Αξιολόγηση Ευριστικών Αλγορίθµων
|
|
- Ανδρομέδη Καλαμογδάρτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα)
3 Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Υπάρχουν γρήγορες µέθοδοι επίλυσης (πολυωνυµική πολυπλοκότητα) που δεν µας εγγυούνται πως η λύση ϑα είναι ϐέλτιστη
4 Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Υπάρχουν γρήγορες µέθοδοι επίλυσης (πολυωνυµική πολυπλοκότητα) που δεν µας εγγυούνται πως η λύση ϑα είναι ϐέλτιστη Αξιολογούµε αυτούς τους προσεγγιστικούς αλγορίθµους σύµφωνα µε το πόσο απέχει η λύση που επιστρέφουν από τη ϐέλτιστη
5 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I
6 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I f A (I) : η λύση που επιστρέφει ο A f (I) : η ϐέλτιστη λύση
7 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I f A (I) : η λύση που επιστρέφει ο A f (I) : η ϐέλτιστη λύση απόλυτο λάθος : ɛ α = f (I) f A (I)
8 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I f A (I) : η λύση που επιστρέφει ο A f (I) : η ϐέλτιστη λύση απόλυτο λάθος : ɛ α = f (I) f A (I) σχετικό λάθος : ɛ r = f (I) f A (I) f (I)
9 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I f A (I) : η λύση που επιστρέφει ο A f (I) : η ϐέλτιστη λύση απόλυτο λάθος : ɛ α = f (I) f A (I) σχετικό λάθος : ɛ r = f (I) f A (I) f (I) Προσεγγιστικός λόγος (Approximation ratio ) Ελαχιστοποίηση : ρ = fa(i) f (I) = 1 + er Μεγιστοποίηση : ρ = f (I) f A(I) = 1 1 e r
10 Προσεγγιστικοί Αλγόριθµοι Θεωρούµε έναν προσεγγιστικό αλγόριθµο A και ένα στιγµιότυπο του προβλήµατος I f A (I) : η λύση που επιστρέφει ο A f (I) : η ϐέλτιστη λύση απόλυτο λάθος : ɛ α = f (I) f A (I) σχετικό λάθος : ɛ r = f (I) f A (I) f (I) Προσεγγιστικός λόγος (Approximation ratio ) Ελαχιστοποίηση : ρ = fa(i) f (I) = 1 + er Μεγιστοποίηση : ρ = f (I) f A(I) = 1 1 e r ιαφορικός λόγος (Differential ratio ) : ɛ d = fworst(i) fa(i) f worst(i) f (I) = 1 + er
11 Κοµβική επικάλυψη ίνεται γράφος G(V, E) Να ϐρεθεί υποσύνολο V V τέτοιο ώστε [v i, v j ] E είτε v i V ή v j V Επιπλέον ϑέλουµε ο αριθµός των κόµβων V να είναι ελάχιστος
12 V 1 V 2 V 6 V 3 V 5 V 4 V = 6, E = 8
13 V 1 V 2 V 6 V 3 V 5 V 4 V = {v 1, v 2, v 4, v 5, v 6 }, V = 5
14 V 1 V 2 V 6 V 3 V 5 V 4 V = {v 1, v 2, v 4, v 5 }, V = 4 Βέλτιστη λύση
15 Πρώτη ευριστική µέθοδος Input: Γράφος G(V, E) Output: Κάλυψη V V V while E emptyset do Επέλεξε v V µε µέγιστο ϐαθµό V V {v} ιέγραψε όλες τις προσκείµενες στο κόµβο v ακµές από το σύνολο E end while
16 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Θεωρούµε ένα παράδειγµα γράφου που αποτελείται από τρεις οµάδες κόµβων
17 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Θεωρούµε ένα παράδειγµα γράφου που αποτελείται από τρεις οµάδες κόµβων n + 2 κόµβοι τύπου c, n + 2 κόµβοι τύπου b και n κόµβοι τύπου a
18 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Θεωρούµε ένα παράδειγµα γράφου που αποτελείται από τρεις οµάδες κόµβων n + 2 κόµβοι τύπου c, n + 2 κόµβοι τύπου b και n κόµβοι τύπου a Κάθε κόµβος c i είναι συνδεδεµένος µόνο µε τον αντίστοιχο κόµβο b i
19 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Θεωρούµε ένα παράδειγµα γράφου που αποτελείται από τρεις οµάδες κόµβων n + 2 κόµβοι τύπου c, n + 2 κόµβοι τύπου b και n κόµβοι τύπου a Κάθε κόµβος c i είναι συνδεδεµένος µόνο µε τον αντίστοιχο κόµβο b i Κάθε κόµβος b i είναι συνδεδεµένος µε όλους τους κόµβους που ανήκουν στην οµάδα a
20 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Θεωρούµε ένα παράδειγµα γράφου που αποτελείται από τρεις οµάδες κόµβων n + 2 κόµβοι τύπου c, n + 2 κόµβοι τύπου b και n κόµβοι τύπου a Κάθε κόµβος c i είναι συνδεδεµένος µόνο µε τον αντίστοιχο κόµβο b i Κάθε κόµβος b i είναι συνδεδεµένος µε όλους τους κόµβους που ανήκουν στην οµάδα a Ο ευριστικός αλγόριθµος δεν επιστρέφει τη ϐέλτιστη λύση!
21 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 c 1 c 2 c 3 c 4 c 5 b 1 b 2 b 3 b 4 b 5 a 1 a 2 a 3
22 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3
23 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3 d(a i ) = 5, i = 1, 2,..., n d(b i ) = 4, i = 1, 2,..., n d(c i ) = 2, i = 1, 2,..., n
24 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3 d(a i ) = 5, i = 1, 2,..., n d(b i ) = 4, i = 1, 2,..., n d(c i ) = 2, i = 1, 2,..., n Βέλτιστη λύση : V = 5 (n + 2)
25 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3 d(a i ) = 5, i = 1, 2,..., n d(b i ) = 4, i = 1, 2,..., n d(c i ) = 2, i = 1, 2,..., n Βέλτιστη λύση : V = 5 (n + 2) Ευριστικός 1 : V = 8 (n + n + 2)
26 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3 d(a i ) = 5, i = 1, 2,..., n d(b i ) = 4, i = 1, 2,..., n d(c i ) = 2, i = 1, 2,..., n Βέλτιστη λύση : V = 5 (n + 2) Ευριστικός 1 : V = 8 (n + n + 2) Προσεγγιστικός λόγος ρ 1 = H1 Opt = 2n+2 n+2 2 Λάθος ɛ r = 100%
27 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 Θέτουµε n = 3 d(a i ) = 5, i = 1, 2,..., n d(b i ) = 4, i = 1, 2,..., n d(c i ) = 2, i = 1, 2,..., n Βέλτιστη λύση : V = 5 (n + 2) Ευριστικός 1 : V = 8 (n + n + 2) Προσεγγιστικός λόγος ρ 1 = H1 Opt = 2n+2 n+2 2 Λάθος ɛ r = 100% Το λάθος όµως µπορεί να είναι µεγαλύτερο!
28 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 c 1 c 2 c 3 c 4 c 5 b 1 b 2 b 3 b 4 b 5 a 1 a 2 a 3 Λύση που επιστρέφει η πρώτη ευριστική µέθοδος
29 Πρώτη ευριστική µέθοδος - Παράδειγµα 1 c 1 c 2 c 3 c 4 c 5 b 1 b 2 b 3 b 4 b 5 a 1 a 2 a 3 Βέλτιστη λύση
30 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Επεκτείνουµε το προηγούµενο παράδειγµα
31 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Επεκτείνουµε το προηγούµενο παράδειγµα Αντί για n + 2 κόµβους a προσθέτουµε έναν κόµβο για κάθε σύνολο σε κάθε διαµέριση
32 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Επεκτείνουµε το προηγούµενο παράδειγµα Αντί για n + 2 κόµβους a προσθέτουµε έναν κόµβο για κάθε σύνολο σε κάθε διαµέριση Για n = 4 έχουµε : 3 Ϲευγάρια 2 τριάδες 1 τετράδα 1 πεντάδα
33 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Επεκτείνουµε το προηγούµενο παράδειγµα Αντί για n + 2 κόµβους a προσθέτουµε έναν κόµβο για κάθε σύνολο σε κάθε διαµέριση Για n = 4 έχουµε : 3 Ϲευγάρια 2 τριάδες 1 τετράδα 1 πεντάδα Βέλτιστη λύση : V = 6 (n + 2) Ευριστικός 1 : V 1 = 10 (n + n + 2)
34 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 c 1 c 2 c 3 c 4 c 5 c 6 b 1 b 2 b 3 b 4 b 5 b 6 a 1 a 2 a 3 a 4 a 5 a 6 a 7
35 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b.
36 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b. Λύση ευριστικού 1 : {κόµβοι-a} + n = L(n) + n n L(n) = n j j=2
37 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b. Λύση ευριστικού 1 : {κόµβοι-a} + n = L(n) + n n L(n) = n j j=2 Βέλτιστη λύση : {κόµβοι-b} = n
38 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b. Λύση ευριστικού 1 : {κόµβοι-a} + n = L(n) + n n L(n) = n j j=2 Βέλτιστη λύση : {κόµβοι-b} = n Προσεγγιστικός λόγος : ρ = n+l(n) n
39 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b. Λύση ευριστικού 1 : {κόµβοι-a} + n = L(n) + n n L(n) = n j j=2 Βέλτιστη λύση : {κόµβοι-b} = n Προσεγγιστικός λόγος : ρ = n+l(n) n Σχετικό σφάλµα ɛ r = L(n) n
40 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 Ο τελευταίος κόµβος a έχει πάντοτε το µεγαλύτερο ϐαθµό. Ο αλγόριθµος ϑα επιλέγει πάντοτε όλους τους κόµβους των οµάδων a και c. Βέλτιστη όµως είναι η επιλογή όλων των κόµβων της οµάδας b. Λύση ευριστικού 1 : {κόµβοι-a} + n = L(n) + n n L(n) = n j j=2 Βέλτιστη λύση : {κόµβοι-b} = n Προσεγγιστικός λόγος : ρ = n+l(n) n Σχετικό σφάλµα ɛ r = L(n) n Αύξηση λογαριθµική (log n) ν (%) L(n) n
41 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 c 1 c 2 c 3 c 4 c 5 c 6 b 1 b 2 b 3 b 4 b 5 b 6 a 1 a 2 a 3 a 4 a 5 a 6 a 7 Λύση ευριστικού αλγορίθµου
42 Πρώτη ευριστική µέθοδος - Παράδειγµα 2 c 1 c 2 c 3 c 4 c 56 b 1 b 2 b 3 b 4 b 5 b 6 a 1 a 2 a 3 a 4 a 5 a 6 a 7 Βέλτιστη λύση
43 εύτερη ευριστική µέθοδος Input: Γράφος G(V, E) Output: Κάλυψη V V V while E emptyset do ιάλεξε µια ακµή (v, u) E τυχαία V V {v, u} ιέγραψε τους κόµβους v και u από τον γράφο G end while
44 εύτερη ευριστική µέθοδος V 2 V 3 V 4 V 1 V 5 V 6 V 7 V =
45 εύτερη ευριστική µέθοδος V 2 V 3 V 4 V 1 V 5 V 6 V 7 V = {v 1, v 2 }
46 εύτερη ευριστική µέθοδος V 3 V 4 V 5 V 6 V 7 V = {v 1, v 2 }
47 εύτερη ευριστική µέθοδος V 3 V 4 V 5 V 6 V 7 V = {V 1, V 2, V 3, V 6 }
48 εύτερη ευριστική µέθοδος V 4 V = {V 1, V 2, V 3, V 6 } V 5 V 7
49 εύτερη ευριστική µέθοδος V 4 V 5 V 7 V = {V 1, V 2, V 3, V 6, V 4, V 7 }
50 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής
51 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής Η ευριστική 2 επιστρέφει µια λύση το πολύ δύο ϕορές µεγαλύτερη
52 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής Η ευριστική 2 επιστρέφει µια λύση το πολύ δύο ϕορές µεγαλύτερη Εστω V 2 η κοµβική κάλυψη που επιστρέφει η ευριστική 2
53 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής Η ευριστική 2 επιστρέφει µια λύση το πολύ δύο ϕορές µεγαλύτερη Εστω V 2 η κοµβική κάλυψη που επιστρέφει η ευριστική 2 Εστω V η ελάχιστη κοµβική επικάλυψη : V 1 2 V 2
54 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής Η ευριστική 2 επιστρέφει µια λύση το πολύ δύο ϕορές µεγαλύτερη Εστω V 2 η κοµβική κάλυψη που επιστρέφει η ευριστική 2 Εστω V η ελάχιστη κοµβική επικάλυψη : V 1 2 V 2 Προσεγγιστικός λόγος : ρ = V2 V = 2
55 εύτερη ευριστική µέθοδος Κάθε επικάλυψη έχει τουλάχιστον ένα κόµβο από κάθε πλευρά µιας οποιασδήποτε ακµής Η ευριστική 2 επιστρέφει µια λύση το πολύ δύο ϕορές µεγαλύτερη Εστω V 2 η κοµβική κάλυψη που επιστρέφει η ευριστική 2 Εστω V η ελάχιστη κοµβική επικάλυψη : V 1 2 V 2 Προσεγγιστικός λόγος : ρ = V2 V = 2 Υπάρχει κακό στιγµιότυπο ώστε να επιτευχθεί λύση δύο ϕορές µεγαλύτερη;
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Θεωρία Αποφάσεων και Βελτιστοποίηση
Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Branch and Bound. Branch and Bound
Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων
Προσεγγιστικοί αλγόριθµοι για οµαδοποίηση στοιχείων από συγκρίσεις
Προσεγγιστικοί αλγόριθµοι για οµαδοποίηση στοιχείων από συγκρίσεις Γιάννης Γιώτης Universitat Politècnica de Catalunya http://www.cs.upc.edu/~igiotis/soda06.pdf Σε αυτή την οµιλία Παρουσίαση του προβλήµατος
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης Γιώργος Ζώης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής georzois@aueb.gr Απρίλιος 2010 Σκιαγράφηση Σκιαγράφηση 1 Θεωρία Χρονοδροµόλογησης Προβλήµατα
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Συνδυαστική Βελτιστοποίηση Σημειώσεις. Β. Ζησιμόπουλος
Συνδυαστική Βελτιστοποίηση Σημειώσεις Β. Ζησιμόπουλος Ιανουάριος 2007 Περιεχόμενα 1 Εισαγωγή στη Συνδυαστική Βελτιστοποίηση 3 1.1 Προβλήματα Βελτιστοποίησης.................. 5 1.2 Πρόβλημα Πλανόδιου Πωλητή
Εξαντλητική Απαρίθµηση
Υπενθύµιση Χαράκτηρίζουµε τους αλγόριθµους ως προς το χρόνο εκτέλεσης συναρτήσει της εισόδου Υπενθύµιση Χαράκτηρίζουµε τους αλγόριθµους ως προς το χρόνο εκτέλεσης συναρτήσει της εισόδου Ως µέτρο ϑεωρούµε
Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης
Μάθηµα 5 Κεφάλαιο: ιαφορικός Λογισµός Θεµατικές ενότητες: Συνέχεια συνάρτησης Πότε λέµε ότι µια συνάρτηση είναι συνεχής σε ένα σηµείο («σηµείο» σηµαίνει «τιµή του χ») του πεδίου ορισµού της; Ορισµός: Μια
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ Λ03Β ΑΛΓΟΡΙΘΜΟΙ ΔΙΚΤΥΩΝ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΦΛΕΒΑΡΗΣ 2004
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ Λ03Β ΑΛΓΟΡΙΘΜΟΙ ΔΙΚΤΥΩΝ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΦΛΕΒΑΡΗΣ 2004 Παρουσίαση του paper: Increasing the Weight of Minimum Spanning Trees Greg N. Frederickson and Roberto Solis- Oba Journal of Algorithms
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Εισαγωγή στους Αλγόριθμους. Παύλος Εφραιμίδης, Λέκτορας
Εισαγωγή στους Αλγόριθμους Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Περιεχόμενα Μαθήματος Εισαγωγή στου Αλγόριθμους Πολυπλοκότητα Αλγορίθμων Ασυμπτωτική Ανάλυση Θεωρία Γράφων Κλάσεις Πολυπλοκότητας
ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)
ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς
Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &
Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων
Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 17 Μέγιστη Κοινή Υπακολουθία
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη
Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ
Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Αλγόριθµοι Ευθυγράµµισης Τρισδιάστατων Αντικειµένων Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών 20 Οκτωβρίου 2005 Εισαγωγή
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 20 Επιλογή Το πρόβληµα
Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001
Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 5 υναµικός Προγραµµατισµός Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 5 1 / 49 Εισαγωγή
Insert(K,I,S) Delete(K,S)
ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ & ΛΕΞΙΚΑ Φατούρου Παναγιώτα 1 Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενα από έναν αριθµό και
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
Προσεγγιστικοί Αλγόριθμοι
Κεφάλαιο 12 Προσεγγιστικοί Αλγόριθμοι 12.1 Προβλήματα Βελτιστοποίησης Σε ένα πρόβλημα βελτιστοποίησης σε κάθε στιγμιότυπο του προβλήματος αντιστοιχούν κάποιες εφικτές (feasible) -δηλαδή επιτρεπτές- λύσεις,
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.
Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n
Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)
Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.
Άσκηση 1 Ψευδοκώδικας Kruskal Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα. Αντιστοιχίζω τους κόμβους με αριθμούς από το 0 έως το 4. 2Η ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ - MAY 2018
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Θεωρία Αποφάσεων και Βελτιστοποίηση
Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D.
1 Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2006 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/mpc_fall06.htm
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή
Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου
Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Μονοτονία Ακολουθίας Φραγµένη Ακολουθία Υπακολουθίες Σύγκλιση - Απόκλιση Ακολουθιών N = {1, 2,
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή,
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την
2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:
2 Αποδείξεις Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: Εκδοση 2005/03/22 Εξαντλητική µέθοδος ή µέθοδος επισκόπησης. Οταν το πρόβληµα έχει πεπερασµένες αριθµό περιπτώσεων τις εξετάζουµε
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι.
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άνοιξη 2018 Προσεγγιστικοί Αλγόριθμοι Αφορούν κυρίως σε προβλήματα βελτιστοποίησης:
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία
ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση
Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72
Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας
Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17
Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα) Επαναληπτικές µέθοδοι και Ηµι-Επαναληπτικές Μέθοδοι Πανεπιστήµιο Αθηνών 31 Μαρτίου 2017 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. Ο αλγόριθµος κτίζει όλες τις δυνατές αναθέσεις εργασιών στους φοιτητές (υπάρχουν n! διαφορετικές αναθέσεις) και επιστρέφει εκείνη µε το µέγιστο βαθµό καταλληλότητας.
Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.
Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,
Υπολογιστικό Πρόβληµα
Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal
Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ /ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Τετάρτη 9 Απριλίου 07 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη (Σχολικό βιβλίο, σελίδα
11.1 Συναρτήσεις. ΚΕΦΑΛΑΙΟ 11: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ : Θεωρία υπολογισµών. Συναρτήσεις και ο υπολογισµός τους. Μηχανές Turig.3 Καθολικές γλώσσες προγραµµατισµού.4 Μια µη υπολογίσιµη συνάρτηση.5 Πολυπλοκότητα προβληµάτων.6 Κρυπτογραφία δηµόσιου κλειδιού.
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Knapsack problems ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2017 - Ι. ΜΗΛΗΣ 10 DP III 1 Knapsack problems ΕΙΣΟΔΟΣ: Σακίδιο χωρητικότητας
Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)
Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1
Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,
Approximation Algorithms for the k-median problem
Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
υναμικός Προγραμματισμός
υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό
Άπληστοι Αλγόριθµοι. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1
Άπληστοι Αλγόριθµοι Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1 Άπληστοι Αλγόριθµοι... για προβλήµατα βελτιστοποίησης: Λειτουργούν σε βήµατα. Κάθε βήµα κάνει µια αµετάκλητη επιλογή
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)
Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ ΕΠΛ 035 - ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΗΛΕΚΤΡΟΛΟΓΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδηµαϊκό έτος 2017-2018 Υπεύθυνος εργαστηρίου: Γεώργιος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 24 Επιλογή Το πρόβληµα
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61