Parameter Estimation Fitting Probability Distributions Bayesian Approach

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Parameter Estimation Fitting Probability Distributions Bayesian Approach"

Transcript

1 Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT Dr. Kempthore Sprig MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

2 Outlie Bayesia Approach to Parameter Estimatio 1 Bayesia Approach to Parameter Estimatio 2 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

3 Bayesia Framework: Extesio of Maximum Likelihood Geeral Model Data Model : X = (X 1, X 2,..., X ) vector-valued radom variable with joit desity give by f (x 1,..., x θ) Data Realizatio: X = x = (x 1,..., x ) Likelihood of θ (give x): lik(θ) = f (x 1,..., x θ) (MLE θˆ maximizes lik(θ) for fixed realizatio) Prior distributio: true θ Θ modeled as radom variable θ Π, with desity π(θ), θ Θ Posterior Distributio: Distributio of θ give X = x Joit desity of (X, θ): f X,θ (x, θ) = f (x θ)π(θ) Desity of margial X distributio of X : f X (x) = f X,θ (x, θ)dθ = f (x θ)π(θ)dθ Θ Θ Desity of posterior distributio of θ give X = x f X,θ (x, θ) π(θ x) = f X (x) 3 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

4 Bayesia Framework Posterior Distributio: Coditioal distributio of θ give X = x f X,θ (x, θ) f (x θ)π(θ) π(θ x) = = X f X (x) f (x θ)π(θ)dθ Posterior desity Bayesia Priciples Θ = f (x θ)π(θ) = Likelihood(θ) Prior desity Prior distributio models ucertaity about θ, a priori (before observig ay data) Justified by axioms of statistical decisio theory (utility theory ad the optimality of maximizig expected utility). All iformatio about θ is cotaied i π(θ x) Posterior mea miimizes expected squared error E [(θ a) 2 x] miimized by a = E [θ x]. Posterior media miimizes expected absolute error E [ θ a x] miimized by a = media(θ x). 4 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

5 Bayesia Framework Bayesia Priciples (cotiued): Posterior Mode: Modal value of π(θ x) is most probable. Aalogue to 90% cofidece iterval: θ values betwee 0.05 ad 0.95 quatiles of π(θ x). Highest posterior desity (HPD) iterval (regio): For α : 0 < α < 1, the (1 α)hpd regio for θ is R d = {θ : π(θ x) > d } where d is the value such that π(r d x) = 1 α. Note: if posterior desity is uimodal but ot symmetric, the the tail probabilities outside the regio will be uequal. 5 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

6 Bayesia Iferece: Beroulli Trials Beroulli Trials: X 1, X 2,..., X i.i.d. Beroulli(θ) Sample Space: X = {1, 0} ( success or failure ) Probability mass fuctio θ, if x = 1 f (x θ) = (1 θ), if x = 0 Examples: Flippig a coi ad observig a Head versus a Tail. Radom sample from a populatio ad measurig a dichotomous attribute (e.g., preferece for a give political cadidate, testig positive for a give disease). Summary Statistic: S = X 1 + X X S Biomial(, p ) P(S = k θ) = θ k (1 θ) k, k = 0, 1,...,. k 6 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

7 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: π(θ) = 1, 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = p f S θ (s ) θ)π(θ) = θ s (1 θ) ( s) 1 s Margial desity of S p ) X 1 f S (s) = 0 θ s (1 θ) ( s) dθ p ) s X 1 = 0 θ s (1 θ) ( s) dθ p s ) 1 = Beta(s + 1, ( s) + 1) s +1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) 7 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

8 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s (1 θ) ( s) = Beta(s + 1, ( s) + 1) Recall a radom variable U Beta(a, b), has desity a 1 (1 u) g(u a, b) = u b 1 Beta(a,b), 0 < u < 1 where Γ(a)Γ(b) Beta(a, b) =, with Γ(a+b) X α 1 0 Γ(a) = y e x dx, (see Gamma(a) desity) Γ(a + 1) = a Γ(a) = (a!) for itegral a Also (Appedix A3 of Rice, 2007) E [U a, b] = a/(a + b) Var[U a, b] = ab/[(a + b) 2 (a + b + 1)] 8 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

9 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Prior: θ Beta(a = 1, b = 1), priori a Sample data: = 20 ad S = i=1 X i = 13 (Example 3.5.E) Posterior: [θ S = s] Beta(a, b) with a = s + 1 = 14 ad b = ( s) + 1 = 8 Use R to compute: Posterior mea: a/(a + b) Posterior stadard deviatio: ab/[(a + b) 2 (a + b + 1)] Posterior probability:π({θ.5} s) > a=14; b=8 > a/(a+b) [1] > sqrt(a*b/(((a+b)**2)*(a+b +1))) [1] > pbeta(.5,shape1=14, shape2=8) [1] MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

10 Bayesia Iferece: Beroulli Trials Case 2: Beta Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: θ a 1 (1 θ) π(θ) = b 1 Beta(a,b), 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = f p S θ (s ) θ)π(θ) θ a 1 (1 θ) = θ s (1 θ) ( s) b 1 s Beta(a,b) θ s+a 1 (1 θ) ( s)+b 1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) 10 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

11 Bayesia Iferece: Beroulli Trials Case 2: Beta Prior (cotiued) Note: Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) This is a Beta(a, b ) distributio with a = s + a ad b = ( s) + b. A prior distributio Beta(a, b) correspods to a prior belief cosistet with hypothetical prior data cosistig of a successes ad b failures, ad uiform pre-hypothetical prior. 11 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

12 Bayesia Iferece: Normal Sample Normal Sample X 1, X 2,..., X i.i.d. N(µ, σ 2 ). Sample Space: X = (, + ) (for each X i ) Probability desity fuctio: f (x µ, σ 2 ) = 2πσ 2 Cosider re-parametrizatio: Three Cases: 1 (x µ) σ 2 ξ = 1/σ 2 (the precisio) ad θ = µ. 1 1 ξ(x θ) f (x θ, ξ) = ( ξ ) 2 e 2 2 2π Ukow θ (ξ = ξ 0, kow) Ukow ξ (θ = θ 0, kow) Both θ ad ξ ukow e 12 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

13 Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Likelihood of sample x = (x 1,..., x ) lik(θ) = f ( (x 1,..., x θ, ξ 0 ) = f (x i θ, ξ 0 ) ( i=1 1 = ( ξ 0 ) 2 e 2 1 ξ 0 (x i θ) 2 i=1 2π 1 2π = ( ξ 0 ) 2 e 2 ξ 0 i=1 (x i θ) 2 Prior distributio: θ N(θ 0, ξ 1 ) prior ξ prior 1 1 ξprior (θ θ 0 ) 2 π(θ) = ( 2π ) 2 e 2 Posterior distributio π(θ x) lik(θ) π(θ) 1 1 = ( ξ 0 ) 1 2 e 2 ξ 0 i=1 (x i θ) 2 ( ξ prior ) 2 e 2 ξ prior (θ θ 0 ) 2 2π 2π 1 [ξ 0 i=1 (x i θ) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 (all costat factor terms dropped) 13 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

14 Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Claim: posterior distributio is Normal(!) Proof: π(θ x) lik(θ) π(θ) 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 Q(θ) e 2 where Q(θ) = ξ post (θ θ post ) 2 with ξ post = ξ prior + ξ 0 (ξ prior )θ 0 +(ξ 0 )x θ post = (ξ prior )+(ξ 0 ) = αθ 0 + (1 α)x, where α = ξ prior /ξ post By examiatio: θ x N(θ post, ξpost 1 ) Note: As ξ prior 0, θ post x = θˆmle ξ (σ 2 σ 2 post ξ 0 0 /) 14 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap post

15 Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0. Likelihood of sample x = (x 1,..., x ) lik(ξ) = f ( (x 1,..., x θ 0, ξ) = i=1 f (x i θ 0, ξ) ( 1 1 ξ(x i θ 0 ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ ξ (x i θ 0 ) = 2 2π ) 2 e 1 2 i=1 Prior distributio: ξ Gamma(α, λ) λ α ξ α 1 π(ξ) = e λξ, ξ > 0 ( Cojugate Prior) Γ(α) Posterior distributio π(ξ x) l lik(ξ) π(ξ) l = ( ξ ) 2 e 2 i=1 e 1 ξ (x i θ 0 ) 2 λ α ξ (α 1 λξ 2π Γ(α) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + ad λ = λ + (x i θ 0 ) i=1 15 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

16 Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0 (cotiued) Posterior distributio π(ξ x) lik(ξ) π(ξ) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + 2 ad λ = λ + 2 i=1(x i θ 0 ) 2. Posterior mea: E [ξ x] = α λ Posterior mode: mode(π(ξ x)) = α 1 λ For small α ad λ, E [ξ x] = 1/σˆ2 (x i θ 0 ) 2 MLE i=1 2 σ 2 i=1 (x i θ 0 ) 2 MLE mode(π(ξ x)) = (1 2 )/ˆ 16 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

17 Bayesia Iferece: Normal Sample Case3: Ukow mea θ ad ukow precisio ξ Likelihood of sample x = (x 1,..., x ) lik(θ, ξ) = f ( (x 1,..., x θ, ξ) = i=1 f (x i θ, ξ) ( 1 1 ξ(x i θ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ 1 ξ (x i θ) = 2 2π ) 2 e 2 i=1 Prior distributio: θ ad ξ idepedet, a priori with θ N(θ 0, ξ 1 prior ) ξ Gamma(α, λ) π(θ, ξ) = π(θ)π(ξ) l ] l ] ξ 1 λ α ξ α 1 prior 1 ξ prior (θ θ 0 ) = ( ) 2 e 2 2 e λξ 2π Γ(α) Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) l 1 ] ] ξ i=1 (x i θ) 2 1 ξ prior (θ θ 0 ) (ξ) 2 e 2 e 2 2 e λξ ξ α 1 17 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

18 Bayesia Iferece: Normal Sample Case 3 Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) ] l (ξ) 2 e 2 i=1 e 2 1 ξ (x i θ) 2 1 ξ prior (θ θ 0 ) 2 ξ α 1 λξ e Margial Posterior distributio X of θ : π(θ x) = l {ξ} π(θ, ξ x)dξ ] X e 1 2 ξ [ prior (θ θ λ 0 ) 2 (ξ) α 1 ] e ξ {ξ} dξ l ] 1 ξ Γ(α prior (θ θ 0 ) 2 ) = e 2 (λ ) a α where α = α + ad λ = λ i=1(x i θ) 2. Limitig case as ξ prior, α ad λ 0 a π(θ x) (λ ) α = [ (x i θ) 2 ] 2 i=1 = [( 1)s 2 + (θ x) 2 ] 2 1 (θ x) 2 ] 1 s 2 [1 + 2 Note: A posteriori (θ x)/s t 1 (for small ξ prior, α, λ) ] 18 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

19 Bayesia Iferece: Poisso Distributio Poisso Sample X 1, X 2,..., X i.i.d. Poisso(λ) Sample Space: X = {0, 1, 2,...} (for each X i ) Probability mass fuctio: λ x λ f (x λ) = e x! Likelihood of sample x = (x 1,..., x ) lik(λ) = f (x 1,..., x λ) ( ( λ x i = f (x λ i=1 i λ) = i=1 x i! e λ 1 x i e λ Prior distributio: λ Gamma(α, ν) π(λ) = να λ α 1 e νλ Γ(α), λ > 0 Posterior distributio l ] l ] 1 x i ν α λ π(λ x) lik(λ) π(λ) = λ e λ α 1 e νλ λ α 1 ν λ Γ(α) e a Gamma(α, ν ) with α = α + 1 x i ad ν = ν MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

20 Bayesia Iferece: Poisso Distributio Specifyig the prior distributio: λ Gamma(α, ν). Choose α ad ν to match prior mea ad prior variace E [λ α, ν] = α/ν (= µ 1 ) Var[λ α, ν] = α/ν 2 (= σ 2 = µ 2 2 µ 1 ) Set ν = µ 1 /σ 2 ad α = µ 1 ν Cosider uiform distributio o iterval [0, λ MAX ] = {λ : 0 < λ < λ MAX } (Choose λ MAX to be very large) Example 8.4.A Couts of asbestos fibers o filters (Steel et al. 1980). 23 grid squares with mea cout: x = 1 a 2 23 i=1 3x i = λˆ MOM = λˆ MLE E= 24.9 E StError(λˆ) = Var(ˆ V λ) = λ/ ˆ = 24.9/23 = 1.04 Compare with Bayesia Iferece (µ 1 = 15 ad σ 2 = 5 2 ) 20 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

21 Bayesia Iferece: Hardy-Weiberg Model Example A / 8.6 C Multiomial sample Data: couts of multiomial cells, (X 1, X 2, X 3 ) = (342, 500, 187), for = 1029 outcomes correspodig to geotypes AA, Aa ad aa which occur with probabilities: (1 θ) 2, 2θ(1 θ) ad θ 2. Prior for θ : Uiform distributio o (0, 1) = {θ : 0 < θ < 1}. Bayes predictive iterval for θ agrees with approximate cofidece iterval based o θˆ = See R Script implemetig the Bayesia computatios. 21 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

22 Bayesia Iferece: Prior Distributios Importat Cocepts Cojugate Prior Distributio: a prior distributio from a distriibutio family for which the posterior distributio is from the same distributio family Beta distributios for Beroulli/Biomial Samples Gamma distributios for Poisso Samples Normal distributios for Normal Samples (ukow mea, kow variace) No-iformative Prior Distributios: Prior distributios that let the data domiate the structure of the posterior distributio. Uiform/Flat prior Complicated by choice of scale/uits for parameter No-iformative prior desity may ot itegrate to 1 I.e., prior distributio is improper Posterior distributio for improper priors correspods to limitig case of sequece of proper priors. 22 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

23 Bayesia Iferece: Normal Approximatio to Posterior Posterior Distributio With Large-Samples Coditioal desity/pmf of data: X f (x θ) Prior desity of parameter: θ π(θ) Posterior desity π(θ x) π(θ)f (x θ) = exp [log π(θ)] exp [log f (x θ)] = exp [log π(θ)] exp [ (θ)] For a large sample, (θ) ca be expressed as a Taylor Series about the MLE θˆ (θ) = (θˆ) + (θ θˆ) / (θˆ) + 1 (θ θ) ˆ 2 2 // (ˆ θ) (θ θˆ) (θ θ) ˆ 2 2 // (ˆ θ) 1 = (θ θ) ˆ 2 2 // (ˆ θ) (i.e. Normal log-likelihood, mea θˆ ad variace [ (θˆ)] 1 ) For large sample, π(θ) is relatively flat i rage ear θ θˆ ad likelihood cocetrates i same rage. 23 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap

24 MIT OpeCourseWare Statistics for Applicatios Sprig 2015 For iformatio about citig these materials or our Terms of Use, visit:

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Επανάληψη Expectatio maximizatio for Gaussia mixtures. Αρχικοποιούμε τις άγνωστες παραμέτρους µ k, Σ k και π k 2. Υπολογίσμος των resposibilitiesγ(z k : γ ( z = k π ( x µ ˆ,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Non Parametric

Αναγνώριση Προτύπων. Non Parametric Γιώργος Γιαννακάκης No Parametric ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Probability Desity Fuctio If the radom variable is deoted by X, its probability desity fuctio f has the property that No Parametric

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120 t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Bayes Rule and its Applications

Bayes Rule and its Applications Bayes Rule and its Applications Bayes Rule: P (B k A) = P (A B k )P (B k )/ n i= P (A B i )P (B i ) Example : In a certain factory, machines A, B, and C are all producing springs of the same length. Of

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions A Ist Stat Math 06 68:469 490 DOI 0.007/s046-04-050-9 Secod-order asymptotic compariso of the MLE ad MCLE of a atural parameter for a trucated expoetial family of distributios Masafumi Akahira Received:

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

len(observed ) 1 (observed[i] predicted[i]) 2

len(observed ) 1 (observed[i] predicted[i]) 2 len(observed ) 1 (observed[i] predicted[i]) 2 i=0 len(observed ) 1 (observed[i] predicted[i]) 2 i=0 model1 = pylab.polyfit(xvals, yvals, 1) pylab.plot(xvals, pylab.polyval(model1, xvals), 'r--', label

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tutorial on Multinomial Logistic Regression

Tutorial on Multinomial Logistic Regression Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

lecture 10: the em algorithm (contd)

lecture 10: the em algorithm (contd) lecture 10: the em algorithm (contd) STAT 545: Intro. to Computational Statistics Vinayak Rao Purdue University September 24, 2018 Exponential family models Consider a space X. E.g. R, R d or N. ϕ(x) =

Διαβάστε περισσότερα