Είναι το διάγραμμα ενός διατεταγμένου υδραυλικού μεγέθους συναρτήσει του ποσοστού του χρόνου κατά τον
|
|
- Μαία Κοντόσταυλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Δρ Μ.Σπηλιώτη
2 Είναι το διάγραμμα ενός διατεταγμένου υδραυλικού μεγέθους συναρτήσει του ποσοστού του χρόνου κατά τον οποίο το μέγεθος αυτό απαντάται με ίση ή μεγαλύτερη τιμή. Για τον υπολογισμό του ποσοστού αυτού διατάσσονται οι τιμές παροχής κατά σειρά φθίνοντος μεγέθους και υπολογίζεται η αθροιστική συχνότητα υπέρβασης κάθε τιμής. Παραδείγματα αξιοποίησης: Δείκτης ξηρασίας Δείκτης συνεχούς ροής Υδροδυναμικά δ άέργα
3 Χρυσάνθου, 2013
4 Δείκτης συνεχούς ροής (αν δεν τέμνει τον άξονα xx ) Πρωτεύουσα ενέργεια
5 ροχή[m 3 /s] πα Μη συνεχή παροχή για σημαντικό τμήμα του έτους (ξεριάς) Μηδενική Πρωτεύουσα ενέργεια ποσοστό χρόνου [%] 100% Χωρίς ταμίευση
6 Συνεχής Παροχή Πρωτεύουσα ενέργεια, Ισχύς: ρg Q Q 0 H n H n [W] ροχή[m 3 /s] πα Q 0 η παροχή όπου για το 100% του χρόνου η παροχή είναι ίση ή μεγαλύτερη ποσοστό χρόνου [%] 100% Χωρίς ταμίευση η παροχή όπου για το 100% του χρόνου η παροχή είναι ίση ή μεγαλύτερη μπορεί να χρησιμοποιηθεί για τον υπολογισμό της πρωτεύουσας ενέργειας
7 Εγγυημένη ισχύς (firm power) είναι η ικανότητα ανάληψης φορτίου κατά καθορισμένη χρονική στιγμή ή χρονική περίοδο σε σχέση με το φορτίο ζητήσεως του συστήματος. Αυτή εξαρτάται από την ελάχιστη φυσική παροχή και τη ρύθμιση της φυσικής παροχής κατά την περίοδο του φορτίου αιχμής. Η εγγυημένη ισχύς μεταβάλλεται κατά την διάρκεια των εποχών του έτους και νοείται συνήθως κατά τον χρόνο εμφάνισης του φορτίου αιχμής του συστήματος. Πρωτεύουσα ενέργεια λέγεται η εξασφαλισμένη υδροηλεκτρική ενέργεια που μπορεί να παραχθεί με τις δυσμενέστερες υδρολογικές συνθήκες για την κάλυψη των αναγκών της κατανάλωσης.
8 Δευτερεύουσα ενέργεια είναι κάθε παραγόμενη υδροηλεκτρική ενέργεια επί πλέον της πρωτεύουσας. Φορτίο καλείται η ισχύς η οποία αναφέρεται στην παραγωγή και κατανάλωση ηλεκτρικής ενέργειας σε κάποιο στιγμιαίο χρονικό διάστημα σε κάποιο σημείο του συστήματος κατανάλωσης. Φορτίο αιχμής είναι το μέγιστο φορτίο κατανάλωσης για ορισμένη χρονική περίοδο.
9 Μπέλλος, 2009
10
11 Μπέλλος, 2009
12 Δυνατότητα αλλαγής με ταμίευση Αγγελίδης, 2014
13 Δείκτης υδρολογικής ξηρασίας
14 για ένα κρίσιμο χρονικό διάστημα και έκταση Συντελεί σε υδατικό έλλειμμα και άρα σε λειψυδρία Σε αντίθεση με τις πλημύρες καταλαμβάνει μεγάλη χρονική έκταση Μη πλήρως «αντιμετωπίσιμο» φαινόμενο, μετριασμός επιπτώσεων μείωση τρωτότητας
15 Xρυσάνθου, 2013
16 Διαφορετική χρονική απόκριση στη ξηρασία Ανάλογα τη θέση του υδρολογικού κύκλου /changes/natural/drought/
17
18
19 Γενίκευση. Η καμπύλη διαρκείας είναι ουσιαστικά το συμπληρωματικό της εμπειρικής κατανομής με άλλη διάταξη αξόνων Έλεγχος προσαρμογής
20 Πιθανότητα μη υπέρβασης (τιμές ίσες η μικρότερες) ενώ στη καμπύλη διαρκείας παροχών, πιθανότητα να έχω τιμές ίσες η μεγαλύτερες Ταξινόμηση κατ αύξουσα σειρά (συμπληρωματικά ενδεχόμενα)
21 Συγκρίνοντας την εμπειρική κατανομή ή(δείγμα) με την θεωρούμενη κατανομή πιθανότητας (υπόθεση): Εξίσωση παλινδρόμησης η γενικά βελτιστοποίηση χωρίς περιορισμούς για τον προσδιορισμό της κατανομής (μία μέθοδος εκτίμησης κατανομής, όχι μοναδική) Έλεγχος καταλληλότητας κατανομής
22 Περίοδος επαναφοράς (ελαχίστων, εδώ ξηρασία): η περίοδος επαναφοράς ορίζεται ως ο μέσος αριθμός χρονικών διαστημάτων μέσα στο οποίο η τυχαία μεταβλητή (υδρολογικό μέγεθος. π.χ. απορροή) θα εμφανιστεί μία μόνο φορά με μέγεθος ίσο η μικρότερο μίας τιμής μία μόνο φορά. Πχ. Aν η παροχή 20m^3/s αντιστοιχεί σε περίοδο επαναφοράς 50 ετών σημαίνει μεσολαβούν 50 έτη για την εμφάνιση αντίστοιχης παροχής μικρότερης ρης ή ίση από 20 m^3/s («κάθε 20 χρόνια τόσο μικρή παροχή στο ποτάμι») Αυστηρά μαθηματικά: Αδιάστατη παράμετρος
23 Μπέλλος, 2013
Έννοιες από προηγούμενα μαθήματα (επανάληψη)
Έννοιες από προηγούμενα μαθήματα (επανάληψη) Ξηρασία Δρ Μ.Σπηλιώτη Λειψυδρία Προσωρινή κατάσταση Φυσικά Αίτια Ξηρασία (drought) Ανθρωπογενή Αίτια Έλλειμμα Νερού (water shortage) Μόνιμη Ξηρότητα Λειψυδρία
Ξηρασία (drought) Ξηρότητα (aridity)
Δρ Μ.Σπηλιώτη Λειψυδρία Προσωρινή κατάσταση Φυσικά Αίτια Ξηρασία (drought) Ανθρωπογενή Αίτια Έλλειμμα Νερού (water shortage) Μόνιμη κατάσταση Ξηρότητα (aridity) Λειψυδρία Ερημοποίηση (Desertification)
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ. Αγγελίδης Π., Αναπλ.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 5 ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΟΙΚΟΝΟΜΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΑΞΙΟΠΟΙΗΣΗΣ ΥΔΕ ΟΡΙΣΜΟΙ
Διαχείριση Υδατικών Πόρων
Διαχείριση Υδατικών Πόρων Επαναληπτικό μάθημα (1) Δρ Μ.Σπηλιώτης Λέκτορας ΔΠΘ Λειψυδρία Προσωρινή κατάσταση Φυσικά Αίτια Ξηρασία (drought) Ανθρωπογενή Αίτια Έλλειμμα Νερού (water shortage) Μόνιμη Ξηρότητα
Οι καταιγίδες διακρίνονται σε δύο κατηγορίες αναλόγως του αιτίου το οποίο προκαλεί την αστάθεια τις ατμόσφαιρας:
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΡΑΓΔΑΙΩΝ ΒΡΟΧΩΝ Καταιγίδα (storm): Πρόκειται για μια ισχυρή ατμοσφαιρική διαταραχή, η οποία χαρακτηρίζεται από την παρουσία μιας περιοχής χαμηλών ατμοσφαιρικών πιέσεων και από ισχυρούς
Π.χ. πρωτεύουσες, Εκ περιτροπής από δευτερεύουσες σε τριτεύουσες
Συστήματα άρδευσης Συνεχούς ροής Εκ περιτροπής Με ελεύθερη ζήτηση Μείξη (π.χ. χ περιορισμένη ζήτηση, ελεύθερη ζήτηση αλλά ορισμένες ημέρες της εβδομάδας) ) Συνεχούς ροής (χρησιμοποιήθηκε στα συλλογικά
Διαχείριση Υδατικών Πόρων
Διαχείριση Υδατικών Πόρων Εισαγωγή Βασικές Έννοιες Μοντέλο Υδατικού Ισοζυγίου Δρ Μ.Σπηλιώτη Λέκτορα ΔΠΘ Χρυσάνθου, 2013 Λειψυδρία Προσωρινή κατάσταση Φυσικά Αίτια Ξηρασία (drought) Ανθρωπογενή Αίτια Έλλειμμα
βλπ και αυτή είναι η διδαχθείσα. Να δώσετε ένα Τι κατανοείται
Βασικές ερωτήσεις με συνοπτικές απαντήσεις. Για διαφάνειες μαθήματος και σημειώσεις κ. Χρυσάνθου. πλήρη ανάπτυξη βλπ Επίσης, οι ερωτήσεις αυτές είναι οι πλεον βασικές ωστόσο η ύλη είναι ευρύτερη και αυτή
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION
Υδροηλεκτρικοί ταμιευτήρες
Υδροηλεκτρικά Έργα 8ο εξάμηνο Σχολής Πολιτικών Μηχανικών Υδροηλεκτρικοί ταμιευτήρες Ανδρέας Ευστρατιάδης, Νίκος Μαμάσης, & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο
Περίπου ίση µε την ελάχιστη τιµή του δείγµατος.
1. Η µέση υπερετήσια τιµή δείγµατος µέσων ετήσιων παροχών Q (m3/s) που ακολουθούν κατανοµή Gauss, ξεπερνιέται κατά µέσο όρο κάθε: 1/0. = 2 έτη. 1/1 = 1 έτος. 0./1 = 0. έτος. 2. Έστω δείγµα 20 ετών µέσων
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα
Διερεύνηση προσομοίωσης πλημμύρας για το σχεδιασμό σε λεκάνες χειμαρρικής δίαιτας Εφαρμογή στη λεκάνη του Σαρανταπόταμου
Διερεύνηση προσομοίωσης πλημμύρας για το σχεδιασμό σε λεκάνες χειμαρρικής δίαιτας Εφαρμογή στη λεκάνη του Σαρανταπόταμου Ελένη Μαρία Μιχαηλίδη Εθνικό Μετσόβιο Πολυτεχνείο Στόχοι εργασίας Διερεύνηση μηχανισμού
ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 25 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR.
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
Δαπάνη ενέργειας Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?
Δρ Μ.Σπηλίώτη Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας
Υ ΡΟΓΑΙΑ. Λογισµικό ιαχείρισης Υδατικών Πόρων. Υ ΡΟΝΟΜΕΑΣ: : Βέλτιστη διαχείριση υδροσυστηµάτων
Υ ΡΟΓΑΙΑ Λογισµικό ιαχείρισης Υδατικών Πόρων Υ ΡΟΝΟΜΕΑΣ: : Βέλτιστη διαχείριση υδροσυστηµάτων Υ ΡΟΓΑΙΑ: Υδρονοµέας Hydria Ζυγός Μοντέλο υδρολογικού ισοζυγίου λεκάνης Ρύπος Εκτίµηση ρυπαντικών φορτίων Ηριδανός
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ÌÁÈÅÉÍ
ΘΕΜΑ Α ΑΡΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. α. Σωστό β. Λάθος γ. Σωστό δ. Σωστό ε. Λάθος Α2. α Α3. γ ΘΕΜΑ Β ΟΜΑ Α ΕΥΤΕΡΗ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες
Δρ Μ.Σπηλιώτης. Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και Εγγειοβελτιωτικά έργα
Δρ Μ.Σπηλιώτης ρ η ης Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και 1986. Εγγειοβελτιωτικά έργα Προσέγγιση Στην πραγματικότητα: μη μόνιμη ροή Αβεβαιότητα στην πρόβλεψη των παροχών
Υδραυλικές Μηχανές και Ενέργεια
Υδραυλικές Μηχανές και Ενέργεια Διάλεξη 12 - Σύγκριση μεταξύ υδροστροβίλων δράσεως και αντιδράσεως - Υδροηλεκτρικά έργα Σκουληκάρης Χαράλαμπος Ηλεκτρολόγος Μηχανικός & Μηχ. Η/Υ, MSc, PhD hskoulik@civil.auth.gr
Εγγυημένη ισχύς Αιολικής Ενέργειας (Capacity credit) & Περικοπές Αιολικής Ενέργειας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ AIOΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Κάραλης Γεώργιος Εγγυημένη ισχύς Αιολικής Ενέργειας (Capacity
ιάρθρωση παρουσίασης 1. Ιστορικό διαχείρισης της λίµνης Πλαστήρα 2. Συλλογή και επεξεργασία δεδοµένων 3. Μεθοδολογική προσέγγιση
Ανδρέας Ευστρατιάδης, υποψήφιος διδάκτορας Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών πόρων Ποσοτική και ποιοτική θεώρηση της λειτουργίας του ταµιευτήρα Πλαστήρα Περιβαλλοντικές Επιπτώσεις από Υδραυλικά
ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ
ΕΜΠ Σχολή Πολιτικών Μηχανικών Τεχνική Υδρολογία Διαγώνισμα επαναληπτικής εξέτασης 2012-2013 1 ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ Θέμα 1 (μονάδες
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ. Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 3
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΟΔΥΝΑΜΙΚΑ ΕΡΓΑ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 3 ΤΑΜΙΕΥΤΗΡΕΣ Χαρακτηριστικά και τύποι ταμιευτήρων Ταμιευτήρας
Υπολογισµός της Έντασης του Αιολικού υναµικού και της Παραγόµενης Ηλεκτρικής Ενέργειας από Α/Γ
Υπολογισµός της Έντασης του Αιολικού υναµικού και της Παραγόµενης Ηλεκτρικής Ενέργειας από Α/Γ Η ένταση της αιολικής ισχύος εξαρτάται από την ταχύτητα του ανέµου και δίνεται από την ακόλουθη έκφραση: P
Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION INDUCTION) Ο Αριστοτέλης
Υδραυλικές Μηχανές και Ενέργεια
Υδραυλικές Μηχανές και Ενέργεια Διάλεξη 13 - Υδροηλεκτρικά έργα - Ασκήσεις επανάληψης Σκουληκάρης Χαράλαμπος Ηλεκτρολόγος Μηχανικός & Μηχ. Η/Υ, MSc, PhD hskoulik@civil.auth.gr Ξάνθη, 13 Ιανουαρίου 2017
Στατιστική, Άσκηση 2. (Κανονική κατανομή)
Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται
Αστικά δίκτυα αποχέτευσης ομβρίων
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Αστικά δίκτυα αποχέτευσης ομβρίων Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο
Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία. Παροχή νερού ύδρευση άρδευση
Ζαΐμης Γεώργιος Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία Παροχή νερού ύδρευση άρδευση Πλημμύρες Ζημίες σε αγαθά Απώλειες ανθρώπινης ζωής Αρχικά εμπειρικοί μέθοδοι Μοναδιαίο υδρογράφημα Συνθετικά
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Επισκόπηση ητου θέματος και σχόλια. Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές+υδροληψεία
Υδρολογική και ποιοτική θεώρηση της λειτουργίας του ταμιευτήρα Πλαστήρα
ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» Παρουσίαση στα πλαίσια του μαθήματος: Περιβαλλοντικές Επιπτώσεις από Υδραυλικά Εργα Υδρολογική και ποιοτική
(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π
Κεφάλαιο Στατιστικές έννοιες στην Υδρολογία Τα φυσικά γεγονότα όπως είναι οι βροχοπτώσεις, η εξατμισοδιαπνοή και η απορροή είναι από τη φύση τους τυχαία. Οι παρατηρήσεις μας γι αυτά συχνά περιλαμβάνουν
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Υδροηλεκτρικά έργα. Εφαρμογές Σχεδιασμού Μικρών Υδροηλεκτρικών Έργων
Υδροηλεκτρικά έργα Εφαρμογές Σχεδιασμού Μικρών Υδροηλεκτρικών Έργων Ν. Μαμάσης, Α. Ευστρατιάδης και Δ. Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2016 Αριθμητικό
0 είναι η παράγωγος v ( t 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f
Αρχές Οικονομικής Θεωρίας μάθημα επιλογής
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Γ ΓΕΛ Μάρτιος Αρχές Οικονομικής Θεωρίας μάθημα επιλογής Α. α. Λάθος β. Σωστό γ. Σωστό δ. Λάθος ε. Λάθος Α. δ Α. α ΟΜΑΔΑ Α ΟΜΑΔΑ Β Β. Σελ. 8-8 σχολικού βιβλίου: παρ. (β) Η Τεχνολογία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )
5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ
ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΕΠΙΛΟΓΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 25 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Μη μετρούμενες λεκάνες απορροής: Διερεύνηση στη λεκάνη του Πηνειού Θεσσαλίας, στη θέση Σαρακίνα
Μη μετρούμενες λεκάνες απορροής: Διερεύνηση στη λεκάνη του Πηνειού Θεσσαλίας, στη θέση Σαρακίνα Βασίλειος Γουργουλιός και Ιωάννης Ναλμπάντης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 13ο: Ξηρασία
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Μεταπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 13ο:
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ
A A N A B P Y T A ΡΑΛΛΟΥ ΦΑΣΟΥΡΑΚΗ (Β4) ΜΑΡΤΙΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 9 5 ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΟΥ ΦΟΡΤΙΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ Γενίκευση της άσκησης (σελ 4) του σχολικού βιβλίου Φυσικής Κατεύθυνσης Β Λυκείου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Φυσικοί και Περιβαλλοντικοί Κίνδυνοι (Εργαστήριο) Ενότητα 7 Πλημμύρες πλημμυρικές απορροές ρ. Θεοχάρης Μενέλαος
Φυσικοί και Περιβαλλοντικοί Κίνδυνοι (Εργαστήριο) Ενότητα 7 Πλημμύρες πλημμυρικές απορροές ρ. Θεοχάρης Μενέλαος 3.4 Πλημμυρικές απορροές Πλημμυρικές απορροές θεωρούνται οι απορροές που ακολουθούν κάποια
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ
ΕΦΑΡΜΟΣΜΕΝΗ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΓΟΡΑΣ Άσκηση 1 Αν το επιτόκιο είναι 10%, ποια είναι η παρούσα αξία των κερδών της Monroe orporation στα επόμενα 5 χρόνια; Χρόνια στο μέλλον
ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις. Καθ. Αθανάσιος Λουκάς
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΕΠΑΛ (ΟΜΑΔΑ Β ) ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 25 / 5 /216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Αρχές Οικονομικής Θεωρίας ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
Υδατικοί πόροι και έργα αξιοποίησης
Σημειώσεις στο πλαίσιο του μαθήματος «Διαχείριση Υδατικών Πόρων» Υδατικοί πόροι και έργα αξιοποίησης Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
Ε_ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Α Για δύο ενδεχόµενα Α και Β ενός
P A B P(A) P(B) P(A. , όπου l 1
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα
1. Μέθοδοι εκτίµησης των απωλειών
1. Μέθοδοι εκτίµησης των απωλειών Η εκτίµηση των απωλειών της βροχής είναι ένα δύσκολο πρόβληµα που εξαρτάται από πολλούς παράγοντες όπως τα χαρακτηριστικά της λεκάνης απορροής καθώς και τα χαρακτηριστικά
Σχήματα από Τσακίρης, 2008.
Δρ Μ.Σπηλιώτης Σχήματα από Τσακίρης, 2008. Εγγειοβελτιωτικά έργα Επιφανειακές μέθοδοι άρδευσης Άρδευση στο αγροτεμάχιο ΕΠΙΦΑΝΕΙΑΚΕΣ ΜΕΘΟΔΟΙ Διήθηση ημε ροή ή παραμονή νερού,, οριζόντια ρζ άρδευση Λεκάνες
Τμήμα Ηλεκτρολόγων Μηχανικών ΑΝΑΛΥΣΗ ΣΓ ΠΟΥ ΛΕΙΤΟΥΡΓΟΥΝ ΠΑΡΑΛΛΗΛΑ
Πολύ συχνά όταν μία ΣΓ συνδεθεί σε κάποιο μεγάλο σύστημα ισχύος, καμία μεταβολή στα χαρακτηριστικά της γεννήτριας δεν μπορεί να προκαλέσει εμφανή αλλαγή στη συχνότητα του συστήματος Η παρατήρηση αυτή εκφράζει
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΠΑΝΕΛΛΑΔΙΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΙΟΥ ΤΕΤΑΡΤΗ 25ΜΑΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α Σωστό (Σελ. 24 σχολικού βιβλίου) β Λάθος (Σελ. 33 σχολικού
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
ΥΔΡΟΛΟΓΙΑ. Ενότητα 8:Υδρογραφήματα-ΜοναδιαίοΥδρογράφημα - Συνθετικό Μοναδιαίο Υδρογράφημα: Ασκήσεις. Καθ. Αθανάσιος Λουκάς
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 8:Υδρογραφήματα-ΜοναδιαίοΥδρογράφημα - Συνθετικό Μοναδιαίο Υδρογράφημα: Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις
Προς µια ορθολογική αντιµετώπιση των σύγχρονων υδατικών προβληµάτων: Αξιοποιώντας την Πληροφορία και την Πληροφορική για την Πληροφόρηση Υδροσκόπιο: Εθνική Τράπεζα Υδρολογικής & Μετεωρολογικής Πληροφορίας
Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό:
ΑΣΚΗΣΗ 1 Η Ένας κινητήρας συνεχούς ρεύματος ξένης διέγερσης, έχει ονομαστική ισχύ 500kW, τάση 1000V και ρεύμα 560Α αντίστοιχα, στις 1000στρ/λ. Η αντίσταση οπλισμού του κινητήρα είναι RA=0,09Ω. Το τύλιγμα
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α. Με ολοκληρωμένη λύση ΘΕΜΑ 1 ο Επιχείρηση χρησιμοποιεί την εργασία ως μοναδικό μεταβλητό παραγωγικό συντελεστή. Τα στοιχεία κόστους της επιχείρησης δίνονται στον επόμενο πίνακα:
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ. Πιθανοτική προσέγγιση υδρολογικών µεταβλητών
Υ ΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ Πιθανοτική προσέγγιση υδρολογικών µεταβλητών Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 7 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΓΜΑΤΟΣ Σχήµα στατιστικών επεξεργασιών
H Επίδραση της Γεωγραφικής Διασποράς των Αιολικών στην Παροχή Εγγυημένης Ισχύος στο Ελληνικό Σύστημα Ηλεκτροπαραγωγής
H Επίδραση της Γεωγραφικής Διασποράς των Αιολικών στην Παροχή Εγγυημένης Ισχύος στο Ελληνικό Σύστημα Ηλεκτροπαραγωγής Κάραλης Γιώργος, Δρ Περιβολάρης Γιάννης, Δρ Ράδος Κώστας, Αν. Καθ. Εισηγητής: Κάραλης
Υδραυλική & Υδραυλικά Έργα. Παροχές ακαθάρτων. Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Παροχές ακαθάρτων Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΣΚΗΣΗ 3 ΚΕΜΕΡΙΔΗΣ
, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας. Ημ/νία: 25 Μαΐου Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας Ημ/νία: 25 Μαΐου 2016 Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος
Το υπολογιστικό σύστηµα Υδρονοµέας και η εφαρµογή του στην µελέτη των έργων εκτροπής του Αχελώου
Το υπολογιστικό σύστηµα Υδρονοµέας και η εφαρµογή του στην µελέτη των έργων εκτροπής του Αχελώου ηµήτρης Κουτσογιάννης & Ανδρέας Ευστρατιάδης Τοµέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Μέρη της
0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Επιχειρησιακά Μαθηματικά (1)
Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής
Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη
Δρ Μ.Σπηλίώτη Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας
ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ ΕΚΠΟΝΗΣΗ: ΙΩΑΝΝΑ
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
1 Μερική παραγώγιση και μερική παράγωγος
Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας
Διαχείριση Ηλεκτρικής Ενέργειας Οικονομική Κατανομή Παραγόμενης Ενέργειας Αλέξανδρος Φλάμος Επίκουρος Καθηγητής e-mail: aflamos@unipi.gr Τσίλη Μαρίνα Δρ Ηλ/γος Μηχ/κος e-mail: marina.tsili@gmail.com Γραφείο
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Σε ένα κανονικό αγαθό, όταν αυξάνεται το εισόδηµα των καταναλωτών, τότε αυξάνεται και η συνολική δαπάνη των καταναλωτών 2.
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Σε ένα κανονικό αγαθό, όταν αυξάνεται το εισόδηµα των καταναλωτών, τότε αυξάνεται και η συνολική δαπάνη των καταναλωτών 2. Το µαγνητόφωνο ενός παιδιού είναι καταναλωτό αγαθό
Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?
Δρ Μ.Σπηλίώτη Χρησιμοποιείται για καταστροφή ενέργειας Γενικά δεν επιθυμείτε στο σχεδιασμό ΠΑΝΤΑ συμβαίνει όταν: ροή από υπερκρίσιμη ρ σε υποκρίσιμη υπερχειλιστής Από απότομη κλίση σε ήπια Δαπάνη ενέργειας
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα
Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΣΚΗΣΗ 2 ΚΕΜΕΡΙΔΗΣ
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας. Ημ/νία: 25 Μαΐου Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Αρχές Οικονομικής Θεωρίας Ημ/νία: 25 Μαΐου 2016 Απαντήσεις Θεμάτων ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α) Σωστό β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος
m αντίστοιχα, εκτελούν Α.Α.Τ. και έχουν την
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Ερώτηση. ΘΕΜΑ Β Δύο σώματα με μάζες m m και m m αντίστοιχα, εκτελούν Α.Α.Τ.
Διάρθρωση παρουσίασης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ, ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ Βέλτιστη Διαχείριση Συστημάτων Ταμιευτήρων Εφαρμογή στο Σύστημα Αχελώου - Θεσσαλίας Διπλωματική
Σημεία Προσοχής στην Παράγραφο Ε2.
Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}
Μελέτη Προέγκρισης Χωροθέτησης του Μικρού Υδροηλεκτρικού Σταθμού Βαλορέματος. Υδρολογική μελέτη
Περιεχόμενα Μελέτη Προέγκρισης Χωροθέτησης του Μικρού Υδροηλεκτρικού Σταθμού Βαλορέματος Υδρολογική μελέτη Εισαγωγή 1 Γενικά χαρακτηριστικά 1 Παραγωγή ημερήσιων παροχών στη θέση Σμίξη 2 Καμπύλες διάρκειας
Κεφάλαιο 4 Ειδικές έννοιες θεωρίας πιθανοτήτων στην υδρολογία 4.1 Πιθανοθεωρητική περιγραφή υδρολογικών διεργασιών
Κεφάλαιο 4 Ειδικές έννοιες θεωρίας πιθανοτήτων στην υδρολογία 4.1 Πιθανοθεωρητική περιγραφή υδρολογικών διεργασιών Από την οπτική γωνία της θεωρίας πιθανοτήτων οι υδρολογικές διεργασίες είναι στοχαστικές
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας