Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
|
|
- Ολυμπία Παπαδάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων
2 Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια
3 Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση των βέλτιστων παραμέτρων (ή αποφάσεων) που μεγιστοποιούν/ελαχιστοποιούν το/τα μέτρα επίδοσης (αντικειμενική συνάρτηση) Εφαρμογές? Πολλές! Μέθοδοι? Πολλές! Όπως: Πολλαπλασιαστές Lagrange Hill climbing Εξονυχιστική απαρίθμηση (exhaustive search) Τυχαία αναζήτηση (random search) Δυναμικός προγραμματισμός Μη γραμμικές τεχνικές (π.χ., εξελικτικοί αλγόριθμοι)
4 Δυναμικός Προγραμματισμός Τα προβλήματα που είδαμε μέχρι τώρα, υπολόγιζαν μια συνάρτηση «καθαρού κέρδους» για κάθε χρήστη. Η συνάρτηση αυτή ήταν συνεχής και διαφορίσιμη σε όλο το πεδίο ενδιαφέροντος (κατά συνέπεια χρησιμοποιήσαμε (hill-climbing και Lagrange multipliers). Γενικά όμως δεν είναι όλες οι αντικειμενικές συναρτήσεις συνεχείς (ή και κοίλες) ώστε να χρησιμοποιούμε εργαλεία της Μαθηματικής Ανάλυσης. Μια μέθοδος επίλυσης προβλημάτων (διακριτών) με συνεχείς ή μη αντικειμενικές συναρτήσεις είναι ο ΔΠ.
5 Γενικά Χαρακτηριστικά Δυναμικού Προγραμματισμού [] Το εκάστοτε πρόβλημα είναι δυνατόν να διαιρεθεί σε διαφορετικά βήματα (στάδια - stages) και σε κάθε ένα από αυτά θα πρέπει να ληφθεί μία απόφαση. Κάθε ένα από τα στάδια του προβλήματος έχει έναν ορισμένο αριθμό «καταστάσεων (states)», οι οποίες συνδέονται με αυτό. Οι διάφορες αποφάσεις του προβλήματος λαμβάνονται διαδοχικά. Η κάθε απόφαση ενός βήματος του προβλήματος συνδέεται άμεσα με ένα κέρδος ή μία ζημία (κόστος).
6 Γενικά Χαρακτηριστικά Δυναμικού Προγραμματισμού [] Η εκάστοτε απόφαση που τελικά θα ληφθεί σε ένα στάδιο μετατρέπει την παρούσα «κατάσταση» σε μία κατάσταση που συνδέεται με το επόμενο στάδιο του προβλήματος. Ο αντικειμενικός στόχος του εκάστοτε προβλήματος είναι είτε να μεγιστοποιηθεί το συνολικό κέρδος είτε να ελαχιστοποιηθεί το συνολικό κόστος. Η βέλτιστη απόφαση για κάθε ένα από τα εναπομείναντα στάδια ενός προβλήματος δεν εξαρτάται από τις προηγούμενες καταστάσεις ή αποφάσεις που ελήφθησαν σε προηγούμενα στάδια. Επομένως οι αποφάσεις που θα ακολουθήσουν εξαρτώνται αποκλειστικά από την κατάσταση που θα ισχύει στο εκάστοτε στάδιο επίλυσης (Αρχή του Βέλτιστου - Optimality Principle)
7 Η πρόκληση στον ΔΠ Η πρόκληση σε ότι αφορά στην κατάστρωση και επίλυση ενός προβλήματος δυναμικού προγραμματισμού συνιστά στον προσδιορισμό των διαφορετικών φάσεων (βημάτων) του προβλήματος, αλλά και των καταστάσεων που τους αντιστοιχούν. Ο προσδιορισμός αυτός αποτελεί μία γενικά περίπλοκη διαδικασία. Επιπλέον ένα άλλο χαρακτηριστικό του δυναμικού προγραμματισμού είναι το γεγονός ότι δεν υπάρχει μία γενικευμένη διατύπωση της μεθόδου και επομένως κάθε πρόβλημα μπορεί να θεωρηθεί μοναδικό σε ότι αφορά στη διαδικασία επίλυσής του.
8 Γιατί «προγραμματισμός» Το βασικό πρόβλημα ήταν αρχικά η εύρεση της οικονομικότερης κατανομής ή προγραμματισμού ενός πλήθους ανταγωνιστικών δραστηριοτήτων σε συνθήκες πεπερασμένης διαθεσιμότητας πόρων (στην οικονομική επιστήμη). Δεν έχει σχέση με προγραμματισμό (coding)!
9 Πρόβλημα Έχουμε ένα ποτάμι και 3 εργοστάσια που ανήκουν στην ίδια εταιρεία και φτιάχνουν διαφορετικά προϊόντα (που χρειάζονται όσο περισσότερο νερό γίνεται στη διαδικασία παραγωγής). Εργοστάσια j=, and 3 Κατανομή νερού x j. Ποια κατανομή μεγιστοποιεί το συνολικό καθαρό κέρδος της εταιρείας; (Σj NB j (x j ). Το συνολικό νερό περιορίζεται σε μια ποσότητα Q =. Λύση με Lagrange: x =., x =3.7 και x 3 =5.
10 Το παράδειγμα κατανομής νερού σε Ο ΔΠ μπορεί να παρουσιαστεί σαν γράφημα Κάθε κόμβος (state) αναγράφει τη ποσότητα νερού που απομένει για να μοιραστεί στις άλλες εταιρείες/χρήστες νερού (που είναι οι σύνδεσμοι προς τα δεξιά. Κάθε σύνδεσμος ενώνει δύο κόμβους: έναν αριστερά (πριν την απόφαση) και έναν δεξιά (μετά την απόφαση) χρήστες Ας υποθέσουμε ότι x =:, x =3:5 και x 3 =:6 (επειδή ξέρουμε τη λύση!)
11 Καταμερισμός Νερού Καθαρό κέρδος
12 State 3 ΔΠ «Προς τα πίσω» (backward dynamic programming, BDP) State State
13 Λύση: [,,5] Λύση
14 BDP Σε πίνακες Ένας πίνακας για κάθε φάση
15 ΔΠ «Προς τα εμπρός» (forward dynamic programming, FDP) Για τον FDP σε κάθε κόμβο πρέπει να υπολογίσουμε τη καλύτερη τιμή της αντικειμενικής που θα μπορούσαμε να πάρουμε από όλες τις παλιές αποφάσεις που οδηγούν στον κόμβο αυτό. Δηλαδή, πρέπει να βρούμε το καλύτερο τρόπο μετακίνησης από την αρχή προς το τέλος του κάθε Stage.
16 Διαστατικότητα Ένα προφανές πρόβλημα του ΔΠ είναι η δυνατότητά του να χειριστεί πολλές μεταβλητές κατάστασης (state variables). Στο πρόβλημά μας είχαμε μόνο μια: το συνολικό νερό που έπρεπε να κατανεμηθεί. Θα μπορούσε όμως να έχουμε και άλλες μεταβλητές π.χ., ενέργεια, ή πρώτες ύλες που θέλουν οι χρήστες του παραδείγματος μας. Κάθε μια μεταβλητή θα πρέπει να γίνει διακριτή. Για m διακριτές τιμές κάθε μεταβλητής, και n διαφορετικές μεταβλητές (π.χ., πρώτες ύλες) υπάρχουν m n συνδυασμοί για κάθε στάδιο (stage). Αυτή η εκθετική αύξηση πολυπλοκότητας ονομάζεται η «κατάρα της διαστατικότητας» (curse of dimensionality).
17 Πρόβλημα Χρησιμοποιείστε ΔΠ για να μοιράσετε νερό σε 3 χρήστες με δεδομένο ότι η κατανομή νερού x j, σε κάθε χρήση j έχει τα ακόλουθα οφέλη: R(x ) = (x x ) R(x ) = (8x x ) R3(x 3 ) = (8x 3 3x 3 ) Υποθέστε ότι η αντικειμενική είναι: max {TotalR(x)} και ότι το συνολικό νερό είναι hm 3.
18 Λύση με πολ/στές Lagrange Έστω ότι το συνολικό νερό είναι: f(x,x,x 3 )= (x x ) + (8x x ) + (8x 3 3x 3 ) s.t. x +x +x 3 = Βοηθητικής συνάρτηση: φ(x)= f(x,x,x 3 ) -λ(x +x +x 3 -) dφ dx = = x dφ dx = = 8 x dφ dx 3 = = 8 6x x =.3 x =.3 x 3 =.7 dφ dλ = = x + x + x 3
19 Δίνεται: Λύση Xn R R R Έστω, x =:, x =:, x 3 =: x x x
20 Δίνεται: Λύση με FDP Xn R R R Έστω, x =:, x =:, x 3 =: x x x x f ()= x f ()= x 3 += += +7=7 +5=5 f 3 ()= f (3)= f (3)= f 3 (3)=5 += += =8 +5=6 f ()= f ()= f 3 ()=6 += += +5=35 f ()=7 f +7=7 3 ()=35 7+=7 Λύση: [,,] f 3 ()=5 7+5=5
21 Δίνεται: Λύση με BDP Xn R R R Έστω, x =:, x =:, x 3 =: x x x x f x f 3 ()=5 ()= x 3 f ()=+ 7 5 = f f 3 (3)=5 (3)= f ()=5+7= 7 7 Λύση: [,,] f 3 ()=5 f 3 ()=5 f 3 ()=
22 Ένα ακόμα πρόβλημα ΔΠ: το πρόβλημα Επεκτάσεις: όγκους ταμιευτήρων, παροχετευτικότητες υδραγωγείων, αριθμό γεωτρήσεων της επέκτασης Το πρόβλημα: Πότε και πόσο να επεκτείνουμε την υπό εξέταση υποδομή; Ώστε να έχω στο τέλος της περιόδου τη ζητούμενη υποδομή με το ελάχιστο κόστος οικονομίες κλίμακας
23 Οι βασικές εξισώσεις του προβλήματος βελτιστοποίησης Αν C(s t, x t ) είναι το κόστος για επέκταση της αρχικής υποδομής με χωρητικότητα s t, κατά x t, εντός του χρονικού διαστήματος t, ώστε να φτάνουμε τη ζήτηση του διαστήματος (D t ). Τότε θέλουμε: Ισχύει: Περιορισμοί επιτρεπτής επέκτασης (π.χ. διαστάσεις αγωγών)
24 Το πρόβλημα της επέκταση ως Οι φάσεις (βήματα) είναι τα χρονικά διαστήματα (t). Κόμβοι είναι τα s t+ στο τέλος της φάσης (προς τα εμπρός επίλυση - FDP). Οι πολλαπλές διαδρομές αντιστοιχούν σε διαφορετικά σχέδια επέκτασης. Ας υποθέσουμε ότι f t (s t+ ) είναι το ελάχιστο κόστος για να έχουμε επέκταση σε s t+ μετά το τέλος του διαστήματος t. πρόβλημα ΔΠ
25 Βήματα επίλυσης f (s ) =
26 Ας υποθέσουμε ότι τα κόστη είναι g(x, t) και φαίνονται στο σχήμα. Ο άξονας y δίνει τη προσθήκη x t Θέλουμε τη διαδρομή με το ελάχιστο κόστος
27 Επίλυση προς τα εμπρός Βέλτιστη (οικονομική) λύση είναι 3 Ποια η «βέλτιστη διαδρομή»; Σε τι είναι ευαίσθητη η λύση; Ποια απόφαση μας ενδιαφέρει να είναι λιγότερη ευαίσθητη;
28 Γραμμικός Προγραμματισμός Υπενθυμίζεται ότι:
29 Γεωμετρία της λύσης
30 Επίλυση με Simplex Ευστρατιάδης Α. & Μακρόπουλος Χ., (6), Βελτιστοποίηση συστημάτων υδατικών πόρων Υδροπληροφορική
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση
Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Χρήστος Μακρόπουλος, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Δυναμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος 1a: Συμβατικές Μέθοδοι Βελτιστοποίηση; Maximum Minimum Βελτίωση Δικτύων Ύδρευσης
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εισαγωγή Ο Δυναμικός Προγραμματισμός (ΔΠ) είναι μία υπολογιστική μέθοδος η οποία εφαρμόζεται όταν πρόκειται να ληφθεί μία σύνθετη απόφαση η οποία προκύπτει από τη σύνθεση επιμέρους
Το µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
υναµικός προγραµµατισµός
υναµικός προγραµµατισµός Σηµειώσεις στα πλαίσια του µαθήµατος: Βελτιστοποίηση συστηµάτων υδατικών πόρων Ανδρέας Ευστρατιάδης και ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο
υναµικός προγραµµατισµός
υναµικός προγραµµατισµός Σηµειώσεις στα πλαίσια του µαθήµατος: Βελτιστοποίηση συστηµάτων υδατικών πόρων Ανδρέας Ευστρατιάδης και ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
Δυναµικός Προγραµµατισµός (ΔΠ)
Δυναµικός Προγραµµατισµός (ΔΠ) Περίληψη Δυναµικός Προγραµµατισµός Αρχή του Βέλτιστου Παραδείγµατα Δυναµικός Προγραµµατισµός ΔΠ (Dynamic Programming DP) Μέθοδος σχεδιασµού αλγορίθµων Είναι µια γενική µεθοδολογία
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Ειδικά θέµατα δικτύων διανοµής
Ειδικά θέµατα δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Κεφάλαιο 4ο: Δικτυωτή Ανάλυση
Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.
6 η ΕΝΟΤΗΤΑ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 6 η ΕΝΟΤΗΤΑ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
ΗΜΥ 445 Βέλτιστη ένταξη μονάδων Δυναμικός προγραμματισμός
ΗΜΥ 445 Βέλτιστη ένταξη μονάδων Δυναμικός προγραμματισμός Δρ. Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 7 Ηλίας Κυριακίδης,
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών Άδεια
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ IΙ Ακαδ. Έτος 2018-2019 Διδάσκων: Β. ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegean.gr Τηλ: 2271035468
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
(S k R n ) (C k R m )
KΕΦΑΛΑΙΟ 7 υναµικός Προγραµµατισµός 7.1 ΕΙΣΑΓΩΓΗ Η θεωρία αποφάσεων διακρίνεται σε δύο µεγάλες κατηγορίες, µε βάση το αν ο υπεύθυνος απόφασης είναι µοναδικός φορέας ή πολλοί φορείς. Μέχρι τώρα αναπτύχθηκαν
Διάρθρωση παρουσίασης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ, ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ Βέλτιστη Διαχείριση Συστημάτων Ταμιευτήρων Εφαρμογή στο Σύστημα Αχελώου - Θεσσαλίας Διπλωματική
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών
ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ
3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 2 η ενότητα: Στοιχειώδη προβλήματα διαδρομής Τμήμα Μαθηματικών, ΠΘ καδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα γγελική Μεταδιδακτορική ερευνήτρια, ΠΘ & Πανεπιστήμιο Μακεδονίας
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεμελιώδεις έννοιες βελτιστοποίησης και κλασικές μαθηματικές μέθοδοι
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση συστημάτων υδατικών πόρων Υδροπληροφορική Θεμελιώδεις έννοιες βελτιστοποίησης και κλασικές μαθηματικές μέθοδοι Ανδρέας Ευστρατιάδης & Χρήστος Μακρόπουλος
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας Αλέξανδρος Φλάμος Επίκουρος Καθηγητής e-mail: aflamos@unipi.gr Τσίλη Μαρίνα Δρ Ηλ/γος Μηχ/κος e-mail: marina.tsili@gmail.com Γραφείο
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαχείριση Ταμιευτήρα
Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 10: Επαναληπτική Βελτίωση Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος
Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση
1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός
Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη
Επιχειρησιακή Έρευνα Εισαγωγική Διάλεξη Πληροφορίες Διδάσκων: Αντώνης Δημάκης (dimakis@aueb.gr) Γραφείο: 506, 5 ος όροφος, Τροίας 2 (νέο κτήριο), Ώρες: Πέμπτη 1-3μμ Τηλ: 210-8203-924 Βοηθός: Δέσποινα Μεντζελιώτου
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα Ελένη Ζαχαροπούλου
max f( x,..., x ) st. : g ( x,..., x ) 0 g ( x,..., x ) 0
Μαθηματικές Μέθοδοι Βελτιστοποίησης - Εστιάζουμε στο ακόλουθο πρόβλημα μεγιστοποίησης μιας αντικειμενικής συνάρτησης f υπό ένα σύνολο ανισοτικών περιορισμών: max f( x,..., x ) { x,..., x } 1 n 1 st. :
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Τεχνικές αναζήτησης - Search tools in MATLAB - Διερεύνηση λύσης NCM ΤΕΧΝΙΚΕΣ ΑΝΑΖΗΤΗΣΗΣ Στόχος: Ο σταδιακός
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Θεωρία Καταναλωτή. Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό.
Θεωρία Καταναλωτή Υποδειγματοποίηση της συμπεριφοράς του καταναλωτή. Βασική έννοια: Βελτιστοποίηση υπό περιορισμό. Προτιμήσεις (preferences) Εισοδηματικός περιορισμός (budget constraint) Άριστη επιλογή
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba
3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΣΚΗΣΗ 1 ΚΕΜΕΡΙΔΗΣ
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ
7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ Για να προσδιορισθεί η καμπύλη παλινδρόμησης, η οποία αποτελείται από όλα τα ζεύγη σημείων τα οποία μπορούν προσδιορισθούν
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Χρήστος Μακρόπουλος Αναπληρωτής Καθηγητής ΕΜΠ Tα Διαχειριστικά Προβλήματα Μοντέλα που επιβάλουν τους περιορισμούς
ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων
Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό
Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων
Το υπολογιστικό σύστηµα Υδρονοµέας και η εφαρµογή του στην µελέτη των έργων εκτροπής του Αχελώου
Το υπολογιστικό σύστηµα Υδρονοµέας και η εφαρµογή του στην µελέτη των έργων εκτροπής του Αχελώου ηµήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Μέρη της
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α.Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Εισαγωγικές έννοιες - Ταξινόμηση προβλημάτων - Παραδείγματα ΠΕΡΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
ΔΙΑΓΩΝΙΣΜΑ 14. Μέρος Α
Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 14 1. (4 μονάδες) (α). Να δοθεί το γράφημα μιας συνάρτησης f() της οποίας η παράγωγος έχει το γράφημα του παραπλεύρως σχήματος, και αρχική τιμή f() =. (β). Να βρεθεί συνάρτηση f() σταθερής
Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
Διδάσκων: Νίκος Λαγαρός
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 5 η Σειρά Ασκήσεων του Μαθήματος «ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ» Διδάσκων: Νίκος Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)
11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Υδροηλεκτρικοί ταμιευτήρες
Υδροηλεκτρικά Έργα 8ο εξάμηνο Σχολής Πολιτικών Μηχανικών Υδροηλεκτρικοί ταμιευτήρες Ανδρέας Ευστρατιάδης, Νίκος Μαμάσης, & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει