, Α γ, Α3 β, Α4 δ Α5 α Σ, β Λ, γ Σ, δ Λ, ε Λ ΘΕΜΑ Β Β Σωστή είναι η απάντηση (ιιι).
Διαβάστε περισσότερα2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες
20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε
Διαβάστε περισσότεραΑνελίξεις σε συνεχή χρόνο
4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς
Διαβάστε περισσότεραHY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.
HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων
Διαβάστε περισσότεραΕυρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα
17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη
Διαβάστε περισσότεραΟ Ισχυρός Νόμος των Μεγάλων Αριθμών
1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 017-018 Φροντιστήριο 5 1. Δικαιολογήστε όλες τις απαντήσεις σας. i. Δώστε τις 3 βασικές ιδιότητες ενός AVL δένδρου.
Διαβάστε περισσότεραΨηφιακή Εικόνα. Σημερινό μάθημα!
Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη
Διαβάστε περισσότεραΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ
ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου
Διαβάστε περισσότεραΕισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)
Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας
Διαβάστε περισσότεραιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27
ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ 13/06/2018 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Αγίας Σοφίας 39 310.44.444 Β. Όλγας 168 310.48.400 ΕΥΟΣΜΟΣ Μ.Αλεξάνδρου 45 310.770.360 ΠΑΝΕΛΛΗΝΙΕΣ 13/06/018 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1 γ Α δ Α3 α Α4 δ Α5 α.λ β.σ γ.λ δ.σ ε.λ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότεραΜονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2017-2018 Φροντιστήριο 3 1. Εστω η στοίβα S και ο παρακάτω αλγόριθμος επεξεργασίας της. Να καταγράψετε την κατάσταση
Διαβάστε περισσότεραΠειραματικές δοκιμές πρότυπης περισταλτικής αντλίας δύο σταδίων έγχυσης για τον προσδιορισμό της απόδοσής της
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Διπλωματική εργασία Πειραματικές δοκιμές πρότυπης περισταλτικής αντλίας
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1
Διαβάστε περισσότερατεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές
Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση
Διαβάστε περισσότεραΕφαρμογές στην κίνηση Brown
13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε
Διαβάστε περισσότεραΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ
ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες
Διαβάστε περισσότεραΚεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.
Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΑΣΕΙΣ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΕΡΑ ΜΑΪΟΥ 6 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΗΜΑ) ΑΠΑΝΗΣΕΙΣ ΘΕΜΑΩΝ Θέμα Α Α β, Α γ, Α β, Α4 δ Α5. α. Σωό, β. Λάθος, γ. Σωό, δ. Λάθος,
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
Διαβάστε περισσότεραΕπαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ
HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που
Διαβάστε περισσότεραMartingales. 3.1 Ορισμός και παραδείγματα
3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,
Διαβάστε περισσότεραΕισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία
1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν
Διαβάστε περισσότεραΚαταθλιπτικοί αγωγοί και αντλιοστάσια
Αστικά Υδραυλικά Έργα Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τυπικές φυγοκεντρικές αντλίες Εξαγωγή Άξονας
Διαβάστε περισσότεραΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ Κυκλικός δίσκος ακτίνας R και μάζας m, περιστρέφεται με σταθερή γωνιακή ταχύτητα ω 0 (η τριβή στον άξονα περιστροφής θεωρείται αμελητέα).
Διαβάστε περισσότεραE n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ
Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςα(ΓΕΚα Σε ένα μονοδιάστατο κβαντικό σύστημα να δειχθεί ότι η γενική λύση της χρονοεξαρτώμενης εξίσωσης Schrödiger είναι της μορφής Ψ ( x,t c ( x e i E t, όπου τα E
Διαβάστε περισσότεραΗ εξίσωση Black-Scholes
8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το
Διαβάστε περισσότερα602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις
602. Συναρτησιακή Ανάλυση Υποδείξεις για τις Ασκήσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 2018 Περιεχόμενα 1 Χώροι με νόρμα 1 2 Χώροι πεπερασμένης διάστασης 23 3 Γραμμικοί τελεστές και γραμμικά
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Σημερινό Μάθημα
Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1
ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε
Διαβάστε περισσότερα