Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;"

Transcript

1 Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων; 3. i) Πότε μία συνάρτηση λέγεται γνησίως αύξουσα; ii) Πότε μία συνάρτηση λέγεται γνησίως φθίνουσα; 4. i) Πότε λέμε ότι μία συνάρτηση παρουσιάζει τοπικό μέγιστο; ii) Πότε λέμε ότι μία συνάρτηση παρουσιάζει τοπικό ελάχιστο; 5. Τι εννοούμε με τον όρο ακρότατα της συνάρτησης; Εφαρμογές - Ασκήσεις - Προβλήματα Επίπεδο 1 6. Να βρεθεί το πεδίο ορισμού των επόμενων συναρτήσεων: i) f() = iii) f() = ημ ii) f() = iv) f() = Να βρεθεί το πεδίο ορισμού των επόμενων συναρτήσεων: i) f() = 3 ii) g() = iii) h() = iv) K() = ln(2 2 ) Να βρεθεί το πεδίο ορισμού των επόμενων συναρτήσεων: 1 2 i) f() = ii) g() = ln( 2) + 5 iii) h() = ln(5 ) 9. Να βρείτε τα σημεία τομής των γραφικών παραστάσεων των επόμενων συναρτήσεων, με τους άξονες και y y. i) f() = ii) f() = iii) f() = 2 1 iv) f() = ln( 2) 1

2 2 ΚΕΦΑΛΑΙΟ 1. ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 10. Δίνεται η συνάρτηση f() = α 5 1 με α R, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(4, 7). i) Να βρεθεί το πεδίο ορισμού της f. ii) Να υπολογίσετε το α. iii) Να βρείτε τα σημεία τομής της γραφικής παραάστασης της συνάρτησης με τους άξονες και y y. 11. Για ποιές τιμές του η γραφική παράσταση της συνάρτησης f() = βρίσκεται κάτω από τον άξονα ; 12. Θεωρούμε τη συνάρτηση f() = i) Να βρεθεί το πεδίο ορισμού της f. ii) Να απλοποιήσετε τον τύπο της συνάρτησης. iii) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται ψηλότερα από την ευθεία με εξίσωση y = 5; 13. Θεωρούμε τη συνάρτηση f() = 2 1 και ένα τυχαίο σημείο A(, y) της γραφικής παράστασης της f. α) Να εκφράσετε τις συντεταγμένες του σημείου ως συνάρτηση του. β) Να εκφράσετε την απόσταση d() του από την αρχή των αξόνων ως συνάρτηση του και να βρείτε το πεδίο ορισμού της d(). γ) Να βρεθούν τα σημεία της καμπύλης των οποίων η απόσταση από την αρχή των αξόνων είναι ίση με Θέλουμε να κατασκευάσουμε ένα παράθυρο σε μία αποθήκη, που να έχει σχήμα ορθογώνιου με περίμετρο 20m. Αν η μία πλευρά του παραθύρου έχει μήκος m, τότε: α) Να εκφράσετε την άλλη πλευρά του ορθογώνιου παραθύρου ως συνάρτηση του. β) Να βρείτε τη συνάρτηση E() που μας δίνει το εμβαδόν του παραθύρου, καθώς και το πεδίο ορισμού της. γ) Να αποδείξετε ότι το εμβαδόν E() παίρνει μέγιστη τιμή την 25m 2. δ) Τι σχήμα πρέπει να έχει το παράθυρο προκειμένου να έχουμε τη μεγαλύτερη δυνατή φωτεινότητα στην αποθήκη, δηλαδή το εμβαδόν του παραθύρου να είναι μέγιστο; Δίνεται η συνάρτηση f() = 1 αν < α αν 1 i) Να βρείτε τα f(0), f( 2) και f(1). ii) Αν f(1) = f( 2) 2f(0) να βρείτε την τιμή του πραγματικού αριθμού α. 16. Δίνεται η συνάρτηση f() = και g() = 2 +. Να ορίσετε τις συναρτήσεις: i) f + g ii) f g iii) f g iv) f g Επίπεδο Δίνεται η συνάρτηση f() = 2 + α + β. Η γραφική παράσταση της συνάρτησης τέμνει τον άξονα 2 y y στο σημείο A(0, 1) και διέρχεται από το σημείο B(3, 2). i) Να βρεθεί το πεδίο ορισμού της f.

3 1.1. ΣΥΝΑΡΤΗΣΕΙΣ 3 ii) Να βρείτε τις τιμές των α και β. iii) Να απλοποιήσετε τον τύπο της συνάρτησης. iv) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης. 18. Έστω f() = α + β με α, β R. Αν η γραφική παράσταση της συνάρτησης διέρχεται από τα σημεία A(1, 7) και B( 2, 4) τότε: i) Να βρεθούν οι πραγματικοί αριθμοί α και β. ii) Να βρείτε τα σημεία τομής των γραφικής παράστασης της f με τους άξονες και y y. 19. Δίνεται η συνάρτηση f() = και g() = Να ορίσετε τις συναρτήσεις: i) f + g ii) f g iii) f g iv) f g

4 4 ΚΕΦΑΛΑΙΟ 1. ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.2 Όρια - Συνέχεια Κατανόηση εννοιών - Θεωρία 1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. (αʹ) Αν για τις συναρτήσεις f, g έχουμε ότι lim f() = l 1 και lim g() = l 2, όπου l 1, l 2 είναι 0 0 πραγματικοί αριθμοί, τότε lim (f()g()) = l 1 l 2 0 (βʹ) (γʹ) lim συν = συν 0. 0 lim εφ = σφ Πότε λέμε ότι μία συνάρτηση f είναι συνεχής στο πεδίο ορισμού της A; Εφαρμογές - Ασκήσεις - Προβλήματα Επίπεδο 1 3. Να υπολογιστούν τα επόμενα όρια: i) lim iii) lim Να υπολογιστούν τα επόμενα όρια: i) lim Να υπολογιστούν τα επόμενα όρια: 1 i) lim iii) lim iv) lim ii) lim iv) lim ii) lim ii) lim Έστω f() = αν < Να υπολογιστεί το όριο lim 2 αν 1 f() αν 2 7. Δίνεται η συνάρτηση f() = αν = 2. Να εξετάσετε αν η συνάρτηση είναι συνεχής στο σημείο 0 = Θεωρούμε τη συνάρτηση f() = 3 αν 3 7 αν = 2. Να εξετάσετε αν η συνάρτηση είναι συνεχής στο σημείο 0 = Θεωρούμε τη συνάρτηση f() = +5 αν 5, με α R. α αν = 5 Να βρεθεί ο α ώστε η συνάρτηση να είναι συνεχής στο σημείο 0 = Έστω η συνάρτηση f() = 2 4 αν 2 α 2, με α R. 6α + 14 αν = 2 Να βρεθεί ο α ώστε η συνάρτηση να είναι συνεχής στο σημείο 0 = 2.

5 1.2. ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Δίνεται η συνάρτηση f() = +3 αν < αν 3. Να εξετάσετε αν η συνάρτηση είναι συνεχής στο R. Επίπεδο 2 4α + 1 αν < Θεωρούμε τη συνάρτηση f() = ln + α 2, με α R. + 5 αν 1 Να βρεθεί ο α ώστε η συνάρτηση να είναι συνεχής στο R β α + 1 αν < Έστω η συνάρτηση f() = 4 αν = 2, με α, β R α + β αν 2 Να βρεθούν οι α, β ώστε η συνάρτηση να είναι συνεχής στο R.

6 6 ΚΕΦΑΛΑΙΟ 1. ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.3 Η έννοια της παραγώγου - Παράγωγος συνάρτησης Κατανόηση εννοιών - Θεωρία 1. Πότε λέμε ότι μία συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; 2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος. (αʹ) Η παράγωγος της f στο 0 εκφράζει το ρυθμό μεταβολής του y = f() ως προς, όταν = 0. (βʹ) Ο συντελεστής διεύθυνσης της εφαπτομένης της καμπύλης που είναι η γραφική παράσταση μιας συνάρτησης f στο σημείο ( 0, f( 0 )) είναι f ( 0 ). (γʹ) Η ταχύτητα ενός κινητού που κινείται ευθύγραμμα και η θέση του στον άξονα κίνησής του εκφράζεται από τη συνάρτηση = f(t), τη χρονική στιγμή t 0, είναι υ(t 0 ) = f (t 0 ). 3. Να εξηγήσετε ότι υπάρχουν συναρτήσεις που είναι συνεχείς οι οποίες δεν έχουν παράγωγο σε ένα σημείο του πεδίου ορισμού τους. 4. Τι ονομάζουμε πρώτη παράγωγο της f; 5. Έστω η συνάρτηση f() = c. Να αποδείξετε ότι f () = Έστω η συνάρτηση f() =. Να αποδείξετε ότι f () = Έστω η συνάρτηση f() = 2. Να αποδείξετε ότι f () = Έστω η συνάρτηση f() και η F () = cf(). Να αποδείξετε ότι F () = cf (). 9. Έστω η συναρτήσεις f() και g() και η F () = f() + g(). Να αποδείξετε ότι F () = f () + g (). 10. Να συμπληρώσετε τα κενά στον επόμενο πίνακα: Εφαρμογές - Ασκήσεις - Προβλήματα Επίπεδο 1 (c) =... (cf()) =... () =... (f() + g()) =... ( ρ ) =... (f()g()) =... ( ( ) f() ) =... =... g() (ημ) =... (f(g())) =... (συν) =... (e ) =... (ln ) = Να βρεθούν οι παράγωγοι των επόμενων συναρτήσεων: i) f() = α ii) f(t) = t 2 ημθ + θt + 1 iii) f() = α 8 5α (α + 1) α Να βρεθούν οι παράγωγοι των επόμενων συναρτήσεων: i) f() = + 5 ii) f() = 2 e iii) f() = 1 e iv) f() = e 1 e Να βρεθούν οι παράγωγοι των επόμενων συναρτήσεων: i) f() = 2 e 1 ii) f() = ln( ) iii) f() = ( 2 + 1) 3 iv) f() = ημe iv) f() = e συν

7 1.3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ Έστω f() = αημ βσυν, με α, β R. Να αποδείξετε ότι: f() + f () = Θεωρούμε τη συνάρτηση f() = συν + 1. i) Να βρεθεί το πεδίο ορισμού της συνάρτησης. ii) Να βρείτε την πρώτη παράγωγο της συνάρτησης. iii) Να υπολογίσετε την τιμή f (0). 16. Έστω η συνάρτηση f() = ln( 2 + 1). i) Να βρεθεί το πεδίο ορισμού της συνάρτησης. ii) Να βρείτε την πρώτη παράγωγο της συνάρτησης. iii) Να προσδιορίσετε την τιμή του πραγματικού αριθμού α, ώστε f (α) = Δίνεται η συνάρτηση f() = e 3 (ημ + συν, R. Να αποδείξετε ότι: f () + 6f () + 10f() = Η μία πλευρά ενός ορθογωνίου είναι m και η άλλη 2m μεγαλύτερη. Να υπολογίσετε το ρυθμό μεταβολής του εμβαδού του ορθογωνίου όταν = 5m. 19. Σε ένα καρτεσιανό σύστημα συντεταγμένων θεωρούμε τα σημεία A(, 0), με > 0 και B(0, +7). Να βρείτε: α) Τη συνάρτηση που δίνει την απόσταση των σημείων A και B, καθώς και τη συνάρτηση που δίνει το εμβαδόν του τριγώνου OAB. β) Το ρυθμό μεταβολής της απόστασης όταν = 5 και το ρυθμό μεταβολής του εμβαδού του τριγώνου όταν = 2, Η πλευρά α(t) σε cm ενός τετραγώνου μεταβάλλεται ως προς το χρόνο σύμφωνα με τη σχέση α(t) = 2t+1. Να βρεθεί ο ρυθμός μεταβολής του εμβαδού του τετραγώνου κατά τη χρονική στιγμή t = 4s. 21. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f() = e 1 στο σημείο της με τετμημένη 1. Επίπεδο Δίνεται η συνάρτηση f() = 2. Να βρείτε τη γωνία που σχηματίζει η εφαπτόμενη της γραφικής + 1 παράστασης της f στο σημείο της O(0, 0), με τον άξονα. 23. Θεωρούμε τη συνάρτηση f() = Να βρείτε το σημείο της γραφικής παράστασης της f στο οποίο η εφαπτόμενή της σχηματίζει με τον άξονα γωνία Έστω η συνάρτηση f() = Να βρείτε τα σημεία της γραφικής παράστασης της f στα οποία η εφαπτόμενη είναι παράλληλη με την ευθεία με εξίσωση y = Δίνεται η συνάρτηση f() = ln(+1) 2+3. Να βρείτε τις εφαπτόμενες της γραφικής παράστασης της f οι οποίες είναι παράλληλες με την ευθεία με εξίσωση + y + 1 = Έστω f() = Να βρείτε τις εφαπτόμενες της γραφικής παράστασης της f οι οποίες είναι κάθετες με την ευθεία με εξίσωση + 3y = 6.

8 8 ΚΕΦΑΛΑΙΟ 1. ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.4 Εφαρμογές των παραγώγων Κατανόηση εννοιών - Θεωρία 1. Να διατυπώσετε το θεώρημα από το οποίο συμπεραίνουμε το είδος μονοτονίας μιας συνάρτησης f, παραγωγίσιμη σε ένα διάστημα, από το πρόσημο της παραγώγου της. 2. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος. (αʹ) Αν για μια συνάρτηση f ισχύουν f ( 0 ) = 0 για 0 (α, β), f () > 0 στο (α, 0 ) και f () < 0 στο ( 0, β), τότε η f παρουσιάζει στο διάστημα (α, β) για = 0 μέγιστο. (βʹ) Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα και ισχύει f () < 0 για κάθε εσωτερικό σημείο του, τότε η f είναι γνησίως αύξουσα στο. Εφαρμογές - Ασκήσεις - Προβλήματα Επίπεδο 1 3. Να εξετάσετε ως προς τη μονοτονία τις επόμενες συναρτήσεις και να βρεθούν, αν υπάρχουν, τα ακρότατα: i) f() = ii) f() = Να εξετάσετε ως προς τη μονοτονία τις επόμενες συναρτήσεις και να βρεθούν, αν υπάρχουν, τα ακρότατα: i) f() = e ii) f() = i) f() = ii) f() = Να εξετάσετε ως προς τη μονοτονία τις επόμενες συναρτήσεις και να βρεθούν, αν υπάρχουν, τα ακρότατα: i) f() = 2 + συν ii) f() = ln iii) f() = e Επίπεδο Δίνεται η συνάρτηση f με f() = 2 και > 0. Από τυχαίο σημείο M(, y) της γραφικής + 1 παράστασης της f φέρνουμε παράλληλες ευθείες προς τους άξονες και y y, οι οποίες σχηματίζουν με τους ημιάξονες O, Oy ορθογώνιο παραλληλόγραμμο. Να βρεθούν οι συντεταγμένες του σημείου M, ώστε το εμβαδόν του ορθογωνίου παραλληλογράμμου να είναι μέγιστο. 8. Κάθε μέρα 840 επιβάτες χρησιμοποιούν το τραίνο προκειμένου να μεταβούν από μία πόλη σε μία άλλη, αν το εισιτήριο είναι 8 ευρώ. Έχει παρατηρηθεί ότι για κάθε μείωση του εισιτήριου κατά 20 λεπτά, έχει σαν αποτέλεσμα την αύξηση των επιβατών κατά 30 άτομα. Αν γίνουν διαδοχικές μειώσεις των 20 λεπτών, τότε: α) Να εκφράσετε, ως συνάρτηση του, την τιμή του εισιτήριου, το πλήθος των επιβατών και και τα έσοδα σε ευρώ για τη συγκεκριμένη διαδρομή. β) Να βρείτε το ώστε να μεγιστοποιηθούν τα έσοδα. γ) Πόσο θα είναι η τιμή του εισιτήριου και τα μέγιστα έσοδα, για την τιμή του που βρήκατε στο προηγούμενο ερώτημα;

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 010-011 4 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΚΕΦ1 1 Δίνεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση;. Tι ονομάζουμε πραγματική συνάρτηση πραγματικής μεταβλητής; 3. Πως ορίζονται οι πράξεις της πρόσθεσης,

Διαβάστε περισσότερα

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Πέμπτη 5 Ιανουαρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω η συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1 Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει

Διαβάστε περισσότερα

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x) . Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης

1.3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. 1. Ορισµός της παραγώγου συνάρτησης . ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Ορισµός της παραγώγου συνάρτησης Έστω µια συνάρτηση µε πεδίο ορισµού Α, και Β το σύνολο των Α στα οποία η είναι παραγωγίσιµη. Τότε ορίζεται νέα συνάρτηση µε την οποία κάθε

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ)

Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) ΘΕΜΑ ο Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) Α. Να αποδείξετε ότι αν μία συνάρτηση είναι παραγωγίσιμη σ ένα σημείο 0,τότε είναι και συνεχής στο σημείο αυτό Β. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ

Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής

Διαβάστε περισσότερα

= x + στο σηµείο της που

= x + στο σηµείο της που Ασκήσεις στην εφαπτοµένη καµπύλης 1. Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f ( ) = + στο σηµείο της που έχει τετµηµένη.. Σε ποια σηµεία της γραφικής παράστασης της

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version )

ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version ) ΘΕΩΡΙΑ ΑΝΑΛΥΣΗΣ ΓΕΝΙΚΕΣ (ημιτελές version 9-4-26) ΠΡΟΣΟΧΗ! Επισημαίνω ότι πιθανόν να υπάρχουν ατέλειες, ελλείψεις, επιπλέον περιττά στοιχεία ή και λάθη στις λύσεις.ετσι ο αναγνώστης πρέπει να χρησιμοποιεί

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη

Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη Μαθηματικά Προσανατολισμού Γ Λυκείου Τελική Επανάληψη e d g h g h Εκφωνήσεις 65, 6 Δίνονται η συνάρτηση και η σχέση g, 8 α) Να βρεθούν οι τιμές του πραγματικού αριθμού λ ώστε η συνάρτηση να έχει πεδίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Usus est magister optimus (η χρήση είναι ο καλύτερο δάσκαλο ) y M(,f()) C f A( 0,f( 0 )) M ε O 0 (α) ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ

Διαβάστε περισσότερα

1ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου

1ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου Θέμα Α ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου Α Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Tι ονομάζουμε πραγματική συνάρτηση πραγματικής μεταβλητής; 3. Πως ορίζονται οι πράξεις της πρόσθεσης,

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ( - h). Αν η συνάρτηση είναι συνεχής στο 0 = και lim = h 0 h να αποδείξετε ότι η είναι παραγωγίσιμη στο 0 = και να βρείτε την (). () - + 6. Αν η συνάρτηση είναι συνεχής στο 0 =

Διαβάστε περισσότερα

3o Επαναληπτικό Διαγώνισμα 2016

3o Επαναληπτικό Διαγώνισμα 2016 3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί. Μια συνάρτηση f θα λέμε ότι παρουσιάζει στο o Α τοπικό μέγιστο, όταν υπάρχει δ > 0, τέτοιο ώστε f () f( o ) για κάθε A ( o δ, o δ ), όπου Α το πεδίο ορισμού της f. Το o λέγεται

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση

1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) = 0, 8 και P (B) =0, 4 να αποδείξετε ότι: Απαντηση ¾½ Ø Å Ñ Ø Ò È Ø Ì Ü Ã Ø ÆºËº Å ÙÖÓ ÒÒ ¾¼ Å ÓÙ ¾¼¼ 1. Αν για δύο ενδεχόμενα A και B ενός δειγματικού χώρου Ω ισχύουν P (A) 0, 8 και P (B) 0, 4 να αποδείξετε ότι: (αʹ) 0, P (A B) 0, 4 (βʹ) Τα A και B δεν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :

5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων : ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας

Διαβάστε περισσότερα

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ . ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των

Διαβάστε περισσότερα

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι

Διαβάστε περισσότερα

Ασκήσεις στις συναρτήσεις, όρια και παράγωγο

Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Σπύρος Γλένης, Μαθηματικός Εάν α) 0,, β) να βρείτε τα παρακάτω: t,,, Να βρείτε το ( h) ( ) για τις παρακάτω συναρτήσεις: h i) ii) iii), ρητός 0, άρρητος Δίνονται

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον

Διαβάστε περισσότερα

2o Επαναληπτικό Διαγώνισμα 2016

2o Επαναληπτικό Διαγώνισμα 2016 wwwaskisopolisgr o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: ώρες ΘΕΜΑ A A Να αποδείξετε ότι αν δύο συναρτήσεις f,g είναι παραγωγίσιμες στο του πεδίου ορισμού τους, τότε και η συνάρτηση f g είναι παραγωγίσιμη

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ Ενότητα 4 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ Ασκήσεις για λύση ). Να βρείτε την παράγωγο της συνάρτησης f στο 0, όταν: i) f ( ), 0 ii) f()=, 0 iii f ). Να βρεθεί

Διαβάστε περισσότερα

x 1 δίνει υπόλοιπο 24

x 1 δίνει υπόλοιπο 24 ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη

Θέματα Πανελλαδικών στις Παραγώγους. Εφαπτομένη Θέματα Πανελλαδικών 000-04 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου Να αποδείξετε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΔΙΑΓΩΝΙΣΜΑ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α A1 Έστω μια συνάρτηση f ορισμένη

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ. Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου Επαναληπτικές ασκήσεις

Μαθηματικά κατεύθυνσης Γ Λυκείου Επαναληπτικές ασκήσεις Μαθηματικά κατεύθυνσης Γ Λυκείου + Επαναληπτικές ασκήσεις ς Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Βαγγέλης Ραμαντάνης Ευάγγελος Τόλης wwwaskisopolisgr η έκδοση Μάρτιος 6 wwwaskisopolisgr Παράγωγοι Εκφωνήσεις

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

ρυθμός μεταβολής = παράγωγος

ρυθμός μεταβολής = παράγωγος ΠΡΟΒΛΗΜΑΤΑ Ρυθμός μεταβολής ρυθμός μεταβολής = παράγωγος Πιο σωστό είναι να λέμε «ρυθμός μεταβολής ενός μεγέθους, ως προς ένα άλλο», αλλά... :) Προσέχουμε γιατί οι συναρτήσεις, στα περισσότερα προβλήματα,

Διαβάστε περισσότερα

ii) f(x)= iv) f(x)= ii) f(x)= x iv) f(x)= 2x x ii) f(x)= iv) f(x)= x) f(x)= 2ln x ln x να έχει πεδίο ορισμού το R.

ii) f(x)= iv) f(x)= ii) f(x)= x iv) f(x)= 2x x ii) f(x)= iv) f(x)= x) f(x)= 2ln x ln x να έχει πεδίο ορισμού το R. 1 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρεθεί το πεδίο ορισμού των συναρτήσεων: 7 5 8 1 i) f()= ii) f()= 3 5 4 3 4 iii) f()= iv) f()= 3 3 8 7. Να βρεθεί το πεδίο ορισμού των συναρτήσεων: i) f()= 5 6 ii) f()= iii) f()= 1

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Το θεώρηµα µέσης τιµής του διαφορικού λογισµού για κάθε α, β R και τη συνάρτηση f () = e εξασφαλίζει την ύπαρξη ενός αριθµού κ R, ώστε να ισχύει Α. e α-β = e κ (α - β) Β.

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1 Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.

Διαβάστε περισσότερα

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων . Ασκήσεις σχολικού βιβλίου σελίδας 8 4 A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων 7 i ( 4 6 ii ( ln 4 iii ( 4 iv ( συν i Για κάθε R είναι ( 7 6 4 6 ii Για κάθε (, είναι ( 6 iii Για κάθε R είναι

Διαβάστε περισσότερα

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -

1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι - Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το

Διαβάστε περισσότερα

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos. Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε

Διαβάστε περισσότερα

Απαντήσεις στα Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία:

Απαντήσεις στα Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: Απαντήσεις στα Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 9-04-07 ΘΕΜΑ Α. Σχολικό βιβλίο σελ.. Σχολικό βιβλίο σελ.. Σχολικό βιβλίο σελ. 4. i) Λ ii) Λ iii) Σ iv) Λ v) Σ ΘΕΜΑ Β B. i) Επειδή //. Άρα

Διαβάστε περισσότερα

lim lim ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Tι ορίζουμε ως εφαπτομένης της C f στο σημείο της A x, f ( )); Έστω f μια συνάρτηση και A x, f ( )) ένα σημείο της C

lim lim ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Tι ορίζουμε ως εφαπτομένης της C f στο σημείο της A x, f ( )); Έστω f μια συνάρτηση και A x, f ( )) ένα σημείο της C ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Tι ορίζουμε ως εφαπτομένης της C στο σημείο της A, ( ; ( Έστω μια συνάρτηση και A, ( ένα σημείο της C. Αν υπάρχει το ( ( ( lim και είναι ένας πραγματικός αριθμός λ, τότε ορίζουμε ως

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της?

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της? ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ 4-5 Πότε μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της? Απάντηση: Mια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της όταν

Διαβάστε περισσότερα