Parameter Estimation Fitting Probability Distributions Bayesian Approach
|
|
- Περσεφόνη Βάμβας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT Dr. Kempthore Sprig MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
2 Outlie Bayesia Approach to Parameter Estimatio 1 Bayesia Approach to Parameter Estimatio 2 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
3 Bayesia Framework: Extesio of Maximum Likelihood Geeral Model Data Model : X = (X 1, X 2,..., X ) vector-valued radom variable with joit desity give by f (x 1,..., x θ) Data Realizatio: X = x = (x 1,..., x ) Likelihood of θ (give x): lik(θ) = f (x 1,..., x θ) (MLE θˆ maximizes lik(θ) for fixed realizatio) Prior distributio: true θ Θ modeled as radom variable θ Π, with desity π(θ), θ Θ Posterior Distributio: Distributio of θ give X = x Joit desity of (X, θ): f X,θ (x, θ) = f (x θ)π(θ) Desity of margial X distributio of X : f X (x) = f X,θ (x, θ)dθ = f (x θ)π(θ)dθ Θ Θ Desity of posterior distributio of θ give X = x f X,θ (x, θ) π(θ x) = f X (x) 3 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
4 Bayesia Framework Posterior Distributio: Coditioal distributio of θ give X = x f X,θ (x, θ) f (x θ)π(θ) π(θ x) = = X f X (x) f (x θ)π(θ)dθ Posterior desity Bayesia Priciples Θ = f (x θ)π(θ) = Likelihood(θ) Prior desity Prior distributio models ucertaity about θ, a priori (before observig ay data) Justified by axioms of statistical decisio theory (utility theory ad the optimality of maximizig expected utility). All iformatio about θ is cotaied i π(θ x) Posterior mea miimizes expected squared error E [(θ a) 2 x] miimized by a = E [θ x]. Posterior media miimizes expected absolute error E [ θ a x] miimized by a = media(θ x). 4 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
5 Bayesia Framework Bayesia Priciples (cotiued): Posterior Mode: Modal value of π(θ x) is most probable. Aalogue to 90% cofidece iterval: θ values betwee 0.05 ad 0.95 quatiles of π(θ x). Highest posterior desity (HPD) iterval (regio): For α : 0 < α < 1, the (1 α)hpd regio for θ is R d = {θ : π(θ x) > d } where d is the value such that π(r d x) = 1 α. Note: if posterior desity is uimodal but ot symmetric, the the tail probabilities outside the regio will be uequal. 5 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
6 Bayesia Iferece: Beroulli Trials Beroulli Trials: X 1, X 2,..., X i.i.d. Beroulli(θ) Sample Space: X = {1, 0} ( success or failure ) Probability mass fuctio θ, if x = 1 f (x θ) = (1 θ), if x = 0 Examples: Flippig a coi ad observig a Head versus a Tail. Radom sample from a populatio ad measurig a dichotomous attribute (e.g., preferece for a give political cadidate, testig positive for a give disease). Summary Statistic: S = X 1 + X X S Biomial(, p ) P(S = k θ) = θ k (1 θ) k, k = 0, 1,...,. k 6 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
7 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: π(θ) = 1, 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = p f S θ (s ) θ)π(θ) = θ s (1 θ) ( s) 1 s Margial desity of S p ) X 1 f S (s) = 0 θ s (1 θ) ( s) dθ p ) s X 1 = 0 θ s (1 θ) ( s) dθ p s ) 1 = Beta(s + 1, ( s) + 1) s +1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) 7 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
8 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s (1 θ) ( s) = Beta(s + 1, ( s) + 1) Recall a radom variable U Beta(a, b), has desity a 1 (1 u) g(u a, b) = u b 1 Beta(a,b), 0 < u < 1 where Γ(a)Γ(b) Beta(a, b) =, with Γ(a+b) X α 1 0 Γ(a) = y e x dx, (see Gamma(a) desity) Γ(a + 1) = a Γ(a) = (a!) for itegral a Also (Appedix A3 of Rice, 2007) E [U a, b] = a/(a + b) Var[U a, b] = ab/[(a + b) 2 (a + b + 1)] 8 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
9 Bayesia Iferece: Beroulli Trials Case 1: Uiform Prior (cotiued) Prior: θ Beta(a = 1, b = 1), priori a Sample data: = 20 ad S = i=1 X i = 13 (Example 3.5.E) Posterior: [θ S = s] Beta(a, b) with a = s + 1 = 14 ad b = ( s) + 1 = 8 Use R to compute: Posterior mea: a/(a + b) Posterior stadard deviatio: ab/[(a + b) 2 (a + b + 1)] Posterior probability:π({θ.5} s) > a=14; b=8 > a/(a+b) [1] > sqrt(a*b/(((a+b)**2)*(a+b +1))) [1] > pbeta(.5,shape1=14, shape2=8) [1] MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
10 Bayesia Iferece: Beroulli Trials Case 2: Beta Prior for θ Θ = {θ : 0 θ 1} = [0, 1] Prior desity for θ: θ a 1 (1 θ) π(θ) = b 1 Beta(a,b), 0 θ 1 Joit desity/pmf for (S, θ) f S,θ (s, θ) = f p S θ (s ) θ)π(θ) θ a 1 (1 θ) = θ s (1 θ) ( s) b 1 s Beta(a,b) θ s+a 1 (1 θ) ( s)+b 1 Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) 10 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
11 Bayesia Iferece: Beroulli Trials Case 2: Beta Prior (cotiued) Note: Posterior desity of θ give S π(θ s) = f S,θ (s, θ)/f S (s) θ s+a 1 (1 θ) ( s)+b 1 = X θ (θ / ) s+a 1 (1 θ / ) ( s)+b 1 dθ /, θ s+a 1 (1 θ) ( s)+b 1 = Beta((s + a 1, ( s) + b 1) This is a Beta(a, b ) distributio with a = s + a ad b = ( s) + b. A prior distributio Beta(a, b) correspods to a prior belief cosistet with hypothetical prior data cosistig of a successes ad b failures, ad uiform pre-hypothetical prior. 11 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
12 Bayesia Iferece: Normal Sample Normal Sample X 1, X 2,..., X i.i.d. N(µ, σ 2 ). Sample Space: X = (, + ) (for each X i ) Probability desity fuctio: f (x µ, σ 2 ) = 2πσ 2 Cosider re-parametrizatio: Three Cases: 1 (x µ) σ 2 ξ = 1/σ 2 (the precisio) ad θ = µ. 1 1 ξ(x θ) f (x θ, ξ) = ( ξ ) 2 e 2 2 2π Ukow θ (ξ = ξ 0, kow) Ukow ξ (θ = θ 0, kow) Both θ ad ξ ukow e 12 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
13 Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Likelihood of sample x = (x 1,..., x ) lik(θ) = f ( (x 1,..., x θ, ξ 0 ) = f (x i θ, ξ 0 ) ( i=1 1 = ( ξ 0 ) 2 e 2 1 ξ 0 (x i θ) 2 i=1 2π 1 2π = ( ξ 0 ) 2 e 2 ξ 0 i=1 (x i θ) 2 Prior distributio: θ N(θ 0, ξ 1 ) prior ξ prior 1 1 ξprior (θ θ 0 ) 2 π(θ) = ( 2π ) 2 e 2 Posterior distributio π(θ x) lik(θ) π(θ) 1 1 = ( ξ 0 ) 1 2 e 2 ξ 0 i=1 (x i θ) 2 ( ξ prior ) 2 e 2 ξ prior (θ θ 0 ) 2 2π 2π 1 [ξ 0 i=1 (x i θ) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 (all costat factor terms dropped) 13 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
14 Bayesia Iferece: Normal Sample Case 1: Ukow mea θ ad kow precisio ξ 0 Claim: posterior distributio is Normal(!) Proof: π(θ x) lik(θ) π(θ) 1 [ξ 0 (θ x) 2 +ξ prior (θ θ 0 ) 2 ] e 2 1 Q(θ) e 2 where Q(θ) = ξ post (θ θ post ) 2 with ξ post = ξ prior + ξ 0 (ξ prior )θ 0 +(ξ 0 )x θ post = (ξ prior )+(ξ 0 ) = αθ 0 + (1 α)x, where α = ξ prior /ξ post By examiatio: θ x N(θ post, ξpost 1 ) Note: As ξ prior 0, θ post x = θˆmle ξ (σ 2 σ 2 post ξ 0 0 /) 14 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap post
15 Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0. Likelihood of sample x = (x 1,..., x ) lik(ξ) = f ( (x 1,..., x θ 0, ξ) = i=1 f (x i θ 0, ξ) ( 1 1 ξ(x i θ 0 ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ ξ (x i θ 0 ) = 2 2π ) 2 e 1 2 i=1 Prior distributio: ξ Gamma(α, λ) λ α ξ α 1 π(ξ) = e λξ, ξ > 0 ( Cojugate Prior) Γ(α) Posterior distributio π(ξ x) l lik(ξ) π(ξ) l = ( ξ ) 2 e 2 i=1 e 1 ξ (x i θ 0 ) 2 λ α ξ (α 1 λξ 2π Γ(α) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + ad λ = λ + (x i θ 0 ) i=1 15 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
16 Bayesia Iferece: Normal Sample Case2: Ukow precisio ξ ad kow mea θ 0 (cotiued) Posterior distributio π(ξ x) lik(ξ) π(ξ) 1 +α 1 (λ+ (x i θ 0 ) 2 )ξ ξ 2 e 2 i=1 = ξ α 1e λ ξ Gamma(α, λ ) distributio desity with 1 a α = α + 2 ad λ = λ + 2 i=1(x i θ 0 ) 2. Posterior mea: E [ξ x] = α λ Posterior mode: mode(π(ξ x)) = α 1 λ For small α ad λ, E [ξ x] = 1/σˆ2 (x i θ 0 ) 2 MLE i=1 2 σ 2 i=1 (x i θ 0 ) 2 MLE mode(π(ξ x)) = (1 2 )/ˆ 16 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
17 Bayesia Iferece: Normal Sample Case3: Ukow mea θ ad ukow precisio ξ Likelihood of sample x = (x 1,..., x ) lik(θ, ξ) = f ( (x 1,..., x θ, ξ) = i=1 f (x i θ, ξ) ( 1 1 ξ(x i θ) = ( ξ ) 2 e 2 2 i=1 2π ( ξ 1 ξ (x i θ) = 2 2π ) 2 e 2 i=1 Prior distributio: θ ad ξ idepedet, a priori with θ N(θ 0, ξ 1 prior ) ξ Gamma(α, λ) π(θ, ξ) = π(θ)π(ξ) l ] l ] ξ 1 λ α ξ α 1 prior 1 ξ prior (θ θ 0 ) = ( ) 2 e 2 2 e λξ 2π Γ(α) Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) l 1 ] ] ξ i=1 (x i θ) 2 1 ξ prior (θ θ 0 ) (ξ) 2 e 2 e 2 2 e λξ ξ α 1 17 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
18 Bayesia Iferece: Normal Sample Case 3 Posterior distributio π(θ, ξ x) lik(θ, l ξ) π(θ, ξ) ] l (ξ) 2 e 2 i=1 e 2 1 ξ (x i θ) 2 1 ξ prior (θ θ 0 ) 2 ξ α 1 λξ e Margial Posterior distributio X of θ : π(θ x) = l {ξ} π(θ, ξ x)dξ ] X e 1 2 ξ [ prior (θ θ λ 0 ) 2 (ξ) α 1 ] e ξ {ξ} dξ l ] 1 ξ Γ(α prior (θ θ 0 ) 2 ) = e 2 (λ ) a α where α = α + ad λ = λ i=1(x i θ) 2. Limitig case as ξ prior, α ad λ 0 a π(θ x) (λ ) α = [ (x i θ) 2 ] 2 i=1 = [( 1)s 2 + (θ x) 2 ] 2 1 (θ x) 2 ] 1 s 2 [1 + 2 Note: A posteriori (θ x)/s t 1 (for small ξ prior, α, λ) ] 18 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
19 Bayesia Iferece: Poisso Distributio Poisso Sample X 1, X 2,..., X i.i.d. Poisso(λ) Sample Space: X = {0, 1, 2,...} (for each X i ) Probability mass fuctio: λ x λ f (x λ) = e x! Likelihood of sample x = (x 1,..., x ) lik(λ) = f (x 1,..., x λ) ( ( λ x i = f (x λ i=1 i λ) = i=1 x i! e λ 1 x i e λ Prior distributio: λ Gamma(α, ν) π(λ) = να λ α 1 e νλ Γ(α), λ > 0 Posterior distributio l ] l ] 1 x i ν α λ π(λ x) lik(λ) π(λ) = λ e λ α 1 e νλ λ α 1 ν λ Γ(α) e a Gamma(α, ν ) with α = α + 1 x i ad ν = ν MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
20 Bayesia Iferece: Poisso Distributio Specifyig the prior distributio: λ Gamma(α, ν). Choose α ad ν to match prior mea ad prior variace E [λ α, ν] = α/ν (= µ 1 ) Var[λ α, ν] = α/ν 2 (= σ 2 = µ 2 2 µ 1 ) Set ν = µ 1 /σ 2 ad α = µ 1 ν Cosider uiform distributio o iterval [0, λ MAX ] = {λ : 0 < λ < λ MAX } (Choose λ MAX to be very large) Example 8.4.A Couts of asbestos fibers o filters (Steel et al. 1980). 23 grid squares with mea cout: x = 1 a 2 23 i=1 3x i = λˆ MOM = λˆ MLE E= 24.9 E StError(λˆ) = Var(ˆ V λ) = λ/ ˆ = 24.9/23 = 1.04 Compare with Bayesia Iferece (µ 1 = 15 ad σ 2 = 5 2 ) 20 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
21 Bayesia Iferece: Hardy-Weiberg Model Example A / 8.6 C Multiomial sample Data: couts of multiomial cells, (X 1, X 2, X 3 ) = (342, 500, 187), for = 1029 outcomes correspodig to geotypes AA, Aa ad aa which occur with probabilities: (1 θ) 2, 2θ(1 θ) ad θ 2. Prior for θ : Uiform distributio o (0, 1) = {θ : 0 < θ < 1}. Bayes predictive iterval for θ agrees with approximate cofidece iterval based o θˆ = See R Script implemetig the Bayesia computatios. 21 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
22 Bayesia Iferece: Prior Distributios Importat Cocepts Cojugate Prior Distributio: a prior distributio from a distriibutio family for which the posterior distributio is from the same distributio family Beta distributios for Beroulli/Biomial Samples Gamma distributios for Poisso Samples Normal distributios for Normal Samples (ukow mea, kow variace) No-iformative Prior Distributios: Prior distributios that let the data domiate the structure of the posterior distributio. Uiform/Flat prior Complicated by choice of scale/uits for parameter No-iformative prior desity may ot itegrate to 1 I.e., prior distributio is improper Posterior distributio for improper priors correspods to limitig case of sequece of proper priors. 22 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
23 Bayesia Iferece: Normal Approximatio to Posterior Posterior Distributio With Large-Samples Coditioal desity/pmf of data: X f (x θ) Prior desity of parameter: θ π(θ) Posterior desity π(θ x) π(θ)f (x θ) = exp [log π(θ)] exp [log f (x θ)] = exp [log π(θ)] exp [ (θ)] For a large sample, (θ) ca be expressed as a Taylor Series about the MLE θˆ (θ) = (θˆ) + (θ θˆ) / (θˆ) + 1 (θ θ) ˆ 2 2 // (ˆ θ) (θ θˆ) (θ θ) ˆ 2 2 // (ˆ θ) 1 = (θ θ) ˆ 2 2 // (ˆ θ) (i.e. Normal log-likelihood, mea θˆ ad variace [ (θˆ)] 1 ) For large sample, π(θ) is relatively flat i rage ear θ θˆ ad likelihood cocetrates i same rage. 23 MIT Parameter EstimatioFittig Probability DistributiosBayesia Ap
24 MIT OpeCourseWare Statistics for Applicatios Sprig 2015 For iformatio about citig these materials or our Terms of Use, visit:
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραLast Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Διαβάστε περισσότεραSolutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Διαβάστε περισσότεραp n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Διαβάστε περισσότεραOutline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Διαβάστε περισσότεραINTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Διαβάστε περισσότεραProbability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory
Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραLecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότερα1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Διαβάστε περισσότεραBayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Διαβάστε περισσότεραtrue value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx
Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated
Διαβάστε περισσότεραSUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότερα6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Διαβάστε περισσότεραThe Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Διαβάστε περισσότεραThe Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
Διαβάστε περισσότεραLAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Διαβάστε περισσότεραEstimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Διαβάστε περισσότεραOutline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Διαβάστε περισσότεραCS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραBessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραAn Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Διαβάστε περισσότεραIntroduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Διαβάστε περισσότεραL.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραα β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Επανάληψη Expectatio maximizatio for Gaussia mixtures. Αρχικοποιούμε τις άγνωστες παραμέτρους µ k, Σ k και π k 2. Υπολογίσμος των resposibilitiesγ(z k : γ ( z = k π ( x µ ˆ,
Διαβάστε περισσότεραΑναγνώριση Προτύπων. Non Parametric
Γιώργος Γιαννακάκης No Parametric ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Probability Desity Fuctio If the radom variable is deoted by X, its probability desity fuctio f has the property that No Parametric
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραt-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120
t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων
Διαβάστε περισσότεραDiane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραTheorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Διαβάστε περισσότερα( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Διαβάστε περισσότεραThree Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Διαβάστε περισσότεραBayes Rule and its Applications
Bayes Rule and its Applications Bayes Rule: P (B k A) = P (A B k )P (B k )/ n i= P (A B i )P (B i ) Example : In a certain factory, machines A, B, and C are all producing springs of the same length. Of
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραLecture 12: Pseudo likelihood approach
Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed
Διαβάστε περισσότεραDIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET
b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραSixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES
Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραQueensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Διαβάστε περισσότεραIIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Διαβάστε περισσότεραStatistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραΕκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)
Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και
Διαβάστε περισσότεραSecond-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions
A Ist Stat Math 06 68:469 490 DOI 0.007/s046-04-050-9 Secod-order asymptotic compariso of the MLE ad MCLE of a atural parameter for a trucated expoetial family of distributios Masafumi Akahira Received:
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότερα5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραHOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότερα5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Διαβάστε περισσότεραHomework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Διαβάστε περισσότεραRisk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Διαβάστε περισσότεραSpace-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραFREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Διαβάστε περισσότεραHW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Διαβάστε περισσότεραExample of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Διαβάστε περισσότεραLecture 3: Asymptotic Normality of M-estimators
Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,
Διαβάστε περισσότεραCHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραBayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Διαβάστε περισσότεραP AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραSPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Διαβάστε περισσότεραlen(observed ) 1 (observed[i] predicted[i]) 2
len(observed ) 1 (observed[i] predicted[i]) 2 i=0 len(observed ) 1 (observed[i] predicted[i]) 2 i=0 model1 = pylab.polyfit(xvals, yvals, 1) pylab.plot(xvals, pylab.polyval(model1, xvals), 'r--', label
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραTutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
Διαβάστε περισσότεραThe ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραIntroduction to Bayesian Statistics
Introduction to Bayesian Statistics Lecture 9: Hierarchical Models Rung-Ching Tsai Department of Mathematics National Taiwan Normal University May 6, 2015 Example Data: Weekly weights of 30 young rats
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Εκτιμητική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραForced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Διαβάστε περισσότεραΕργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Διαβάστε περισσότεραFORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Διαβάστε περισσότεραExam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραlecture 10: the em algorithm (contd)
lecture 10: the em algorithm (contd) STAT 545: Intro. to Computational Statistics Vinayak Rao Purdue University September 24, 2018 Exponential family models Consider a space X. E.g. R, R d or N. ϕ(x) =
Διαβάστε περισσότερα