true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx
|
|
- Άργος Σερπετζόγλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated at the true value θ. Fisher iformatio is meaigful for families of distributio which are regular:. Fixed support: {x : fx θ > } is the same for all θ. 2. θ log fx θ must exist ad be fiite for all x ad θ. 3. If E θ W X < for all θ, the k k E θ W X θ θ. Regular families W xfx θdx Oe parameter expoetial families: Cauchy locatio or scale family: fx θ π + x θ 2 fx θ πθ + x/θ 2 k W x fx θdx θ ad lots more. Most families of distributios used i applicatios are regular..2 No-regular families Uiform, θ Uiformθ, θ +.
2 .3 Facts about Fisher Iformatio Assume a regular family.. E θ θ log fx θ. Here θ log fx θ is called the score fuctio Sθ. Proof. E θ θ log fx θ θ θ log fx θ fx θdx fx θ fx θdx fx θ fx θdx θ fx θdx θ sice fx θdx for all θ. 2. I X θ Var θ Proof. Sice E θ θ log fx θ. θ log fx θ Var θ θ log fx θ E θ θ log fx θ 2 I X θ. 3. If X X, X 2,..., X ad X, X 2,..., X are idepedet radom variables, the I X θ I X θ + I X2 θ + I X θ. Proof. Note that fx θ 2 f i x i θ i
3 where f i θ is the pdf pmf of X i. Observe that log fx θ θ i θ log f ix i θ ad the radom variables i the sum are idepedet. This [ ] Var log fx θ θ so that I X θ i I X i θ by 2. i [ ] Var θ log f ix i θ 4. If X, X 2,..., X are i.i.d ad X X, X 2,..., X, the I Xi θ I X θ for all i so that I X θ I X θ. 5. A alterate formula for Fisher iformatio is I X θ E θ 2 log fx θ θ2 Proof. Abbreviate fx θdx as f, etc. Sice f, applyig θ f f θ θ θ log f f. θ f f to both sides, Applyig θ agai, Notig that θ θ log f f [ ] θ θ log f f 2 f θ 2 log f f + θ log f θ f θ 3 f θ f f, θ log f f,
4 this becomes or 2 2 θ 2 log f f + θ log f f 2 E log fx θ + I θ2 X θ. Example: Fisher Iformatio for a Poisso sample. Observe X,..., X iid Poissoλ. Fid I λ. We kow I λ I X λ. We shall calculate I X λ i three ways. Let X X. Prelimiaries: Method #: Observe that Method #2: Observe that Method #3: Observe that fx λ λx e λ x! log fx λ x log λ λ log x! λ log fx λ x λ 2 λ 2 log fx λ x λ 2 [ I X λ E λ λ 2 ] [ Xλ 2 ] log fx λ E λ X X Var λ sicee EX λ λ λ VarX λ 2 λ λ 2 λ λ 2 λ I X λ Var λ λ X Var λ I X λ E λ X log fx λ Var λ as i Method#. λ 2 Xλ log fx λ E λ2 λ 2 λ λ 2 λ. 4
5 Thus I λ I X λ λ. Example: Fisher iformatio for Cauchy locatio family. Suppose X, X 2,..., X iid with pdf fx θ π + x θ 2. Let X,..., X, X fx θ. Fid I θ. Note that I θ I X θ I X θ. Now f θ log fx θ θ f 2x θ π+x θ 2 2 π+x θ 2 2x θ + x θ 2 Now [ I X θ E θ 2 ] log fx θ 2 2X θ E + X θ 2 2x θ + x θ 2 4 π x θ 2 + x θ 2 3 dx. 2 π + x θ 2 dx Lettig u x θ, du dx, I X θ 4 π 8 π u 2 + u 2 3 du u 2 + u 2 3 du. 5
6 Substitutig x / + u 2, u /x /2, du.5/x /2 /x 2 dx, Hece I θ /2. I X θ 8 π 8 π 8 π 4 π u 2 + u 2 3 du u 2 + u 2 + u 2 2 du xx 2 /2/x /2 /x 2 dx x /2 x /2 dx 4 x 3/2 x 3/2 dx Beta itegral π 4 Γ3/2Γ3/2 π Γ3/2 + 3/2 4.5 π 2 π 2! 2. 2 Uses of Fisher Iformatio Asymptotic distributio of MLE s Cramér-Rao Iequality Iformatio iequality 2. Asymptotic distributio of MLE s i.i.d case: If fx θ is a regular oe-parameter family of pdf s or pmf s ad ˆθ ˆθ X is the MLE based o X X,..., X where is large ad X,..., X are iid from fx θ, the approximately, ˆθ N θ, Iθ where Iθ I X θ ad θ is the true value. Note that Iθ I X θ. More formally, ˆθ θ Iθ Iθˆθ θ d N, 6
7 as. More geeral case: Assumig various regularity coditios If fx θ is a oeparameter family of joit pdf s or joit pmf s for data X X,..., X where is large thik of a large dataset arisig from regressio or time series model ad ˆθ ˆθ X is the MLE, the ˆθ N θ, I X θ where θ is the true value. 2.2 Estimatio of the Fisher Iformatio If θ is ukow, the so is I X θ. Two estimates Î of the Fisher iformatio I Xθ are Î I X ˆθ, Î 2 2 θ 2 log fx θ θˆθ where ˆθ is the MLE of θ based o the data X. Î is the obvious plug-i estimator. It ca be difficult to compute I X θ does ot have a kow closed form. The estimator Î2 is suggested by the formula I X θ E 2 log fx θ θ2 It is ofte easy to compute, ad is required i may Newto- Raphso style algorithms for fidig the MLE so that it is already available without extra computatio. The two estimates Î ad Î2 are ofte referred to as the expected ad observed Fisher iformatio, respectively. As, both estimators are cosistet after ormalizatio for I X θ uder various regularity coditios. For example: i the iid case: Î /, Î2/, ad I X θ/ all coverge to Iθ I X θ. 2.3 Approximate Cofidece Itervals for θ Choose < α < say, α.5. Let z be such that P z < Z < z α where Z N,. Whe is large, we have approximately IX θˆθ θ N, 7
8 so that or equivaletly, { P z < } I X θˆθ θ < z α P {ˆθ z I X θ < θ < ˆθ + z } I X θ α. This approximatio cotiues to hold whe I X θ is replaced by a estimate Î either Î or Î2: { } P ˆθ z Î < θ < ˆθ + z α. Î Thus ˆθ z Î, ˆθ + z Î is a approximate α cofidece iterval for θ. Here ˆθ is the MLE ad Î is a estimate of the Fisher iformatio. 3 Cramer-Rao Iequality Let P θ, θ Θ R. Theorem. If fx θ is a regular oe-parameter family, E θ W τθ for all θ, ad τθ is differetiable, the Var θ W {τ θ} 2 I θ. Proof. Prelimiary Facts: A. [CovX, Y ] 2 VarXVarY. This is a special case of the Cauchy-Schwarz iequality. It is better kow to statisticias as ρ 2 where ρ is the correlatio betwee X ad Y. CovX, Y VarX VarY 8
9 B. CovX, Y EXY if wither EX or EY. This follows from the well-kow formula. Sice E θ θ log θ, from B, we have f CovX, Y EXY EXEY. [Cov θ W, θ log f θ] E [ W θ log f θ ] W x log θ θ fx fx θdx θ fx W x θ dx W sice θ is a regular family θ x fx θdx fx θ E θw τ θ. Sice from A., we have [Cov θ W, θ log f θ]2 VarW Var θ log θ, f [τ θ] 2 Var θ W I θ. Remark. Equality i A. is achieved iff Y ax + b for some costats a, b. Moreover, if EY, the EaX + b forces b aex so that Y ax EX for some costat a. Applyig this to the proof of CRLB with X W, Y θ log f θ tells us that Var θ W {τ θ} 2 I θ 9
10 iff log θ aθ[w τθ] θ f for some fuctio aθ. is true oly whe fx θ is a pef ad W ct + d for some c, d where T is the atural sufficiet statistic of the pef. 4 Asymptotic Efficiecy Let X X, X 2,..., X. Give a sequece of estimators W W X. If EW τθ for all, the {W } is asymptotically efficiet if where Var θ W lim V θ. V θ {τ θ} 2 I X θ What if Var θ W or if W is biased? A alterative defiitio: A sequece of estimators {W } is asymptotically ormal if W τθ V θ d N,. as. {W } is asymptotically efficiet for estimatig τθ if W ANτθ, V θ. Example: Observe X, X 2,..., X iid Poissoλ. Estimatio of τλ λ: E X λ. Does X achieve the CRLB? Yes! Var X VarX CRLB {τ λ} 2 I X λ λ /λ λ Alterative: Check coditio for exact attaimet of CRLB. log fx λ λ i λ log fx i λ i Xi λ λ X λ
11 Note: Sice X attais the CRLB for all, it must be the best ubiased estimator of λ. Showig that a estimator attais the CRLB is oe way to show it is best ubiased. But see later remark. Estimatio of τλ λ 2 : Defie W T T / 2 where T i X i. EW λ 2 see calculatios below ad W is a fuctio of the CSS T. Thus W is best ubiased for λ 2. Does W achieve the CRLB? No!!! Note that CRLB {τ λ} 2 I X λ VarW 4λ3 + 2λ2 2 2λ2 /λ 4λ3. see calculatios below. Alterative: Show coditio for achievemet of CRLB fails. As show earlier: λ log fx λ Xi λ T λ i The CRLB is attaied iff there exists aλ such that T T T λ aλ 2 λ 2. But the left side is liear i T ad the right side is quadratic i T, so that o multiplier aλ ca make them equal for all possible values of T,, 2,.... Remark 2. This situatio is ot uusual. The best ubiased estimator ofte fails to achieve the CRLB. But W is asymptotically efficiet: 4λ VarW 3 lim CRLB lim + 2λ2 2 4λ 3 lim +. 2λ Calculatios: Suppose Y Poissoξ. simple patter: The factorial momets of the Poisso follow EY ξ EY Y ξ 2 EY Y Y 2 ξ 3 EY Y Y 2Y 3 ξ 4
12 Proof of oe case: EY Y Y 2 ii i 2 ξi e ξ i! i ξ 3 ξ i 3 e ξ i 3! ξ i e ξ ξ3 ξ 3 j! From the factorial momets, we ca calculate everythig else. For example: i3 i VarY Y E[{Y Y } 2 ] [EY Y ] 2 E[{Y 2 Y 2 }] [ξ 2 ] 2 E[ Y Y Y 2 ] ξ 4 [ξ 4 + 4ξ 3 + 2ξ 2 ] ξ 4 4ξ 3 + 2ξ 2 where Y k Y Y Y 2 Y k +. I our case T Poissoλ so that substitutig ξ λ i the above results leads to so that W T T / 2 satisfies: ET T λ 2 2 λ 2 Var[T T ] 4λ 3 + 2λ λ λ 2 EW λ 2 VarW 4λ3 + 2λ A asymptotically iefficiet estimator Example: Let X,..., X be iid with pdf fx α xα e x, x >. Γα For this pdf EX VarX α. Clearly E X α. Thus X MOM estimator of α. Is it asymptotically efficiet? No. verified below. Note: This is pef with atural sufficiet statistic T i log X i. Sice T is complete, E X T is the UMVUE of α. Sice X is ot a fuctio of T, we kow Var X > Var[E X T ]. But Var[E X T ] CRLB. Thus, without calculatio, we kow that X caot achieve the CRLB for ay value of. We ow show it does ot achieve it asymptotically either. Note that Var X VarX 2 α.
13 Ad, [ Γ αγα {Γ α} 2 ] } I X α I X α {Γα} 2 by a routie calculatio. Hece CRLB I X α. Thus Var X CRLB αi X α which does ot deped o. Sice X does ot achieve CRLB for ay, we kow αi X α >. Thus Var lim X CRLB αi X α > so that X is ot asymptotically efficiet. The fuctio αi X α is a o-egative decreasig fuctio with lim α αi X α lim α αi X α. Figure : Plot of αi X α, where I X α is called the trigamma fuctio derivative of digamma fuctio: Γ α Γα 3
14 Whe α is small, X is horrible. Whe α is large, X is pretty good. Geeral Commet: For regular families, the MLE is asymptotically efficiet. iefficiet i geeral. Thus MOM is lim VarW CRLB essetially compares the variace of W with that of the MLE i large samples. 5 Fisher Iformatio, CRLB, Asymptotic distributio of MLE s i the multi parameter case Notatio: fx θ, θ θ, θ 2,..., θ p ad θ θ. θ p ad S p is the vector of scores log θ θ f θ log f θ. θ p log θ f Defie p p matrix I θ ES p S p Note that S is evaluated at θ ad the expectatio is take uder the distributio idexed by the same parameter θ. For a vector or matrix, we defie the expected values i this way: Y E Z EY ZZ W X E Y Z EW EX EY EZ 5. Properties. E θ S p p. 4
15 2. I S CovS, the variace-covariace matrix of S 3. If X, X 2,..., X has idepedet compoets, the I θ I X θ + I X2 θ + + I X θ. 4. If X, X 2,..., X are iid, the 5. I I θ I X θ. θ E 2 log θ where we defie θ f log θ log θ θ2 f θ i θ j f which is the p pmatrix whose i, j etry is 2 θ i θ j log f θ. 5.2 Asymptotic distributio of MLE of θ If ˆθ ˆθ X, X 2,..., X is the sequece of MLE s based o progressively larger samples, the ˆθ ANθ, I θ where AN ow stads for asymptotically multivariate ormal. This meas ˆθ Nθ, I θ for large. Recall: I iid case I θ I X θ. Estimate I θ by I ˆθ or 2 log θ θ i θ j f θˆθ 5
16 5.3 Multi-parameter CRLB X has joit pdf pmf fx θ which is a regular family. θ θ, θ 2,..., θ p. If EW X τθ where τθ R is differetiable fuctio of θ i, i,..., p, the VarW X g I g where g τθ θ p ad I I Xθ p p. Special Case: W X ˆθ i with τθ θ i. That is, ˆθ i is a ubiased estimate of θ i. Now that vector g has g i ad g j for j i, ad the CRLB gives Varˆθ i I ii where the right had side is the ith diagoal elemet of I. Weaker result: Suppose we kew θ j for all j i. By fixig θ j for j i at the kow values, we get a oe-parameter family ad the CRLB for the oe-parameter case gives But, sice I ii I ii, Varˆθ i I ii I ii E Varˆθ i I ii I ii θ i log fx θ where the upper lower boud is the best you ca do if you are estimatig θ i ad all the other parameters are ukow, ad the lower lower boud is the best you ca do whe all the other parameters are kow. Example: Nµ, σ 2 ξ distributio. Note that fx µ, ξ 2πξ e x µ2 /2ξ. 2 ad ad Iθ E l log f 2 log fx θ θ 2 l 2 l µ 2 µξ 2 l 2 l ξµ ξ 2 log2πξ x µ2 2ξ µ log f ξ log f E ξ x µ ξ 2ξ + x µ2 2ξ 2 X µ ξ 2 X µ X µ2 ξ 2 2ξ 2 ξ 3 6 ξ 2ξ 2
17 Hece I ξ 2ξ 2 σ 2 2σ 4. For a ubiased estimate of µe µ,σ 2W µ, VarW σ2 For a ubiased estimate of σ 2, VarW 2σ4 ad S 2 σ2 χ2 so that VarS2 2σ4. The limitig distribute of the MLE is give by X µ ˆσ 2 AN σ 2 Note: achieved by W X. ot achieved exactly S2 is best ubiased, σ 2 2σ 4 Var Xi µ 2 2σ4 E Xi µ 2 σ 2. achieves the CR-boud, but ot legitimate estimator if µ is ukow. Example: Gammaα, β Recall the digamma fuctio ψα Γ α Γα. Note that fx α, β Γαβ α xα e x/β l log f log Γα α log β + α log x x/β. The log fx θ θ α log f β log f ψα log β + log X α β + X β 2 ad Hece Iθ E Iθ 2 l α 2 2 l βα 2 l αβ 2 l β 2 E β 2 α β 2 β αψ α β ψ α ψ α β β α 2X β 2 β 3 ψ α β α β αψ α β β 2 ψ α β α β 2 CRLB for ubiased estimator of β is give by Var ˆβ I θ 22 {Iθ 22}. 7
18 Note that I θ 22 β2 α ψ α ψ α /α, {Iθ 22} β2 α. If α is kow the lower lower boud is achieved X E β α X Var VarX α α 2 αβ2 α 2 β2 α. If α must be estimated, there is a variace pealty which does ot vaish asymptotically. Figure 2: Plot of ψ α ψ α /α, showig that it does ot become asymptotically 8
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Διαβάστε περισσότεραLecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Διαβάστε περισσότεραSolutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότερα1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Διαβάστε περισσότεραLast Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Διαβάστε περισσότεραLAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Διαβάστε περισσότεραLecture 3: Asymptotic Normality of M-estimators
Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραn r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Διαβάστε περισσότεραSUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Διαβάστε περισσότεραL.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Διαβάστε περισσότεραHomework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραLecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Διαβάστε περισσότερα6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραProbability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory
Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ
Διαβάστε περισσότεραThree Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
Διαβάστε περισσότεραp n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Διαβάστε περισσότεραParameter Estimation Fitting Probability Distributions Bayesian Approach
Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραThe Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραSolve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραDiane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
Διαβάστε περισσότεραThe Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραIntroduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Διαβάστε περισσότεραMATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Διαβάστε περισσότεραEstimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότεραLecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραOutline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραα β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Διαβάστε περισσότεραIIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραECE598: Information-theoretic methods in high-dimensional statistics Spring 2016
ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence
Διαβάστε περισσότεραLecture 12: Pseudo likelihood approach
Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραΣτα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότεραTheorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Διαβάστε περισσότεραDegenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραBayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραBessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Διαβάστε περισσότεραINTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραPresentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
Διαβάστε περισσότεραOn Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραMore Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing
Ulrich Müller Economics 2110 Fall 2008 More Notes on Testing Large Sample Properties of the Likelihood Ratio Statistic Let X i be iid with density f(x, θ). We are interested in testing H 0 : θ = θ 0 against
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραF19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραExam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότερα1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Διαβάστε περισσότεραUniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case
J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios
Διαβάστε περισσότεραCHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραBiorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Διαβάστε περισσότεραOn Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραNotes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραQuadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραThe ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Διαβάστε περισσότερα= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Διαβάστε περισσότεραIntroduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραExercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Διαβάστε περισσότερα