ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι
|
|
- Ξένη Ασπάσιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 25 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες 10 B.α. Πότε δύο ενδεχόμενα Α,Β ενός δειγματικού χώρου Ω λέγονται ασυμβίβαστα; Μονάδες 3 β. Πότε μια συνάρτηση f με πεδίο ορισμού Α λέγεται συνεχής; Μονάδες 4 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση. α. Μια συνάρτηση f με πεδίο ορισμού το Α, λέμε ότι παρουσιάζει τοπικό μέγιστο στο x 0 A, όταν f(x) f(x 0 ) για κάθε x σε μια περιοχή του x 0. Μονάδες 2 β. Aν το ενδεχόμενο Α, συμπληρωματικό του ενδεχομένου Α, πραγματοποιείται, τότε δεν πραγματοποιείται το Α. Μονάδες 2
2 γ. Για κάθε x 0 ισχύει:. Μονάδες 2 δ. Το κυκλικό διάγραμμα χρησιμοποιείται για τη γραφική παράσταση μόνο ποσοτικών δεδομένων. Μονάδες 2 ΘΕΜΑ 2ο Κατά την αρχή της σχολικής χρονιάς οι 50 μαθητές της τρίτης τάξης ενός Λυκείου ρωτήθηκαν σχετικά με τον αριθμό των βιβλίων που διάβασαν την περίοδο των θερινών διακοπών. Σύμφωνα με τις απαντήσεις που δόθηκαν, συντάχθηκε ο παρακάτω πίνακας: Αριθμός Βιβλίων Αριθμός Μαθητών x i ν i 0 α+4 1 5α+8 2 4α 3 α-1 4 2α Σύνολο 50 α. Να υπολογίσετε την τιμή του α. Μονάδες 3 Στη συνέχεια να βρείτε: β. Τη μέση τιμή του αριθμού των βιβλίων που διάβασαν οι μαθητές. Μονάδες 7 γ. Τη διάμεσο του αριθμού των βιβλίων που διάβασαν οι μαθητές. Μονάδες 7 δ. Την πιθανότητα ένας μαθητής να έχει διαβάσει τουλάχιστο 3 βιβλία. Μονάδες 8
3 ΘΕΜΑ 3o Σε ένα χορευτικό όμιλο συμμετέχουν x αγόρια και (x+4) 2 κορίτσια. α. Επιλέγουμε τυχαία ένα άτομο, για να εκπροσωπήσει τον όμιλο σε μια εκδήλωση. Να εκφράσετε ως συνάρτηση του x την πιθανότητα να επιλεγεί αγόρι. Μονάδες 7 β. Αν η πιθανότητα να επιλεγεί αγόρι είναι ίση με και ο όμιλος περιλαμβάνει λιγότερα από 100 μέλη, να βρείτε τον αριθμό των μελών του ομίλου, καθώς και την πιθανότητα να επιλεγεί κορίτσι. Μονάδες 8 γ. Ποιος πρέπει να είναι ο αριθμός των αγοριών του ομίλου, ώστε να μεγιστοποιείται η πιθανότητα να επιλεγεί αγόρι, και ποια είναι η τιμή της πιθανότητας αυτής; (Δίνεται x ) Μονάδες 10 ΘΕΜΑ 4ο Έστω η συνάρτηση f(x) = - 2x 2 +kx , x 0. α. Aν η εφαπτομένη της γραφικής παράστασης της συνάρτησης στο σημείο Α(1,f(1)) είναι παράλληλη στον άξονα x x, να αποδείξετε ότι k=2 και να βρείτε την εξίσωσή της. Μονάδες 5 β. Μία τυχαία μεταβλητή Χ ακολουθεί την κανονική κατανομή με μέση τιμή =f(1) και τυπική απόκλιση s=. Τρεις παρατηρήσεις, αντιπροσωπευτικού δείγματος μεγέθους ν, είναι μικρότερες ή ίσες του
4 8. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2006 (i) Να βρείτε τον αριθμό των παρατηρήσεων που βρίσκονται στο διάστημα (10,16). Μονάδες 10 (ii)να αποδείξετε ότι το δείγμα των παρατηρήσεων που έχει ληφθεί, δεν είναι ομοιογενές. Να βρείτε τη μικρότερη τιμή της παραμέτρου α>0, που πρέπει να προστεθεί σε κάθε μία από τις προηγούμενες παρατηρήσεις, ώστε το δείγμα των νέων παρατηρήσεων να είναι ομοιογενές. Μονάδες 10
5 ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο Α. Σχολικό βιβλίο, σελ.: 30 Β. α) Σχολικό βιβλίο, σελ.: 142 β) Σχολικό βιβλίο, σελ.: 16 Γ. α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος Θέμα 2 ο α) Ισχύει: v 1 +v 2 +v 3 +v 4 +v 5 =v δηλαδή α+4+5α+8+4α+α-1+2α=50 ή 13α=39 α=3 β) X i v i x i v i Αθρ. Συχνότ. N i v=50 77 κ 1 77 vi xi v i=1 50 x= 1, 54 γ) Η διάμεσος (δ) βρίσκεται στη θέση v ,5 2 2 η η 25 παρατ.+26 παρατ. 1 1 δ= (Όλες οι παρατηρήσεις από την 8 η έως και την 30 η αντιστοιχούν στο x=1) δ) Ρ(τουλάχιστο 3 βιβλία) = Ρ(x 3) = 8 0,16 50 ή 16%
6 Θέμα 3 ο ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2006 α) Το σύνολο των ατόμων του ομίλου είναι x+(x+4) 2 άτομα Ο αριθμός των αγοριών είναι x Η πιθανότητα του ενδεχόμενου ο εκπρόσωπος να είναι αγόρι x είναι Ρ(x)= 2 x+(x+4) β) Ρ(x)= 1 19 ή x 1 2 x+x +8x+16=19x 2 x x+(x+4) x+16=0 x=2 ή x=8 i. Για x=2 τα αγόρια είναι 2 και τα κορίτσια 36 ii. Για x=8 τα αγόρια είναι 8 και τα κορίτσια 144 Η ii απορρίπτεται αφού ο όμιλος έχει λιγότερο από 100 μέλη. Οπότε η πιθανότητα ο εκπρόσωπος να είναι κορίτσι είναι 36 0,95 38 ή 95%. x γ) Θεωρούμε την συνάρτηση Ρ(X) =,0 x 5 2 αφού για x 6 x+(x+4) ο αριθμός των ατόμων υπερβαίνει το x+(x+4) -x[1+2+(x+4)] x+x +8x+16-x-2x -8x Ρ'(x)= = = [x+(x+4) ] [x+(x+4) ] 2 -x [x+(x+4) ] Το πρόσημο και οι ρίζες της Ρ (x) δίνονται από τον παρακάτω πίνακα. x P (x) P(x) Max Η πιθανότητα να είναι αγόρι μεγιστοποιείται όταν x=4 και η 4 4 μέγιστη τιμή της είναι P(4)= 0,058 2 ή 5,8% 4+(4+4) 68
7 Θέμα 4 ο α) Έστω f(x)=-2x 2 +κx+4 x +10, x 0 f (x)=-4x+κ+2 1 x Η εφαπτομένη της C f στο Α(1, f(1)) είναι // στον x x οπότε f (1)=0 δηλαδή -4+κ+2=0 κ=2. Η εξίσωση εφαπτομένης της C f στο Α(1, f(1)) είναι: y=f (1)x+β ή y=0x+β ή y=β f(1)=14 οπότε y=14 β) Για κ=2 είναι f(x)=-2x 2 +2x+4 x +10 και f (x)=-4x+2+ 2 x x =f(1)= =14 S=- 2f'(4) 2 ( 13) Η κανονική καμπύλη είναι: x =14 και S=2 με απλή μέθοδο των τριών έχουμε: το 0,15% των παρατηρήσεων είναι 3 το 100% >> >> >> x;
8 x= ,15 (i) To ποσοστό των παρατηρήσεων Ρ(10 x 16) είναι: 13,5%+34%+34%=81,5% δηλαδή ,5%=1630 παρατηρήσεις (ii) CV x = S 2 0,143 x 14 ή 14,3%>10% άρα το δείγμα είναι ανομοιογενές. Αν σε κάθε τιμή προστεθεί το α>0 τότε: y=x+α=14+α και S y =S x =2 CV y = 2 0,10 (14+α) 0,10 2 1,4+0,10α 2 0,10α 0,6 α 6 14+α Άρα η μικρότερη τιμή του α είναι το 6.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες
Διαβάστε περισσότεραF είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.
Διαβάστε περισσότεραΓ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς
Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 1 ΦΡΟΝΤΙΣΤΗΡΙ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 2 0 1 6 Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Τα θέματα επεξεργάστηκαν οι
Διαβάστε περισσότεραf x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραA. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Διαβάστε περισσότεραΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Να αποδείξετε
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι
Διαβάστε περισσότερα(f(x) + g(x)) = f (x) + g (x).
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 20 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών www.othisi.gr 2 Παρασκευή, 20 Μαΐου 2016 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραP A B P(A) P(B) P(A. , όπου l 1
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ
Διαβάστε περισσότεραΑ4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα
Διαβάστε περισσότεραΜονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1
ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) Α1. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f(x)=x είναι f (x)=1,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Διαβάστε περισσότεραx. Αν ισχύει ( ) ( )
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ 000 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος τις συνάρτησης c f είναι ίση με c f Θεωρία σχολικό σελίδα 0 Β. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και Β το σύνολο
Διαβάστε περισσότεραευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 009 ευτέρα, 8 Μα ου 009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α Β)=Ρ(Α)+Ρ(Β) Μονάδες
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον
Διαβάστε περισσότεραΛύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ
Διαβάστε περισσότεραΜαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες
Διαβάστε περισσότεραΜαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΜονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A. Να αποδείξετε ότι η παράγωγος της ταυτοτικής
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΩ ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότερα1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4
ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραP(A ) = 1 P(A). Μονάδες 7
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ»
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =
ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ 005 ΘΕΜΑ ο Α.. Θεωρία s s Α.. CV =, αν > 0, ενώ CV =, αν < 0. - Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. ΘΕΜΑ ο α. Πρέπει > 0, άρα A f = (0, + ). β. f () = (α
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε
Διαβάστε περισσότερα, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότερα4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,
Διαβάστε περισσότεραΜαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ
Ζήτηµα ο Α.. Α.. Β.. Β.. Β.. Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ
Διαβάστε περισσότερα(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () ΘΕΜΑ Α Α.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης fxc είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας
Διαβάστε περισσότεραΑν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;
Διαβάστε περισσότεραΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β
Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 50-5 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα 70 Α. Θεωρία βιβλίο Ο.Ε..Β. σελίδα Α4. α.
Διαβάστε περισσότεραΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
AΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΠΡΟΣΟΜΟΙΩΣΗΣ 5 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 6 ΑΠΡΙΛΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ 016 ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ Γ ΛΥΕΙΟΥ ΘΕΜΤ Ι ΠΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ ΤΕΤΡΤΗ 0 ΜΪΟΥ 016 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΘΕΜ A1. ν A και A είναι
Διαβάστε περισσότεραi μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Θερινά ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Κατσαρός Δημήτρης - Συμεώνογλου Βασίλης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Διαβάστε περισσότεραΑ) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.
Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες
Διαβάστε περισσότερα,,, και τα ενδεχόμενα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) 0 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f(x)=x είναι f( x=, ) για κάθε x Α. Έστω μια
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν (2001 2012) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε (2003 2012) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν (00 0) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε (003 0) Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ 2016 ΘΕΜΑΤΑ - ΛΥΣΕΙΣ 20 ΜΑΪΟΥ 2016 ΕΠΙΜΕΛΕΙΑ ΛΥΣΕΩΝ: ASK4MATH WWW.ASKISIOLOGIO.GR Έκδοση 2η IE Τις λύσεις των θεμάτων επιμελήθηκαν τα μέλη της ask4math 1. Ανδριοπούλου
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )
5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους
Διαβάστε περισσότερα( ) 2. χρόνος σε min. 2. xa x. x x v
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μ. ΤΕΤΑΡΤΗ 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
Διαβάστε περισσότεραΠ Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ
ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.
ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0
Διαβάστε περισσότερα(f(x)+g(x)) =f (x)+g (x), x R
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.
Διαβάστε περισσότεραΛύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) Οι απαντήσεις και οι λύσεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
Ε_ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Α Για δύο ενδεχόµενα Α και Β ενός
Διαβάστε περισσότεραΓ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ (1) ΚΥΡΙΑΚΗ, 2 ΑΠΡΙΛΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1. Να αποδείξετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση
Διαβάστε περισσότεραP(A ) = 1 P(A). Μονάδες 7
ΡΧΗ 1ΗΣ ΣΕΛΙ Σ ΝΕΟ & ΠΛΙΟ ΣΥΣΤΗΜ Γ ΗΜΕΡΗΣΙΩΝ ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ Γ ΤΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Ι ΕΠΛ (ΟΜΔ Β ) ΠΡΣΕΥΗ 20 ΜΪΟΥ 2016 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότερα