ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3
|
|
- Μενέλαος Κρειος Μπλέτσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΦΥΛ ΣΥΝΑΡΤΗΣΕΙΣ. Να βρεθούν τα Πεδία Ορισμων συναρτήσεων: i) f () 4 f () i f () 4 f () 6 5 v) f () 9 vi) f () v f () log() vi f () 4, i) f () 8, Να βρεθούν επίσης οι τιμές : n f ( 4),( f ),( f0),(),(0),( f ), f f, f n 5 n ) f () log i) f () ln( ln). Να βρεθεί το Σύνολο Τιμών των συναρτήσεων: i) f () ln( ) f () με () 4 i f :(, ) με f () f :[,) f. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () 75 t i) Σε ποιο ύψος θα βρίσκεται η μπάλα μετά από sec. Ποιο είναι το ύψος του πύργου; i Πότε η μπάλα θα φτάσει στο έδαφος;
2 4. Κάτω από ορισμένες εργαστηριακές συνθήκες ο αριθμός των βακτηριδίων της χολέρας διπλασιάζεται κάθε 0 min. Αν μια καλλιέργεια περιέχει αρχικά τέτοιο βακτηρίδιο να βρείτε : i) Τη συνάρτηση που δίνει τον αριθμό των βακτηριδίων μετά από t ώρες Τον αριθμό των βακτηριδίων μετά από ώρες i Μετά από πόσες ώρες θα υπάρχουν 8 βακτηρίδια 5. Κατασκευάζουμε κουτί σχήματος ορθογωνίου παραλληλεπίπεδου με τετράγωνη βάση. Αν το ύψος είναι τριπλάσιο από την πλευρά της βάσης : i) Να εκφράσετε το εμβαδόν Ε(χ) και τον όγκο V(χ) του κουτιού ως συνάρτηση του χ, όπου χ η πλευρά της βάσης. Να βρείτε τις τιμές Ε(),V(),Ε(4),V(4) i Να βρείτε την πλευρά της βάσης και το ύψος του κουτιού. Αν το εμβαδόν του είναι 50 cm. 6. Να βρεθούν τα σημεία τομής της γραφικής παράστασης της f με τους άξονες i) f f () i f () () f () v) f () vi) f () ln( ) v f () [0, ] vi f () e e 7. Να βρείτε για ποιες τιμές του χ η γραφική παράσταση της f βρίσκεται πάνω από τον άξονα χ χ i) i f () f () 5 4 f () e e f () e
3 8. Να βρείτε για ποιες τιμές του χ η γραφική παράσταση της f βρίσκεται κάτω από τον άξονα χ χ i) f () ln f ()()( )( 4 ) 5 i f () 4 f () ln( ) 9. Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων: i) f () 4() g i f () 5() 0 6g f ()() g ( ) f () 8 7() 4 g 0. Να γράψετε χωρίς το σύμβολο της απόλυτης τιμής τον τύπο για κάθε μια από τις συναρτήσεις : i) f () f () i f () f (). Να εξετάσετε αν οι συναρτήσεις είναι ίσες. Αν όχι να βρείτε το ευρύτερο υποσύνολο του στο οποίο οι συναρτήσεις είναι ίσες. i. ii. iii. f () και g() f () ln f () και g() ln 4 και g() iv. f () ln και g() ln( ) ln() f g. Να ορισθούν οι συναρτήσεις f g, f g, fg,, αν: g f i) f () () g f () () g
4 6 i f ()() g 9. Να βρεθεί η συνάρτηση f g και να γίνει η γραφική παράσταση της f g, 0, 0 f () g(), 0, 0 αν 4. Να βρεθεί η f g, να γίνει η γραφική της παράσταση και να βρεθεί το Σύνολο Τιμών της αν,, f () g(),, 5. Να βρεθεί η f g Τιμών της αν, να γίνει η γραφική της παράσταση και να βρεθεί το Σύνολο, f () 5,, g(), 0 4, 5 6. Να βρεθούν οι f g, g f αν: i) f () () g f () ln() g i f () () g f () () g v) f () () g vi) v f () () g, 0, 4 f ()() g 4, 6 5, Να γράψετε την f f i) f () f () ln αν 8. Να ορισθεί η h g f αν f (), g(), h ()
5 9. Να εκφράσετε την f ως σύνθεση δυο ή περισσότερων συναρτήσεων i) i f ()( ) f () f () ln( e ) f () {θεωρήστε γνωστό το Π.Ο.} e 5 και () 0. Για ποια τιμή του α ισχύει f g g f αν f () g a. Αν f () a και g(), να βρείτε τη συνθήκη μεταξύ των α και β ώστε να είναι f g g f.. Αν μια συνάρτηση f έχει Π.Ο. το [-4,] να βρεθεί το Π.Ο. της g()(5) f. Αν μια συνάρτηση f έχει Π.Ο. το [-,7] να βρείτε το Π.Ο. της g()( ) f 4. Έστω h :, f :, g : με h()()() f g και f, g γνησίως αύξουσες συναρτήσεις. Να αποδείξετε ότι h h f f g g. 5. Να μελετήσετε ως προς τη μονοτονία τις συναρτήσεις i) f () 5 f () i f () ln( ) f () 5, v) 6. Να δείξετε ότι : f () e.. [0,) i) Αν μια συνάρτηση f είναι γνησίως φθίνουσα σε ένα διάστημα Δ τότε η - f είναι γνησίως αύξουσα Αν δυο συναρτήσεις f, g είναι γνησίως φθίνουσες τότε και η f g είναι γνησίως φθίνουσα σε κάποιο διάστημα 7. Να βρεθεί η μέγιστη τιμή της f () 0 8. Να βρεθεί η ελάχιστη τιμή της f () 4 9. Να αποδείξετε ότι η f () είναι -
6 0. Nα αποδείξετε τι η f () ΔΕΝ είναι -. Να αποδείξετε ότι κάθε γνησίως μονότονη συνάρτηση είναι -.Ισχύει το αντίθετο ;. Δίνεται η f () i) Να αποδείξετε ότι η f είναι - Να βρείτε την f i Με την βοήθεια της γραφικής παράστασης της γραφική παράσταση της f f να κάνετε την. Δίνονται f () e,()( g )( ) και h() ln(). Να βρείτε ποιες από αυτές είναι - και σε κάθε περίπτωση ποια είναι η αντίστροφή της. 4. Έστω η f () i) Να δείξετε ότι η f αντιστρέφεται i 5. Να δείξετε ότι η 6. Έστω f : Να βρείτε την f Να λύσετε την εξίσωση f () 9 f ( 6)( 5) f ΔΕΝ αντιστρέφεται με την ιδιότητα f f ()() f 5, i) Να δείξετε ότι η f είναι - 7. Να δείξετε ότι η Να λύσετε την εξίσωση 9 f ( )() f f () είναι - και να λύσετε την εξίσωση e ( 9) ( ). e e 8. Να δείξετε ότι η f () e e είναι - και να βρείτε το Σ.Τ. της. 9. Έστω συνάρτηση f : τέτοια ώστε : f f () Α. i) Να δείξετε ότι η f είναι - Β. f ()() f Να δείξετε ότι
7 i) Να λυθεί στο η εξίσωση f () Να δείξετε ότι ( )()(0) f f f i Αν f (8) 64 να βρείτε το f () 40. Δίνεται f : για την οποία ισχύει : Να βρείτε την συνάρτηση f. f ( ) () f. 4. Έστω f : για την οποία ισχύει f ( )() f 0. Να αποδείξετε ότι η γραφική παράσταση της f τέμνει τον άξονα χ χ σε τουλάχιστον δυο σημεία. 4. Αν f g (), τύπο της f και g(). Να βρείτε τον f g () 4. Αν και f () e να βρείτε τον τύπο της g 44. Αν f f () 4 να βρείτε την τιμή f () f f () να βρείτε την τιμή f Έστω μια συνάρτηση f : τέτοια ώστε : f f (). 45. Αν Να δείξετε ότι : i) f ( ) () f f () 47. Μια συνάρτηση f : 0, έχει την ιδιότητα : f ln() f 0 e i) Να προσδιοριστεί ο τύπος της f Να γίνει η γραφική παράσταση της f 48. Να βρεθούν όλες οι συναρτήσεις f : με την ιδιότητα : f ()()()() f y f f y 49. Δίνεται η συνάρτηση f : f ()() y f y y με την ιδιότητα : () για κάθε, i) Να βρεθεί το f (0) Να αποδειχτεί ότι y f (),
8 i Να αποδείξετε ότι η f είναι περιττή Να αποδείξετε ότι f ()() f y v) Να βρεθούν όλες οι συναρτήσεις που ικανοποιούν τη σχέση () 50. Έστω f : μια μη σταθερή συνάρτηση με τις ιδιότητες : f ()()() y f f y και f ()()() y f f y y για κάθε, y. Να αποδειχτεί ότι : i) f (0) 0,() f,( ) f Η συνάρτηση είναι άρτια i Ο τύπος της συνάρτησης είναι f () 5. Δίνεται η συνάρτηση f () e, i) Να αποδειχτεί ότι η f είναι γνησίως μονότονη i Να εξεταστεί αν ορίζεται η Να λυθεί η εξίσωση Να λυθεί η ανίσωση 5. Να αποδείξετε ότι μια συνάρτηση f : f f () f () με την ιδιότητα f ()()(0) f f για κάθε ΔΕΝ είναι «-» 5. Δίνεται η συνάρτηση * f : η οποία είναι «-» και για κάθε 0 ικανοποιεί τη σχέση : f f ()() f i) Να αποδειχτεί ότι f f () Να βρεθεί ο τύπος της f 54. Δίνεται η συνάρτηση f : * με την ιδιότητα : ()() f f y f y κάθε, y 0 Αν η εξίσωση f () 0 έχει μοναδική ρίζα, τότε : για i) Να αποδειχτεί ότι ορίζεται η Να λυθεί η εξίσωση f ()( f )( )( f ) f i Αν επιπλέον είναι f () 0 για κάθε, να αποδειχτεί ότι η f είναι γνησίως αύξουσα στο 0, f
9
<Πεδία ορισμού ισότητα πράξεις σύνθεση>
Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε
Διαβάστε περισσότεραΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ
ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (1o Γ Λυκείου) να ανήκουν στη γραφική παράσταση της συνάρτησης f( x)
ΑΣΚΗΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ (o Γ Λυκείου).Να βρεθούν οι τιμές των α, β R ώστε: Α) τα σημεία (, ),(, ) να ανήκουν στη γραφική παράσταση της συνάρτησης α +β. Β)τα σημεία ( 0, ),( e, ) να ανήκουν στην γραφική παράσταση
Διαβάστε περισσότεραΟι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-09 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το
Διαβάστε περισσότερα1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = 4 6 6 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) v) 5 f() log vi) f() = 4 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότερα1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R
ΠΕΡΙΣΤΕΡΙΟΥ Α. ΠΕΔΙΟ ΟΡΙΣΜΟΥ. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους 4 ι) () = 6 + 6 iv) () = log ( log4(- )) v) () = ii) () = iii) () = log ( + ) 5 log 4 vii) () = 5 + 4 viii) ()
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότεραΑσκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και
Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση
Διαβάστε περισσότεραΝα βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x
. Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)
Διαβάστε περισσότεραx 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότεραΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή
Διαβάστε περισσότεραΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε, Δ, όπου Δ διάστημα του πεδίου ορισμού
Διαβάστε περισσότεραII. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
Διαβάστε περισσότεραΣυναρτήσεις. Ισότητα - Πράξεις Συναρτήσεων Σύνθεση συναρτήσεων Αντίστροφη συνάρτηση. Φιλεκπαιδευτική Εταιρεία Αρσάκεια - Τοσίτσεια Σχολεία
Φιλεκπαιδευτική Εταιρεία Αρσάκεια - Τοσίτσεια Σχολεία Maθηματικά Γ Λυκείου Συναρτήσεις Ισότητα - Πράξεις Συναρτήσεων Σύνθεση συναρτήσεων Αντίστροφη συνάρτηση.. Α.Αλβέρτος, Δ.Βαμπούλης, Χ.Βραχνός, Φ.Γκάγκαρη,
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότεραα) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( )
Συναρτήςεισ Όριο Συνέχεια Πεδίο οριςμού ςυνάρτηςησ 1) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 2) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 3) Να βρείτε τα πεδία οριςμού των
Διαβάστε περισσότεραΑ ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Διαβάστε περισσότεραΡητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότερα1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότεραΜαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 2 ωρών στις Συναρτήσεις
ΘΕΜΑ Α Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας ωρών στις Συναρτήσεις 0 9-05 Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ).. Αν η συνάρτηση f είναι -, είναι και γνησίως
Διαβάστε περισσότερα( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.
Κεφάλαιο - Συναρτήσεις I Πεδίο ορισµού συνάρτησης Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ίνονται οι συναρτήσεις: f( ) = +, (ii) f( ) = Να βρεθούν τα f( 0 ), f( ), f( ), f( α ), f( α+ β), f( α 5) ( ) ( ) f + h f, h Να
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιrtyuiopasdfghjklzερυυξnmηq σwωψrβνtyuςiopasdρfghjklzcvbn mqwrtyuiopasdfghjklzcvbnφγιmλι ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ qπςπζαwωτrtνyuτioρνμpκaλsdfghςj ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnαmqwrtyuiopasdfghjklz
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β, 8B, 9 Έστω Α ένα υποσύνολο του Ονομάζουμε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Ολοκληρώματα Κώστας Γλυκός 9 ΑΣΚΗΣΕΙΣ Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7.. 8 8. 8 8 Kglykos.gr / / 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : -6.78 κινητό : 697-.88.88 Επιλεγμένες ασκήσεις από βιβλία Σε
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει
Διαβάστε περισσότεραΜονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση
4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,
Διαβάστε περισσότερα2 ο Διαγώνισμα Ύλη: Συναρτήσεις
ο Διαγώνισμα 08-9 Ύλη: Συναρτήσεις Θέμα Α Α. Θεωρήστε τον παρακάτω ισχυρισμό: «Αν μια συνάρτηση : είναι - τότε είναι και γνησίως μονότονη.» α) Να χαρακτηρίσετε τον ισχυρισμό γράφοντας στο τετράδιό σας
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Διαβάστε περισσότεραΣυναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)
9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε
Διαβάστε περισσότερα- 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
- 11 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ) 1 Να βρεθεί η σχετική θέση των γραφικών παραστάσεων των συναρτήσεων f και g γα τις οποίες ισχύει: f()+1=g()+e (Η C f κάτω
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε
Διαβάστε περισσότεραln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει
Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο
Διαβάστε περισσότερα1. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων : 2. Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων:
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Πεδίο ορισμού Να βρείτε το πεδίο ορισμού των παρακάτω συναρτήσεων : i) ( ) e ii) ( ) iii) iv) v) () vii) () e ln viii) () ) συν () ημ i) 4 4 ( ) ( ) ( ) 5 vi) () i) () 7 4 Να
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΦΥΛ 14 ΘΕΩΡΗΜΑ ROLLE Θ.Μ.Τ. ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ a, 1 0 1. Δίνεται η συνάρτηση f (), 0 1 Να βρείτε τα α,β,γ έτσι ώστε για την συνάρτηση να ισχύουν οι προϋπόθεσης του θεωρήματος Rolle στο [-1,1]. 4. Δίνεται
Διαβάστε περισσότεραΕισαγωγή στην ανάλυση
Εισαγωγή στην ανάλυση Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ. Έστω Α ένα υποσύνολο του και Α. Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση Πραγματική συνάρτηση με πεδίο ορισμού το Α,
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178
Διαβάστε περισσότεραΙ. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)
Ι. Πραγματικές ΥΝΑΡΤΗΕΙ πραγματικής μεταβλητής (έως και ΑΝΤΙΤΡΟΦΗ). Η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα.. Δίνεται η συνάρτηση = f (). Οι τετμημένες των σημείων τομής της C
Διαβάστε περισσότερα5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. x, τότε ισχύει f(4) f(2). x τότε ισχύει. αν 1.
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 5. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά
Διαβάστε περισσότεραΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)
ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές
Διαβάστε περισσότεραΣ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ
Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις
Διαβάστε περισσότερα40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)
Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)
Διαβάστε περισσότεραΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH
ΣΥΝΘΕΤΗ & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣH Οδηγίες Τι να προσέχουμε 1. Προσέχουμε πάντα τα χ για τα οποία ορίζεται μία συνάρτηση ή μία συναρτησιακή σχέση. Αν δεν μας δίνονται πρέπει να τα βρίσκουμε. Είναι το Πεδίο
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο
Διαβάστε περισσότερα1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1
Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3
Διαβάστε περισσότεραΑσκήσεις στις παράγουσες
Παράγουσες βασικών συναρτήσεων Ασκήσεις στις παράγουσες Να βρείτε τις παράγουσες της συνάρτησης f()= και μετά να βρείτε εκείνη από τις παράγουσες που η γραφική της παράσταση διέρχεται από το σημείο Α(,)
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.
Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Γ Λυκείου
Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 3 598 Θε ματα ΟΕΦΕ - 5 Επιμέλεια Κων/νος Παπασταματίου Σελίδα
Διαβάστε περισσότεραΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ
Ενότητα 19 ΣΥΝΕΠΕΙΕΣ Θ.Μ.Τ. ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΕΥΡΕΣΗ ΣΥΝΑΡΤΗΣΗΣ 1). Να βρεθεί η συνάρτηση f όταν: i) A, f ()=3 5 f(0)=1, ii) A=, f ()=συν-ημ f(π)=, Ασκήσεις για λύση - iii) A=, f ()=4e 6 f '(0)=f(0)=1,
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής. 1. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το
Ερωτήσεις πολλαπλής επιλογής. * Από τα παρακάτω διαγράµµατα, γραφική παράσταση συνάρτησης είναι το διάγραµµα Α. B. Γ.. Ε. 7 . * Από τα παρακάτω διαγράµµατα δεν είναι γραφική παράσταση συνάρτησης το διάγραµµα
Διαβάστε περισσότερα7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως
Διαβάστε περισσότεραΠεριορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων
στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα
Διαβάστε περισσότερα(2 x) ( x 5) 2(2x 11) 1 x 5
ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 Ο ΑΝΑΛΥΣΗΣ 1. ίνεται η συνάρτηση ƒ µε τύπο, + 5 6 < + + 7 5 f( ) = < < 5 ( ) ( 5) 006 ( 11) 1 5 Υπολογίστε τα παρακάτω όρια της συνάρτησης, Α) Β) f ( ) f ( ) 1 Γ) f ( ) + και f ( )
Διαβάστε περισσότερα( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ
Διαβάστε περισσότεραΗ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο
Διαβάστε περισσότερατότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΡΙΑ ΚΑΙ ΣΤΗ ΣΥΝΕΧΕΙΑ ΘΕΜΑ o Α Να αποδείξετε ότι, αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β] και f(α)f(β), τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου
Σύλλογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Μαθηµατικά : Τάξη: Γ ράµα Απριλίου Θέµα ο ίνεται η συνάρτηση :, δύο φορές παραγωγίσιµη για την οποία ισχύει: ) )
Διαβάστε περισσότεραμε f f κ)κάθε συνάρτηση ορισμένη σε κλειστό διάστημα έχει μέγιστη και ελάχιστη τιμή στο διάστημα αυτό. λ)αν μια συνάρτηση f είναι συνεχής στο,
Μαθηματικά κατεύθυνσης Γ Λυκείου Διαγώνισμα διάρκειας 3 ωρών στις Συναρτήσεις και τα Όρια 9-5 Θέμα Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότερα2 (1) 1 0 ln( (2)) 3 (2) 3 0. e f και f f. f( g( x)) 3x 4, για κάθε x. συνx 5. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ου ΚΕΦΑΛΑΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ου ΚΕΦΑΛΑΙΟΥ. Δίνονται οι συναρτήσεις f, g με πεδίο ορισμού το R, για τις οποίες ισχύει η σχέση: f( g( )) 4, για κάθε. a. Να δείξετε ότι η συνάρτηση g είναι αντιστρέψιμη. β. Να δείξετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότερα( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α
.5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:
Διαβάστε περισσότεραΕπαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι
Διαβάστε περισσότεραΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ
ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα
Διαβάστε περισσότεραf ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει
Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,
Διαβάστε περισσότερα0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x
wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Θέμα Α ΑΈστω μια συνάρτηση
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α
Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6
Διαβάστε περισσότεραΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Κεφάλαιο 4ο: Ερωτήσεις πολλαπλής επιλογής. 1. * Το πεδίο ορισµού της συνάρτησης µε τύπο f (x) = 2 (Σχ.1) είναι. Γ το διάστηµα ( 0,
Κεφάλαιο 4ο: ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις πολλαπλής επιλογής 1. * Το πεδίο ορισµού της συνάρτησης µε τύπο f () = 2 (Σχ.1) είναι Α. το διάστηµα [ 0, Β. το διάστηµα Γ. το σύνολο R ( 0,. το σύνολο R - {1}
Διαβάστε περισσότερα5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για
5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ 1-1 ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Να
Διαβάστε περισσότερα20 επαναληπτικά θέματα
επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος 3 σχολικό έτος 4-5) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Λιτζερίνος Χρήστος Μπούζας
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
Διαβάστε περισσότεραΚεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
Διαβάστε περισσότερα4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι
Γ Λυκείου - Θετική Τεχνολογική Κατεύθυνση ΣΥΝΑΡΤΗΣΕΙΣ 4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ 4. Έστω η συνάρτηση () l n A) Βρείτε το εδίο ορισµού της B) Λύστε την εξίσωση + Γ) Λύστε την ανίσωση < ) Να δείξετε ότι + ( ) συν
Διαβάστε περισσότερα4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0
1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:
Διαβάστε περισσότεραx R, να δείξετε ότι: i)
ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι
Διαβάστε περισσότεραΕπαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης
6 Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης ΘΕΜΑ Έστω η συνεχής συνάρτηση f : (, ) R τέτοια ώστε για κάθε να ισχύει: t f ( ) dt. f () t te ( ) α) Να αποδείξετε ότι για κάθε ισχύει: β) Να αποδείξετε
Διαβάστε περισσότεραΕρωτήσεις κατανόησης σελίδας Κεφ. 1
Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.
Διαβάστε περισσότερα. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:
Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω
Διαβάστε περισσότεραh ln 1 γ) Αν η συνάρτηση f είναι συνεχής στο Δ, τότε είναι και παραγωγίσιμη στο Δ.
ΘΕΜΑ A Α1. α) Να δώσετε τον ορισμό πότε μια συνάρτηση f είναι συνεχής στο (α, β) και πότε στο [α, β]. Σχεδιάστε μια συνάρτηση που είναι συνεχής στο =1 αλλά όχι παραγωγίσιμη β) Να διατυπώσετε τον ορισμό
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια: Παπαδόπουλος Παναγιώτης 1 Θεωρούμε τις συναρτήσεις f, g με f() = 3e + 10 + 1 και g() = 015 + 015 196 α) Να προσδιορίσετε το είδος μονοτονίας των f, g β) Να βρείτε
Διαβάστε περισσότερα1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα
Θέμα Α Α1. Θεωρήστε τον παρακάτω ισχυρισμό: 1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα 018-19 «Για κάθε ζεύγος πραγματικών συναρτήσεων,g :, 0 ή g 0» ισχύει ότι g 0 αν και μόνο αν α) Να χαρακτηρίσετε
Διαβάστε περισσότεραΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.
ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Η γραφική παράσταση της συνάρτησης f (),. α) Να βρείτε την τιμή του λ R 5 β) Να βρείτε τις τιμές f και f γ) Να σχεδιάσετε τη γραφική παράσταση της f διέρχεται
Διαβάστε περισσότερα