3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
|
|
- Σέργιος Σπανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 3.1 3 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΤΡΙΒΗΣ 3.1. Θεωρίες περί τριβής Οι θεωρίες για τη φύση της τριβής έχουν μεταβάλλονται, καθώς η γνώση του ανθρώπου για τη φύση των στερεών σωμάτων συμπληρώνεται και προχωρά σε μεγαλύτερο βάθος. Διατυπώθηκαν, λοιπόν, ποικίλες θεωρητικές προσεγγίσεις, προκειμένου να περιγραφούν τα φαινόμενα που λαμβάνουν χώρα κατά την επαφή στερεών σωμάτων και τα οποία συντελούν στην παρεμπόδιση της σχετικής τους κίνησης Η πρώτη (μηχανική) εξηγεί την τριβή δύο επιφανειών, βασιζόμενη στην μηχανική ανύψωση των επιφανειακών ανωμαλιών της μιας πάνω στην άλλη. Η δεύτερη (μοριακή) προσπαθεί να εξηγήσει την τριβή ως αποτέλεσμα της υπερνίκησης των δυνάμεων μοριακής έλξης μεταξύ δύο στερεών. Η τρίτη (διείσδυσης) αντιμετωπίζει την τριβή ως προερχόμενη από την παραμόρφωση ενός ορισμένου όγκου του υλικού, το οποίο υφίσταται διείσδυση από τις ανωμαλίες της επιφάνειας ενός άλλου στερεού (διαδικασία άροσης). Η τέταρτη αντιμετωπίζει το θέμα ως υπέρθεση ταυτόχρονων γεγονότων που οφείλονται σε μικρότερο ή μεγαλύτερο βαθμό σε όλους τους μηχανισμούς που περιέγραψαν οι προαναφερθείσες θεωρίες. Σ αυτές τις σύνθετες θεωρίες πρέπει να περιληφθούν αυτή των Ernst και Merchant (1940), η μοριομηχανική θεωρία της τριβής (1946) και η θεωρία της τριβής των υφάνσιμων υλών που προτάθηκε από τους Howell, Mieszkis και Tabor (1959). Καθώς οι επιστημονικές προσεγγίσεις για τα υλικά εξελισσόταν, ανάλογα τροποποιήθηκαν και σχετικές θεωρίες για τη φύση της τριβής και το μέγεθος του συντελεστή τριβής (μ). Στις αρχές του 16ου αιώνα, διατυπώθηκε η άποψη ότι είναι ίδιος για όλα τα στερεά. Στα μέσα του 18ου αιώνα, παρατηρήθηκε πειραματικά ότι υπάρχει διαφοροποίηση των συντελεστών τριβής για διαφορετικούς συνδυασμούς υλικών κατασκευής των εφαπτόμενων στερεών. Αργότερα, ο Coulomb προσδιόρισε την
2 3.2 επίδραση της πίεσης στο συντελεστή τριβής και την σχέση του με την ταχύτητα ολίσθησης. Τον 20ο αιώνα, Σοβιετικοί επιστήμονες απέδειξαν την επίδραση της τραχύτητας των επιφανειών στην τριβή μη λιπαινόμενων συστημάτων και εξέφρασαν το συντελεστή τριβής ως συνάρτηση της τραχύτητας, της πίεσης και της ταχύτητας ολίσθησης. Στις μέρες μας, προκειμένου να εξασφαλισθεί η ορθή και ασφαλής λειτουργία μηχανολογικών κατασκευών, θα πρέπει στη φάση του σχεδιασμού/ υπολογισμού τους να ληφθεί υπ όψιν ότι ο συντελεστής τριβής (μ) εξαρτάται από τρεις (3) παράγοντες: το συνδυασμό των υλικών τις σχετικές διαστάσεις των τριβομένων σωμάτων (τριβικό σύστημα) τις συνθήκες λειτουργίας του συστήματος. Η ορθή επιλογή υλικών για τριβικές εφαρμογές, χωρίς να ληφθούν υπ όψιν οι παράμετροι λειτουργίας είναι αδύνατη, γι αυτό και πίνακες συντελεστών τριβής που εμφανίζονται σε παλαιότερα εγχειρίδια δεν είναι πλέον σε ισχύ Βασικές έννοιες και ορισμοί Tριβή (friction) λέγεται το φυσικό φαινόμενο κατά το οποίο σε δύο εφαπτόμενα σώματα, το ένα ανθίσταται στην κίνηση ή την τάση να κινηθεί, του άλλου. Η τριβή των στερεών είναι πολύπλοκο φαινόμενο που εξαρτάται από διάφορες παραμέτρους που δρουν επί του τριβικού συστήματος και μάλιστα στην πραγματική επιφάνεια επαφής και στα στρώματα του υλικού κάτω από αυτή, σε μικρό σχετικά βάθος. Σχήμα 3.1.Το τριβικό σύστημα.
3 3.3 Δs = s t - s o (3.1) uσχ α,β Δs = (3.2) Δt T F (3.3) Όταν δύο σώματα (α) και (β) κινούνται με σχετική ταχύτητα u σχαβ, λόγω του φαινομένου της τριβής αναπτύσσεται η εφαπτομενική δύναμης τριβής Τ που ανθίσταται στη σχετική κίνηση των σωμάτων (σχήμα 3.1.) και κατά συνέπεια έχει διεύθυνση (περίπου) αντίθετη προς τη διεύθυνση της σχετικής ταχύτητας. Συντελεστής τριβής μ ονομάζεται ο λόγος της τριβής προς την κάθετη, προς την διεύθυνση της κίνησης, συνιστώσα των εξωτερικών δυνάμεων που δρουν επί των τριβόμενων επιφανειών (φορτίο): Τ μ = (3.4) Ν Ανάλογα με το είδος της σχετικής κίνησης των δύο εφαπτόμενων σωμάτων, η τριβή διακρίνεται σε τριβή ολίσθησης και τριβή κύλισης. Στην δεύτερη, το ένα από τα δύο στοιχεία του τριβικού συστήματος περιστρέφεται γύρω από ένα στιγμιαίο κέντρο περιστροφής που ταυτόχρονα αποτελεί και την επιφάνεια επαφής, η οποία συνεχώς μεταβάλλεται. Όταν δεν υπάρχει σχετική κίνηση των δύο σωμάτων του τριβικού συστήματος και επί πλέον η έλκουσα δύναμη F είναι μηδενική (u σχαβ =0, F=0) τότε θα είναι T=F=0 ενώ Ν 0. Είναι τότε: Τ μ = = 0 (3.5) Ν Το σύστημα αυτό είναι ουσιαστικά σύστημα ακίνητων σωμάτων σε επαφή υπό δράση μόνον του φορτίου. Εάν εφαρμόζεται στο σύστημα αυτό μια μικρή εφαπτομενική
4 3.4 (έλκουσα) δύναμη F, τα πειράματα δείχνουν ότι δεν μπορεί να υπάρξει ολίσθηση. Βαθμιαία αύξηση της έλκουσας δύναμης F θα προκαλέσει σχετική κίνηση όταν η F φθάσει σε κάποια F ορ. Στατικός συντελεστής τριβής (μ σ ) ονομάζεται ο λόγος: F μ = ορ σ Ν Τ Ν (3.6) Όταν u σαβ 0 υπάρχει σχετική κίνηση και τότε ο συντελεστής τριβής ονομάζεται κινητικός ή κινηματικός (μ κ ). Έχει βρεθεί ότι όταν υπάρχει σχετική κίνηση είναι εν γένει F<F ορ (3.7) και F T μ κ = (3.8) Ν Ν Δηλαδή γενικά απαιτείται μικρότερη έλκουσα δύναμη F για να διατηρηθεί η κίνηση από την F ορ που απαιτείται για να αρχίσει (δηλαδή γενικά είναι μ σ >μ κ ) Παράμετροι λειτουργίας τριβικών συστημάτων Βασικές παράμετροι που επηρεάζουν την λειτουργία του τριβικού συστήματος είναι: α) τα υλικά των τριβομένων επιφανειών β) η παρουσία επιφανειακού στρώματος (λιπαντικού, ρύπου, οξειδίων) γ) η τραχύτητα των επιφανειών δ) η σχετική ταχύτητα ολίσθησης ε) το εφαρμοζόμενο κάθετο φορτίο στ) η διαφορά ηλεκτρικού δυναμικού μεταξύ των επιφανειών.
5 Επίδραση τραχύτητας στην τριβή Στο διάγραμμα που ακολουθεί (σχήμα 3.2.) φαίνεται η συνάρτηση του συντελεστή τριβής και της επιφανειακής τραχύτητας (RMS), για το εύρος της επιφανειακής τραχύτητας που εμφανίζουν συνήθεις μηχανολογικές επιφάνειες. Σχήμα 3.2. Μεταβολή συντελεστή τριβής (μ) συναρτήσει τραχύτητας Για πολύ λείες επιφάνειες, η τριβή τείνει να είναι υψηλή επειδή η πραγματική επιφάνεια επαφής αυξάνεται υπερβολικά, με αντίστοιχη αύξηση των μοριακών δυνάμεων που αναπτύσσονται μεταξύ των εφαπτόμενων σωμάτων, ενώ στις πολύ τραχείες επιφάνειες η τριβή είναι και πάλι υψηλή εξαιτίας της αυξημένης απαίτησης «ύψωσης» της μιας επιφάνειας επί των προεξοχών της άλλης. Για ενδιάμεσες τιμές τραχύτητας, που είναι και η συνηθέστερη περίπτωση, η τριβή είναι σχεδόν ανεξάρτητη της τραχύτητας.
6 Πειραματική διαδικασία Περιγραφή συσκευής Η εργαστηριακή συσκευή τριβής-φθοράς (σχήμα 3.3) που χρησιμοποιείται είναι συσκευή τύπου στυλίσκου-δίσκου (σχήμα 3.4). Αποτελείται από τροποποιημένο σώμα τόρνου, ο οποίος φέρει δίσκο, στις επιφάνειες του οποίου πιέζονται κυλινδρικοί στυλίσκοι με τη βοήθεια υδραυλικών κυλίνδρων. Η επιφάνεια του ενός άκρου του στυλίσκου μπορεί να είναι επίπεδη, κωνική ή ημισφαιρική. Σχήμα 3.3. Εργαστηριακή συσκευή ελέγχου τριβής και φθοράς. Το πλεονέκτημα αυτής της διάταξης είναι ότι οι εφαπτομενικές δυνάμεις τριβής (F) μετρούνται ανεξάρτητα από το φορτίο (L) των άκρων, επιτρέποντας έτσι ακριβείς μετρήσεις του συντελεστή τριβής. Στη διάταξη αυτή μπορούν να δοκιμασθούν μεταλλικά ή μη υλικά, υπό καθεστώς ξηρής ή λιπαινόμενης ολίσθησης. Η συσκευή παίρνει κίνηση με ιμάντες από ένα τριφασικό κινητήρα 750 W και μπορεί να λειτουργεί σε 14 διαφορετικές περιστροφικές ταχύτητες από 25 rpm έως 2150 rpm. Ο δίσκος που δοκιμάζεται στην παρούσα εργαστηριακή άσκηση μπορεί να είναι (α) από μαλακό ή βαμμένο χάλυβα, (β) διφασικό ορείχαλκο περιεκτικότητας 58% Cu, 3% Pb και υπόλοιπο Zn ή (γ) κράμα αλουμινίου με 4% Cu. Από τα ίδια κράματα είναι και οι στυλίσκοι. Ο δίσκος προσαρμόζεται και προσδένεται σε περιστρεφόμενο άξονα σκληρυμένου. Στο σχήμα 3.4 φαίνεται η αρχή λειτουργίας της συσκευής στυλίσκουδίσκου.
7 3.7 Σχήμα 3.4. Αρχή λειτουργίας της συσκευής στυλίσκου-δίσκου. Τα δοκίμια έχουν διάμετρο 8 mm και είναι τοποθετημένα μέσα σε ειδικές «φωλιές», καθεμιά από τις οποίες είναι κοχλιωμένη στο έμβολο υδραυλικού κυλίνδρου, μέσω του οποίου επιβάλλεται η φόρτιση. Η μεταβολή του μήκους του στυλίσκου, ως αποτέλεσμα της φθοράς του, καταγράφεται από αισθητήρα γραμμικής μετατόπισης. Οι υδραυλικού κύλινδροι και οι αισθητήρες μετατόπισης είναι κατασκευασμένοι από αλουμινιούχο μπρούντζο, ενώ η πίεση εφαρμόζεται με διοχέτευση ελαίου μέσω εύκαμπτων ελαστικών σωλήνων. Οι κύλινδροι είναι προσαρμοσμένοι σε φορείο που κινείται κάθετα προς τον άξονα του τόρνου. Τα δοκίμια πιέζονται και ολισθαίνουν επί του δίσκου, σε ακτίνα 40 mm από το κέντρο του άξονα περιστροφής και σε επίπεδο κάτω απ αυτόν. Όταν τα δοκίμια έρθουν σε επαφή με το δίσκο καθώς αυτός περιστρέφεται, μεταξύ των στυλίσκων και του δίσκου θα ασκηθεί πάνω στο φορείο μια εφαπτομενική δύναμη τριβής. Το υδραυλικό φορτίο των άκρων εφαρμόζεται από μια πρότυπη διάταξη πίεσης (υδραυλικό πιεστήριο Budenberg) με ισορροπούν βάρος. Οι επιτρεπόμενες πιέσεις είναι μέχρι 15 bar (1500 KN/m 2 ) σε βαθμίδες των 0,05 bar.
8 Εξεταζόμενα υλικά και πειραματικές συνθήκες Κατά τη διεξαγωγή του πειράματος τριβής φθοράς μελετάται η συμπεριφορά των εξής ζευγών υλικών: α) Χάλυβας (δίσκος) Ορείχαλκος (στυλίσκος) β) Χάλυβας (δίσκος) Αλουμίνιο (στυλίσκος) Τα δοκίμια (στυλίσκοι) έχουν σχήμα κυλινδρικό με διαστάσεις διάμετρο D = 8 mm και αρχικό μήκος lαρχ 50 mm Κατά τη διάρκεια των δοκιμών, η ταχύτητα περιστροφής του δίσκου παραμένει σταθερή και ίση με n = 340 rpm Η πειραματική διαδικασία επαναλαμβάνεται τρεις φορές για κάθε ζεύγος υλικών και για φορτία 1, 2 και 3 bar. Η διάρκεια κάθε δοκιμής καθορίζεται στα t = 5 min Επεξεργασία δεδομένων Η απόσταση (ή μήκος) ολίσθησης L δίνεται από την σχέση: L = 2. π. R. n. Δt (3.9) όπου : R, η απόσταση των δοκιμίων από τον άξονα του δίσκου (R = 40 mm) n, η ταχύτητα περιστροφής Δt, η διάρκεια της δοκιμής Το φορτίο, δηλαδή η κάθετη δύναμη (N) είναι: N = 53,09. p (3.10) όπου : N, η κάθετη δύναμη (σε Nt) p, η ασκούμενη πίεση (σε bar) Ο μέσος συντελεστής τριβής μ (των στυλίσκων Α και Β) δίνεται από τον τύπο: T μ = (3.11) 2N Κατά τη διάρκεια των δοκιμών, οι τιμές της δύναμης τριβής Τ (σε Ν) μετρώνται σε πραγματικό χρόνο, μέσω κατάλληλων μετρητικών διατάξεων, και καταγράφονται με τη χρήση αλγορίθμου καταγραφή σήματος.
9 3.9 Σχήμα 3.5. Μετρήσεις (ανάκτηση δεδομένων) δύναμης τριβής Τ και χρόνου t. Με την βοήθεια των σχέσεων που προαναφέρθηκαν, υπολογίστε το συντελεστή τριβής (μ) και η απόσταση (ή μήκος) ολίσθησης (L, σε m) για κάθε δοκιμή, σχεδιάζοντας και σχολιάζοντας τα διαγράμματα μ = μ(l) για τα ακόλουθα συστήματα: 1) μ = μ(l) για το ζεύγος Χάλυβας Ορείχαλκος σε κοινό γράφημα και για τα τρία φορτία 2) μ = μ(l) για το ζεύγος Χάλυβας Αλουμίνιο σε κοινό γράφημα και για τα τρία φορτία 3) μ = μ(l) για τα ζεύγη Χάλυβας Ορείχαλκος και Χάλυβας Αλουμίνιο σε κοινό γράφημα για : α) p = 1 bar β) p = 2 bar γ) p = 3 bar
10 3.10 ΥΠΟΔΕΙΞΗ Για την κατασκευή των ζητούμενων διαγραμμάτων λάβετε υπ όψιν σας τα ακόλουθα Σχήμα 3.6. Ποιοτικό παράδειγμα μεταβολής του συντελεστή τριβής (μ) συναρτήσει της απόστασης ολίσθησης (L).
3 η Εργαστηριακή Άσκηση
3 η Εργαστηριακή Άσκηση Μελέτη της Τριβής Εργαστήριο Τριβολογίας Απρίλιος 2012 Αθανάσιος Μουρλάς ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Τριβοσύστημα Το τριβοσύστημα αποτελείται από: Τα εν επαφή σώματα A και B, Το περιβάλλον
4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
4.1 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΦΘΟΡΑΣ 4.1. Φθορά επιφανειών Οι επιφανειακές ανωμαλίες στερεών σωμάτων που έρχονται σε επαφή «καταστρέφονται», υπό την επίδραση των δυνάμεων τριβής, με διάφορους
ΜΗΧΑΝΙΣΜΟΙ ΦΘΟΡΑΣ 1.Φθορά επιφανειών φθοράς 2. Μηχανισμοί φθοράς Φθορά πρόσφυσης (adhesive wear)
ΜΗΧΑΝΙΣΜΟΙ ΦΘΟΡΑΣ 1.Φθορά επιφανειών Οι επιφανειακές ανωμαλίες στερεών σωμάτων που έρχονται σε επαφή «καταστρέφονται», υπό την επίδραση των δυνάμεων τριβής, με διάφορους μηχανισμούς. Το είδος και το μέγεθος
7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΚΤΙΝΙΚΟ Ε ΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 7.1 Εδρανα Τα έδρανα αποτελούν φορείς στήριξης και οδήγσης κινούµενων µηχανολογικών µερών, όπως είναι οι άξονες, -οι οποίοι καταπονούνται µόνο σε κάµψη
Σε κάθε γόνατο υπάρχουν δυο μηνίσκοι ένας έσω μηνίσκος κ ένας έξω μηνίσκος, σχηματίζοντας κ οι δυο μαζί το ( 8 ) αν τους κοιτάξουμε απο πάνω.
Σε κάθε γόνατο υπάρχουν δυο μηνίσκοι ένας έσω μηνίσκος κ ένας έξω μηνίσκος, σχηματίζοντας κ οι δυο μαζί το ( 8 ) αν τους κοιτάξουμε απο πάνω. Καθένας από τους μηνίσκους βρίσκεται ανάμεσα σε έναν από τους
2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ
. η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ RTZ.. Επαφή στερεών σωμάτων Η επαφή εφαπτόμενων στερών σωμάτων γίνεται διαμέσου της εξωτερικής τους επιφάνειας. Η μακροσκοπικά μετρούμενη Επιφάνεια Επαφής καλείται Ονομαστική
7 η 8 η ΕργαστηριακήΆσκηση ΕΦΑΡΜΟΓΕΣ ΥΓΡΗΣ ΛΙΠΑΝΣΗΣ ΣΕ Ε ΡΑΝΑ
7 η 8 η ΕργαστηριακήΆσκηση ΕΦΑΡΜΟΓΕΣ ΥΓΡΗΣ ΛΙΠΑΝΣΗΣ ΣΕ Ε ΡΑΝΑ ΠΕΡΙ ΛΙΠΑΝΣΗΣ ΚΑΙ ΣΧΕΤΙΚΩΝ ΜΗΧΑΝΙΣΜΩΝ ΑΚΤΙΝΙΚΑ Ε ΡΑΝΑ ΟΛΙΣΘΗΣΗΣ ΩΣΤΙΚΑ Ε ΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Εργαστήριο Τριβολογίας Ιούνιος 2011 Αθανάσιος Μουρλάς
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ : ΕΠΑΦΗ HERTZ. Εργαστήριο Τριβολογίας Οκτώβριος Αθανάσιος Μουρλάς
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ : ΕΠΑΦΗ HERTZ Εργαστήριο Τριβολογίας Οκτώβριος 00 Αθανάσιος Μουρλάς Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ ΗΕΠΑΦΗHERTZ Στην Τριβολογία πολλά προβλήματα
Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
Κεφάλαιο 2: Μέτρηση των συντελεστών στατικής και κινητικής τριβής
Κεφάλαιο 2: Μέτρηση των συντελεστών στατικής και κινητικής τριβής Σύνοψη Προσδιορισμός των συντελεστών στατικής και δυναμικής τριβής με τη βοήθεια του κεκλιμένου επιπέδου. Προαπαιτούμενη γνώση Κεφάλαιο
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
Σελίδα1 ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Για να λύσουμε ένα πρόβλημα ισορροπίας εφαρμόζουμε τις συνθήκες ισορροπίας, αφού πρώτα σχεδιάσουμε τις δυνάμεις που ασκούνται στο σώμα
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που
Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.
ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό
ΔΙΕΛΑΣΗ. Το εργαλείο διέλασης περιλαμβάνει : το μεταλλικό θάλαμο, τη μήτρα, το έμβολο και το συμπληρωματικό εξοπλισμό (δακτυλίους συγκράτησης κλπ.).
ΔΙΕΛΑΣΗ Κατά τη διέλαση (extrusion) το τεμάχιο συμπιέζεται μέσω ενός εμβόλου μέσα σε μεταλλικό θάλαμο, στο άλλο άκρο του οποίου ευρίσκεται κατάλληλα διαμορφωμένη μήτρα, και αναγκάζεται να εξέλθει από το
Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και
8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
8.1 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΩΣΤΙΚΟ ΕΔΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 8.1. Εισαγωγή Το απλό επίπεδο ωστικό έδρανο ολίσθησης (Σχήμα 8.1) είναι ίσως η απλούστερη περίπτωση εφαρμογής της εξίσωσης Reynolds που περιγράφει τη
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
3.3. Δυναμική στερεού.
3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
Γεωργάτος Γεράσιμος, Γιάννης Δημήτρης, Σκιαδάς Γιώργος
Γεωργάτος Γεράσιμος, Γιάννης Δημήτρης, Σκιαδάς Γιώργος Κλασσικές απόψεις για την τριβή Παρόλο που η έννοια της δύναμης δεν είναι ξεκαθαρισμένη ο Leonardo da Vinci στα σημειωματάρια του διατυπώνει τους
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων )
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας) Δύο δίσκοι οριζόντιοι Δ 1 και Δ εκτελούν περιστροφική κίνηση γύρω από κατακόρυφο άξονα που περνά από το
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ
28 2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Οι γεννήτριες εναλλασσόµενου ρεύµατος είναι δύο ειδών Α) οι σύγχρονες γεννήτριες ή εναλλακτήρες και Β) οι ασύγχρονες γεννήτριες Οι σύγχρονες γεννήτριες παράγουν
A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.
Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.
3.5.61. Μια κινούμενη τροχαλία. 3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του οποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,1kg. Συγκρατούμε
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε
Ερωτήσεις. 2. Η ροπή αδράνειας μιας σφαίρας μάζας Μ και ακτίνας R ως προς άξονα που διέρχεται
- Μηχανική στερεού σώματος Ερωτήσεις 1. Στερεό στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως στο διπλανό διάγραμμα ω -. Να χαρακτηρίσετε τις παρακάτω προτάσεις
Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο
Προσδιορισμός Ροπής Αδράνειας με φωτοπύλες και ηλεκτρονικό χρονόμετρο Κορδάς Γιώργος Φυσικός MSc. ΕΚΦΕ Ρόδου Ιανουάριος 011 Εισαγωγή Η ροπή αδράνειας ενός σώματος στην περιστροφική κίνηση παίζει παρόμοιο
Θέμα Α(25 Μονάδες) Α1. (5 μονάδες) Α2. (5 μονάδες) Α3. (5 μονάδες) Α4. (5 μονάδες)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ ΣΕΠΤΕΜΒΡΙΟΥ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 018 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Θέμα
ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής
Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε
Physics by Chris Simopoulos
ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ - ΤΡΙΒΗ 1ος νόμος του Νεύτωνα ή νόμος της αδράνειας της ύλης. «Σε κάθε σώμα στο οποίο δεν ενεργούν δυνάμεις ή αν ενεργούν έχουν συνισταμένη μηδέν δεν μεταβάλλεται η κινητική του κατάσταση.
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 08 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 4 Απριλίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4
Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ
Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
mu R mu = = =. R Γενική περίπτωση ανακύκλωσης
Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 08 Δυναμική περιστροφικής κίνησης Ροπή Ροπή Αδρανείας ΦΥΣ102 1 Περιστροφική κίνηση
Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.
Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου
Διαγώνισμα: Μηχανική Στερεού Σώματος
Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
ΦΥΣΙΚΗ. α) έχουν κάθε χρονική στιγμή την ίδια οριζόντια συνιστώσα ταχύτητας, και την ίδια κατακόρυφη συνιστώσα ταχύτητας.
Β Λυκείου 14 / 04 / 2019 ΦΥΣΙΚΗ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις A1 A4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Η ορμή ενός σώματος :
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.
ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 2 ΦΥΓΟΚΕΝΤΡΟΣ ΔΥΝΑΜΗ Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία Διεξαγωγής: 05/12/11 Ημερομηνία Παράδοσης:
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝ) 3/3/019 ΤΖΓΚΡΚΗΣ ΓΙΝΝΗΣ ΘΕΜ A Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler)
ΜΑΡΤΙΟΣ 07 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 0.800sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΦΥΣΙΚΗ. Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 8: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται
Μηχανική Στερεού Σώματος Εξέταση - Σελίδα από 9 9//06. (0 Βαθμοί) Ενας συμπαγής κύλινδρος Δ βάρους βάρους w και ακτίνας βρίσκεται μεταξύ ενός κατακόρυ
Μηχανική Στερεού Σώματος Σχολική Περίοδος 05-06 Εξέταση 9//06 Χρόνος: 80 Λεπτά Ονοματεπώνυμο: Υπεύθυνος Καθηγητής: Αυτή η εξέταση περιέχει 9 σελίδες (συμπεριλαμβανόμενης της παρούσης) και 5 προβλήματα.
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση
ΜΗΧΑΝΙΚΗ. ΕΝΟΤΗΤΑ 1η. ΚΕ Φ ΑΛ ΑΙ Ο 3 :Η έννοια της δ ύναμ ης
Σκοπός 1 Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την δύναμη, μάζα και αδράνεια. Λέξεις κλειδιά Δύναμη, αδράνεια, μάζα
ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.
Απαντήσεις στο : Διαγώνισμα στο 4 ο κεφάλαιο 4.3.4-4.3.5-4.3.6-4.3.7 1. α) Ποιος είναι ο προορισμός του πείρου ; 90 β) Ποιο είναι το σχήμα που έχει ο πείρος και γιατί ; γ) Ποιο είναι το υλικό κατασκευής
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4
ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
υ υ Μονάδες 5 Α 2. Δύο σφαίρες (1) και (2) που έχουν ορμές, αντίστοιχα, συγκρούονται κεντρικά και ελαστικά. Κατά την κρούση ισχύει: p p και 1
4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 015-16 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΗΣ: ΔΙΟΛΑΤΖΗΣ ΙΩΑΝΝΗΣ ΜΥΤΙΛΗΝΗ 6/6/016 ΘΕΜΑ Α Στις ημιτελείς προτάσεις
Κεφάλαιο 2 ο Δυναμική σε μια διάσταση
1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την δύναμη, μάζα και αδράνεια. Λέξεις κλειδιά Δύναμη, αδράνεια, μάζα,
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Κρούσεις. Ομάδα Δ. Κρούσεις Μια κρούση και οι τριβές Κρούση σφαίρας με άλλη ακίνητη.
. Ομάδα Δ. 4.1.41. Μια κρούση και οι τριβές. Σε οριζόντιο επίπεδο ηρεμούν δυο σώματα Α και Β με μάζες m=1kg και Μ=3kg αντίστοιχα, τα οποία απέχουν απόσταση d=4,75m. Το Β είναι δεμένο στο άκρο ιδανικού
EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003
1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της
Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής
Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: Να υπολογιστεί ο συντελεστής κινητικής τριβής μ κ. Να υπολογιστεί ο συντελεστής στατικής τριβής
Θέµα 1 ο Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ ΡΕΥΣΤΑ - ΣΤΕΡΕΟ Λάµπρος Τσιουρής Άνω Πατησίων 3ώρες Θέµα 1 ο Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα
Θέματα Παγκύπριων Εξετάσεων
Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό