Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Ε Τάξη. Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης
|
|
- Ὀδυσσεύς Σαμαράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Ε Τάξη Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Νοέμβριος & Δεκέμβριος 2015
2 ΠΕΡΙΕΧΟΜΕΝΟ Αριθμοί Άλγεβρα Γεωμετρία Μέτρηση Στατιστική - Πιθανότητες Διασύνδεση των θεμάτων και του περιεχομένου
3 ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ 1. Αριθμοί 2. Μέτρηση 3. Γεωμετρία 4. Άλγεβρα 5. Στατιστική - Πιθανότητες Διαδικασίες Ικανότητες Κάθε ενότητα περιγράφεται σε 8 κλίμακες Κάθε κλίμακα καλύπτεται σε περισσότερες από μια τάξεις
4 Κλίμακες Οι κλίμακες περιγράφουν συνοπτικά τα Μαθηματικά που αναμένεται να αναπτύξουν οι μαθητές: Για όλους Για αυτούς που χρειάζονται τα Μαθηματικά σε σπουδές Για αυτούς που θα ασχοληθούν με ανώτερα Μαθηματικά Οι κλίμακες σε κάθε ενότητα είναι ιεραρχικά δομημένες, προχωρούν προοδευτικά. Οι κλίμακες δεν είναι απόλυτα διακριτές. Οι κλίμακες δίνουν την ευκαιρία στους εκπαιδευτικούς να έχουν συνολική εικόνα των Μαθηματικών.
5 ΑΝΑΠΤΥΞΗ ΚΛΙΜΑΚΩΝ
6 ΚΛΙΜΑΚΕΣ Οι κλίμακες περιλαμβάνουν: 1. Δείκτες επιτυχίας 2. Ενδεικτικές δραστηριότητες 3. Ενδεικτικές δραστηριότητες αξιολόγησης 4. Δραστηριότητες εμπλουτισμού
7 Δείκτες Επιτυχίας Οι δείκτες επιτυχίας εκφράζουν τα αναμενόμενα αποτελέσματα με συγκεκριμένο και σαφή τρόπο και με τρόπο που μπορούν να αξιολογηθούν. Περιλαμβάνουν γνώσεις, δεξιότητες και στάσεις. Περιγράφουν αποτελέσματα που έχουν αξία για το άτομο και την κοινωνία. Περιγράφουν έννοιες που είναι σημαντικές όχι μόνο για τους μαθηματικούς, αλλά και για όλους τους μαθητές/τριες. ΟΙ ΔΕΙΚΤΕΣ ΔΕΝ ΕΙΝΑΙ ΣΤΟΧΟΙ
8 Κλίμακες και Δείκτες Επιτυχίας ΕΝΟΤΗΤΕΣ ΠΕΡΙΕΧΟΜΕΝΟΥ Αριθμοί (Αρ) Άλγεβρα (Α) Γεωμετρία (Γ) Μέτρηση (Μ) Στατιστική - Πιθανότητες (ΣΠ) ΕΠΕΞΗΓΗΣΗ Μ 1.2 ΑΡΙΘΜΗΣΗ ΔΕΙΚΤΩΝ Αρ 2.12 Α 1.4 Γ 3.12 Μ1.2 ΣΠ 3.8 Αναφέρεται στην ενότητα περιεχομένου (Μέτρηση) Αναφέρεται στην Κλίμακα (1) Αναφέρεται στον Δείκτη (2)
9 Δείκτες Επάρκειας Τι πρέπει να διδαχθεί ο μαθητής, για να επιτύχει τα καθορισμένα Μαθησιακά Αποτελέσματα. Περιλαμβάνουν όλα όσα πρέπει να διδάξουμε ή/και έπρεπε να γνωρίζει ο μαθητής, για να επιτύχει τον Δείκτη Επιτυχίας. Αναφέρονται σε ΣΚΑΛΟΠΑΤΙΑ μάθησης, ιεραρχίες ή προαπαιτούμενη γνώση, για να επιτευχθεί ο Δείκτης Επιτυχίας.
10 Αρ4.8 (Έννοια λόγου, ανάλογα ποσά) & Αρ4.13 (Επίλυση και κατασκευή προβλημάτων αναλογίας) Αρ3.6 (Ερμηνεία κλάσματος ως μέρος ακεραίας μονάδας, μέρος συνόλου, μέτρο και πηλίκο) - Στρατηγικές προβλημάτων αναλογίας E - Κλάσμα ως μέρος της ακεραίας μονάδας, κλάσμα ως μέρος συνόλου διακριτών αντικειμένων - Ακεραία μονάδα όταν δίνεται το κλασματικό μέρος, κλάσμα ως μέρος αριθμού Δ - Έννοια λόγου και αναλογίας, γραφή λόγου με διάφορους τρόπους, ίσοι λόγοι -Ευθέως και αντιστρόφως ανάλογα ποσά -Γραφική αναπαράσταση Στ - Ερμηνεία κλάσματος ως μέτρο και ως πηλίκο - Κλάσμα ως τελεστής - Αναγνώριση και αναπαράσταση μικρών - Καταχρηστικά κλάσματα Ε
11 ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΝΑ ΤΑΞΗ Το Αναλυτικό Πρόγραμμα των Μαθηματικών περιέχει τα ακόλουθα στοιχεία όσον αφορά το αναλυτικό πρόγραμμα ανά τάξη και ανά ενότητα περιεχομένου: Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδα Δραστηριοτήτων (Προαπαιτούμενες γνώσεις, νέες έννοιες και αντίστοιχα παραδείγματα) Παραδείγματα Μαθηματικών Πρακτικών
12 ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΝΑ ΤΑΞΗ Δείκτες Επάρκειας Επίπεδα Δραστηριοτήτων Περιλαμβάνουν τα ακόλουθα στοιχεία: Προαπαιτούμενες γνώσεις: Από προηγούμενες τάξεις ή από άλλη ενότητα περιεχομένου Νέες Έννοιες Τις βασικές ενέργειες των εκπαιδευτικών: ώστε οι μαθητές μιας τάξης να αναπτύξουν τις απαραίτητες γνώσεις και δεξιότητες που είναι αναγκαίες για την επόμενη τάξη και κατ επέκταση για το πανεπιστήμιο και τη μεταλυκειακή εκπαίδευση. Παραδείγματα: Συγκεκριμενοποιούν το επίπεδο δυσκολίας που αναμένεται να κατακτήσουν οι μαθητές.
13
14
15
16
17 Συνοπτική Παρουσίαση Επιπέδων Δραστηριοτήτων Ανά τάξη και ενότητα περιεχομένου
18 ΑΡΙΘΜΟΙ-ΠΡΑΞΕΙΣ (1) Δ Ε Στ Αριθμοί μέχρι το ένα εκατομμύριο Νοεροί υπολογισμοί ακεραίων μέχρι το και εκτίμηση αθροίσματος, διαφοράς, γινομένου και πηλίκου Κατακόρυφοι αλγόριθμοι πρόσθεσης και αφαίρεσης Κατακόρυφοι αλγόριθμοι πολλαπλασιασμού (ο ένας παράγοντας μονοψήφιος) και διαίρεσης (μονοψήφιος διαιρέτης) Κριτήρια διαιρετότητας 2, 5, 10 Επίλυση προβλήματος αθροιστικής και πολλαπλασιαστικής δομής (ενός και δύο βημάτων), προβλήματα διαδικασίας Διαιρέτης, διαιρετέος, υπόλοιπο, παράγοντες και Εννιαψήφιοι αριθμοί Γραπτοί και νοεροί υπολογισμοί με αξιοποίηση των ιδιοτήτων των πράξεων Κατακόρυφοι αλγόριθμοί πολλαπλασιασμού και διαίρεσης (διψήφια) Κριτήρια διαιρετότητας 2, 5, 4, 10 και ευκλείδεια διαίρεση Επίλυση προβλήματος αθροιστικής και πολλαπλασιαστικής δομής, μοντελοποίησης και προβλήματα διαδικασίας Στρατηγικές επίλυσης προβλημάτων αναλογίας Πρώτοι και σύνθετοι αριθμοί Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων ΜKΔ, ΕΚΠ Έννοια αρνητικού αριθμού Αριθμοί μέχρι το δισεκατομμύριο Γραπτοί και νοεροί υπολογισμοί με θετικούς ρητούς Κριτήριο διαιρετότητας 3, 9 και ευκλείδεια διαίρεση ΜΚΔ, ΕΚΠ Λόγος και αναλογία Ευθέως και αντιστρόφως ανάλογα ποσά Αρνητικοί αριθμοί, πρόσθεση και αφαίρεση ακεραίων με μοντέλα Έννοια δύναμης
19 ΑΡΙΘΜΟΙ-ΠΡΑΞΕΙΣ (2) Δ Ε Στ Κλάσμα ως μέρος της ακεραίας μονάδας και ως μέρος συνόλου διακριτών στοιχείων Υπολογισμός κλασματικού μέρους ενός αριθμού Ισοδυναμία κλασμάτων Σύγκριση και σειροθέτηση κλασμάτων και δεκαδικών Πρόσθεση και αφαίρεση ομώνυμων κλασμάτων Έννοια δεκαδικού αριθμού (δέκατο, εκατοστό) Μετατροπή κλάσματος σε δεκαδικό και αντίστροφα Κλάσμα ως μέτρο, πηλίκο και ως τελεστής Απλοποίηση και ισοδυναμία κλασμάτων Σύγκριση και σειροθέτηση κλασμάτων και δεκαδικών Έννοια μικτού αριθμού και καταχρηστικού κλάσματος (μετατροπές) Δέκατο, εκατοστό, χιλιοστό Έννοια ποσοστού Μετατροπή κλάσματος σε δεκαδικό, ποσοστό και αντίστροφα Πρόσθεση και αφαίρεση κλασμάτων, δεκαδικών και μικτών Πολλαπλασιασμός κλάσματος με ακέραιο και διαίρεση κλασμάτων (διαιρέτης ή διαιρετέος ακέραιος) Πολλαπλασιασμός ακεραίου με δεκαδικό και διαίρεση δεκαδικού με ακέραιο Επίλυση προβλήματος με κλάσματα, δεκαδικούς και ποσοστά Κλάσμα ως μέτρο, πηλίκο και ως τελεστής Σύγκριση και σειροθέτηση ρητών Ποσοστό ως λόγος, πηλίκο και δεκαδικός Μετατροπή κλάσματος σε δεκαδικό, ποσοστό και αντίστροφα Πολλαπλασιασμός και διαίρεση κλασμάτων και δεκαδικών Πράξεις με μικτούς αριθμούς Επίλυση προβλήματος με ρητούς και ποσοστά
20 ΜΕΤΡΗΣΗ Δ Ε Στ Χρήση κατάλληλων μονάδων μέτρησης μήκους, μάζας, χωρητικότητας και όγκου Σχέσεις μεταξύ μονάδων μήκους Υπολογισμός όγκου ορθογώνιου παραλληλεπιπέδου Υπολογισμός περιμέτρου και εμβαδού ορθογωνίου και τετραγώνου με τη χρήση τύπων Εμβαδόν ορθογώνιου τριγώνου Γραφή χρηματικών ποσών σε δεκαδική μορφή Έτος, δεκαετία, αιώνας Ώρα και λεπτά Μετατροπές μονάδων μέτρησης, μήκους, μάζας και χωρητικότητας Μονάδες μέτρησης όγκου Εμβαδόν τριγώνου και παραλληλογράμμου Περίμετρος και εμβαδόν ακανόνιστων ευθύγραμμων σχημάτων Υπολογισμός όγκου ορθογώνιου παραλληλεπιπέδου με τύπους Σχέσεις μεταξύ χρηματικών ποσών Σχέσεις μεταξύ μονάδων μέτρησης χρόνου (δευτερόλεπτο) Μέτρηση γωνιών με κατάλληλα μέσα Χρήση κατάλληλων μονάδων μέτρησης Εμβαδόν και μήκος περιφέρειας κύκλου Σχέση μεταξύ περιφέρειας κύκλου και διαμέτρου Περίμετρος και εμβαδόν σύνθετων σχημάτων Εμβαδόν εξωτερικής επιφάνειας τρισδιάστατων σχημάτων Όγκος ορθογώνιου παραλληλεπιπέδου με τύπους Άθροισμα γωνιών τριγώνου
21 ΓΕΩΜΕΤΡΙΑ Δ Ε Στ Αναγνώριση και κατασκευή γωνίας Παράλληλες και κάθετες ευθείες Αναγνώριση, ονομασία και περιγραφή πολυγώνων Ταξινόμηση σχημάτων (παραλληλία, καθετότητα, κτλ.) Αναγνώριση και ονομασία βασικών τρισδιάστατων σχημάτων Ακμές, κορυφές και έδρες Συσχέτιση τρισδιάστατων σχημάτων με αναπτύγματά Άξονας συμμετρίας, συμπλήρωση και κατασκευή συμμετρικού σχήματος Περιστροφή σχημάτων (με ορθές γωνίες) και μεταφορά σχημάτων (πάνω, κάτω, δεξιά, αριστερά) Σημείο, ευθεία, ημιευθεία, ευθύγραμμο τμήμα Κατασκευή παράλληλων και κάθετων ευθειών Κατασκευή ύψους τριγώνου και παραλληλογράμμου Σχέσεις εγκλεισμού και ταξινόμηση σχημάτων με βάση τις ιδιότητες τους Είδη τριγώνων Βασικά χαρακτηριστικά πυραμίδων και πρισμάτων Συσχέτιση τρισδιάστατων σχημάτων με αναπτύγματα Ορθοκανονικό σύστημα αξόνων, συντεταγμένες Ιδιότητες συμμετρικών σχημάτων Μεταφορά και περιστροφή σχημάτων σε σύστημα αξόνων Δευτερεύοντα στοιχεία τριγώνου Απλές κατασκευές (μέσο, ύψος, διάμεσος) Συμπληρωματικές και παραπληρωματικές γωνίες Σχέσεις εγκλεισμού και ταξινόμηση σχημάτων με βάση τις ιδιότητες τους Κανονικά πολύγωνα Στοιχεία και ιδιότητες κύκλου Δισδιάστατες αναπαραστάσεις τρισδιάστατων σχημάτων Διαχωρισμός και σύνθεση δισδιάστατων και τρισδιάστατων σχημάτων Κατασκευή σχημάτων σε σύστημα αξόνων Οδηγίες κατεύθυνσης Συμμετρία με 2 άξονες συμμετρίας
22 ΑΛΓΕΒΡΑ Δ Ε Στ Α Γυμνασ. Αναγνώριση, συμπλήρωση και επέκταση μοτίβου με έμφαση στην περιγραφή του κανόνα Κατασκευή αριθμητικών ή σχηματικών μοτίβων με βάση κάποιον κανόνα και εξαγωγή συμπεράσματος Αναπαράσταση προβλημάτων με τη χρήση μαθηματικών προτάσεων Επίλυση και κατασκευή προβλημάτων ρουτίνας μίας και δύο πράξεων και προβλήματα διαδικασίας Χρήση αντιμεταθετικής και προσεταιριστικής ιδιότητας της πρόσθεσης και του πολλαπλασιασμού στους νοερούς υπολογισμούς Χρήση επιμεριστικής για τον υπολογισμό γινομένων Διερεύνηση της σχέσης της θέσης ενός όρου και του κανόνα υπολογισμού του όρου σε ένα μοτίβο Έννοια μεταβλητής Εξισώσεις με μεταβλητές για αναπαράσταση προβλήματος Απλοποίηση μαθηματικών εκφράσεων και επίλυση εξισώσεων Αναγνώριση και χρήση ιδιοτήτων των πράξεων σε αριθμητικές και συμβολικές εκφράσεις και για γραφή ισοδύναμων μαθηματικών προτάσεων Διατεταγμένο ζεύγος Έκφραση του νιοστού όρου σε μοτίβα Επέκταση και κατασκευή μοτίβων με ακέραιους, δεκαδικούς και κλάσματα Έννοια μεταβλητής και έννοια συνάρτησης ως «ένα προς ένα αντιστοιχία» Απλοποίηση μαθηματικών εκφράσεων, επίλυση εξισώσεων και μετάφραση αλγεβρικών εκφράσεων Προτεραιότητα πράξεων Διατεταγμένο ζεύγος Επίλυση προβλήματος με πολλαπλά βήματα, Έννοια Μεταβλητής Αλγεβρική παράσταση Αντιστοιχία Συνάρτηση
23 ΣΤΑΤΙΣΤΙΚΗ & ΠΙΘΑΝΟΤΗΤΕΣ Δ Ε Στ Ερμηνεία και κατασκευή ραβδογράμματος και εικονογράμματος με τη χρήση υπομνήματος Ερμηνεία κυκλικής γραφικής παράστασης Σειροθέτηση γεγονότων με βάση την πιθανότητα να συμβούν Γραμμικής γραφική παράσταση Μέγιστη, ελάχιστη τιμή και εύρος σε ένα σύνολο δεδομένων Υπολογισμός πιθανότητας ενδεχομένου Έννοια δειγματικού χώρου Καταγραφή αποτελεσμάτων ερευνητικών δραστηριοτήτων Έννοια μέσου όρου Αξιολόγηση τρόπου παρουσίασης δεδομένων Πειράματα τύχης με πολλαπλές επαναλήψεις Υπολογισμός πιθανότητας ενδεχομένου Καταγραφή και εύρεση του πλήθους των ενδεχομένων
24 Μαθηματικές Πρακτικές Οι μαθηματικές πρακτικές περιγράφουν ικανότητες Οι μαθηματικές πρακτικές αναφέρονται σε σημαντικές «διαδικασίες και ικανότητες»
25 Μαθηματικές Πρακτικές Η έμφαση στις μαθηματικές πρακτικές οδηγεί στη συστηματική ανάπτυξη δεξιοτήτων οι οποίες είναι απαραίτητες στην ενήλικη ζωή. Οι μαθηματικές πρακτικές μπορούν να συμβάλουν στην ανάπτυξη των ικανοτήτων (key competences) που περιγράφει η Ευρωπαϊκή Επιτροπή. 25
26 Μαθηματικές Έννοιες ΤΙ; Μαθηματικές Πρακτικές ΠΩΣ;
27 Πρακτικές Μαθηματικών 1. Κατανόηση μέσω προβλήματος και επιμονή στη λύση προβλήματος 2. Ποσοτική και αφηρημένη σκέψη 3. Ανάπτυξη ισχυρισμών και κρίση του συλλογισμού άλλων 4. Μοντελοποίηση 5. Στρατηγική χρήση εργαλείων 6. Ακρίβεια 7. Δομή των Μαθηματικών 8. Κανονικότητα σε επαναλαμβανόμενο συλλογισμό
28 1. Κατανόηση μέσω προβλήματος και επιμονή στη λύση προβλήματος Οι μαθητές /τριες κατανοούν την ερώτηση και υιοθετούν πολλαπλές στρατηγικές και εργαλεία στην επίλυση προβλημάτων.
29
30 2. Ποσοτική και αφηρημένη σκέψη Οι μαθητές/τριες χρησιμοποιούν αφηρημένη σκέψη και αναπαριστούν συμβολικά ποσότητες και σχέσεις κατανοούν την έννοια και όχι πώς να κάνουν πράξεις.
31 Από λέξεις στoυς αριθμούς Η Μαρία έκανε εξάσκηση στο πιάνο μισή ώρα κάθε μέρα για 6 μέρες. Πόσες ώρες έκανε εξάσκηση συνολικά; Από αριθμούς στις λέξεις Η Μαρία έκανε εξάσκηση στο πιάνο μισή ώρα κάθε μέρα για 6 μέρες. Πόσες ώρες έκανε εξάσκηση συνολικά;
32 Μαθηματικό Πρόβλημα Αποπλαισιοποίηση Αναπαράσταση προβλήματος με τη χρήση συμβόλων, μεταφορά κατάστασης στο αφηρημένο επίπεδο Πλαισιοποίηση Έλεγχος λογικότητας απάντησης στο ρεαλιστικό πλαίσιο ½ % x x x x 5
33 3. Ανάπτυξη ισχυρισμών και κρίση του συλλογισμού άλλων Διατύπωση υπόθεσης Οικοδόμηση λογικών επιχειρημάτων, για υποστήριξη υποθέσεων Ανάλυση καταστάσεων Αναγνώριση και χρήση κατάλληλων παραδειγμάτων
34
35 4. Μοντελοποίηση Εφαρμόζουν τα μαθηματικά στη λύση προβλημάτων με χρήση διαγραμμάτων, πινάκων, γραφικών παραστάσεων και αναλύουν σχέσεις για να φτάσουν σε συμπεράσματα.
36
37
38 5. Στρατηγική χρήση εργαλείων Οι μαθητές/τριες χρησιμοποιούν διάφορα υλικάμέσα και την τεχνολογία με ευέλικτο τρόπο για να επιλύσουν προβλήματα.
39 Εργαλειοθήκη Μαθηματικών Γνωρίζω π ώ ς να χρησιμοποιώ τα εργαλεία; Γνωρίζω π ό τ ε να χρησιμοποιώ εργαλεία; Μπορώ να αναστοχαστώ για το κατά πόσον τα εργαλεία με βοήθησαν να φτάσω σε μια λογική απάντηση;
40
41 Ακρίβεια Να επικοινωνούν με ακρίβεια με άλλους και να προσπαθούν να χρησιμοποιούν μαθηματική ορολογία όταν συζητούν τους ισχυρισμούς τους. Να κατανοούν τη σημασία των μαθηματικών συμβόλων και να ονομάζουν ποσότητες κατάλληλα. Να δίνουν με ακρίβεια αριθμητικές απαντήσεις κατάλληλες σύμφωνα με το πλαίσιο του προβλήματος. Να υπολογίζουν σωστά και με ακρίβεια.
42 Πρόσθεση: Ενώνω Ισότητα: Ίσο με 3 μήλα + 4 αχλάδια = 7 φρούτα Ονομασία μονάδων
43
44 7. Δομή των μαθηματικών Οι μαθητές/τριες αναγνωρίζουν και χρησιμοποιούν τη δομή των μαθηματικών στη λύση προβλημάτων.
45
46 8. Κανονικότητα σε επαναλαμβανόμενο συλλογισμό Οι μαθητές/τριες παρατηρούν επαναλήψεις σε υπολογισμούς και αναζητούν γενικές μεθόδους και συντομεύσεις.
47 Παρατηρώ πότε υπολογισμοί ή σχήματα επαναλαμβάνονται με σκοπό να χρησιμοποιήσω το μοτίβο, για να συντομεύσω τη διαδικασία Πώς αξιοποιώ το αναπτυσσόμενο μοτίβο; ΜΟΤΙΒΑ Υπάρχει μοτίβο; Πώς μπορώ να γενικεύσω το μοτίβο; Μπορώ να κάνω πρόβλεψη για έναν όρο του μοτίβου; Πάνω 1, 2 περισσότερα Σκέφτομαι συντομεύσεις 2 περισσότερα από την προηγούμενη σειρά +5, +7, άθροισμα διαδοχικών περιττών αριθμών Μοτίβο τετράγωνων αριθμών 4, 9, 16, 2 περισσότερα κάθε σειρά και 1 στην κορυφή
48
49 ΦΙΛΟΣΟΦΙΑ ΔΙΔΑΣΚΑΛΙΑΣ
50 ΦΙΛΟΣΟΦΙΑ ΔΙΔΑΣΚΑΛΙΑΣ 1. Εξερεύνηση -Περιέργεια-Πρόκληση - μέσω καταστάσεων που ενδιαφέρουν τους μαθητές. 2. Διερεύνηση. Επέκταση - Εφαρμογή Δημιουργικότητα - Χρόνος για εργασία μαθητών. Παρέμβαση εκπαιδευτικού. 3. Αναστοχασμός μαθητή για το τι έχει μάθει. Εξερεύνηση-Συζήτηση τρόπων εργασίας μαθητών. 4. Αξιολόγηση για το τι έχει μάθει ο μαθητής, ευκαιρίες για αυτοαξιολόγηση
51 Εξερεύνηση Περιέργεια /Πρόκληση Ενδιαφέροντος Διερεύνηση Αξιολόγηση / Αναστοχασμός
52 Εξερεύνηση (Mathematical exploration) Δραστηριότητες στις οποίες οι μαθητές εξερευνούν ελεύθερα μαθηματικές έννοιες. Οι δραστηριότητες αυτές συμβάλλουν: στη διαφοροποίηση και εξατομίκευση της διδασκαλίας, στην παροχή κινήτρων και στη χαρά της μάθησης, στην εννοιολογική διασύνδεση εννοιών, στην ανάπτυξη του μαθηματικού συλλογισμού, της δημιουργικότητας και της φαντασίας στα μαθηματικά.
53 Εξερεύνηση (Mathematical exploration) 1. Σύνδεση με άλλα αντικείμενα του αναλυτικού προγράμματος 2. Διασύνδεση μαθηματικών εννοιών 3. Λύση προβλήματος για εισαγωγή στην έννοια ή επέκταση και ολοκλήρωση της έννοιας 4. Ιστορικά στοιχεία 5. Εφαρμογές μαθηματικών εννοιών
54 Μαθηματική Διάσταση- Έννοια λόγου Γλωσσική Διάσταση Πρακτική Εφαρμογή Στάση απέναντι στα μαθηματικά E τάξη
55 Μαθηματική Διάσταση- Ισοδυναμία κλασμάτων Γλωσσική Διάσταση Πρακτική Εφαρμογή Στάση απέναντι στα μαθηματικά Ε τάξη
56 Διερεύνηση (Mathematical investigation) Δραστηριότητες στις οποίες οι μαθητές διερευνούν μαθηματικές ιδέες σε ένα συγκεκριμένο πλαίσιο και στις οποίες έχουν τη δυνατότητα: να διατυπώσουν υποθέσεις (Τι μπορεί να συμβαίνει; Συμβαίνει και σε άλλες περιπτώσεις;) να ελέγξουν την εγκυρότητα των υποθέσεών τους και να αιτιολογήσουν τις απαντήσεις τους.
57 Διερεύνηση (Mathematical investigation) 1. Με παραδείγματα 2. Με εποπτικά μέσα ή και ψηφιακά εποπτικά μέσα. Υπόθεση Επαλήθευση Συμπέρασμα 3. Με προβλήματα
58 Εισαγωγή σε έννοια Ε τάξη
59 Υπόθεση - Επαλήθευση Ε τάξη
60 Χρήση Στρατηγικών Ε τάξη
61 Διερεύνηση μαθηματικής ιδιότητας Ε τάξη
62 Ε ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
63 ΣΕΠΤΕΜΒΡΗΣ-ΟΚΤΩΒΡΗΣ 1_Επανάληψη 2_Πολλαπλάσια - Διαιρέτες ΟΚΤΩΒΡΗΣ-ΝΟΕΜΒΡΗΣ 3_Αριθμοί ως το ένα εκατομμύριο, Πράξεις, Λύση προβλήματος, Ιδιότητες Πράξεων ΔΕΚΕΜΒΡΗΣ-ΦΕΒΡΑΡΗΣ 4_Δισδιάστατη Γεωμετρία 5_ΜΚΔ, ΕΚΠ, Κλάσματα, Δεκαδικοί, Μικτοί, Πρόσθεση και αφαίρεση κλασμάτων και δεκαδικών
64 ΦΕΒΡΑΡΗΣ-ΜΑΡΤΗΣ 6_Λόγοι-αναλογίες, ποσοστά, στατιστική και πιθανότητες 7_Αριθμοί ως το δισεκατομμύριο, λύση προβλήματος, άλγεβρα, πράξεις ΑΠΡΙΛΗΣ-ΙΟΥΝΗΣ 8_Πολλαπλασιασμός και διαίρεση κλασμάτων και δεκαδικών, εμβαδόν και περίμετρος τριγώνου και παραλληλογράμμου (Απρίλης) 9_Στερεομετρία, πρόσθεση και αφαίρεση μικτών, προβλήματα με ρητούς
65 ΕΝΟΤΗΤΑ 2 ΠΟΛΛΑΠΛΑΣΙΑ ΚΑΙ ΔΙΑΙΡΕΤΕΣ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ - Έννοια πολλαπλασίου, παράγοντα-διαιρέτη. -Κριτήρια Διαιρετότητας 2, 5, & 10. -Άρτιοι και περιττοί αριθμοί (άθροισμα άρτιων, περιττών, άρτιουπεριττού). -Ανάλυση φυσικού αριθμού σε γινόμενο πρώτων παραγόντων. -Ευκλείδεια Διαίρεση, έννοια υπολοίπου.
66 ΕΝΟΤΗΤΑ 3 ΑΡΙΘΜΟΙ, ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΠΡΑΞΕΩΝ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ - Εισαγωγή στους αρνητικούς αριθμούς. -Αριθμοί μέχρι το ένα εκατομμύριο: Αισθητοποίηση, αξία θέσης ψηφίου, ανάλυση και σύνθεση, στρογγυλοποίηση, εκτίμηση αθροίσματος και διαφοράς. -Προβλήματα αθροιστικής και πολλαπλασιαστικής δομής. Προβλήματα μοντελοποίησης και διαδικασίας. -Διψήφιος Πολλαπλασιασμός. -Ιδιότητες Πρόσθεσης και Πολλαπλασιασμού. -Εισαγωγή στις αλγεβρικές σχέσεις. -Διψήφια Διαίρεση
67 Έννοια αρνητικού αριθμού με τη χρήση μοντέλων
68 Διερεύνηση σχέσεων στο δεκαδικό σύστημα
69 Αξιοποίηση δομής ιερογλυφικών για εμβάθυνση στην ανάλυση και σύνθεση αριθμών
70 Σύγκριση αριθμών σε ρεαλιστικό πλαίσιο, επεξεργασία πληροφοριών σε πίνακα, εκτίμηση αθροίσματος
71 Επίλυση προβλήματος μοντελοποίησης, συμπλήρωση πίνακα, γραφικής παράστασης, λήψη απόφασης
72 Αναστοχασμός στον αλγόριθμο του πολλαπλασιασμού σημασία εκτίμησης γινομένου
73 Ανάδειξη της αξιοποίησης των ιδιοτήτων των πράξεων στους υπολογισμούς
74 Διερεύνηση προσεταιριστικής ιδιότητας πολλαπλασιασμού σε πλαίσιο
75 Αξιοποίηση πολλαπλασιασμού Αιγυπτίων για εμβάθυνση στην επιμεριστική ιδιότητα του πολλαπλασιασμού
76 Εισαγωγή στις αλγεβρικές εκφράσεις
77 Διερεύνηση τρόπων υπολογισμού πηλίκου, επιμεριστική ιδιότητα διαίρεσης ως προς τον διαιρετέο
78 Ανάδειξη της αξίας εκτίμησης πηλίκου, Στρατηγικές
79 Εκτίμηση, υπολογισμός, επαλήθευση. Εννοιολογική κατανόηση αλγορίθμου
80 Δομή των μαθηματικών, πολλαπλασιασμός και διαίρεση ως αντίστροφες πράξεις
81 Ανάπτυξη ικανότητας μαθηματικοποίησης
82 ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ - Είδη γραμμών. Παραλληλία και Καθετότητα. -Μέτρηση Γωνιών. -Είδη τριγώνων. -Ιδιότητες Παραλληλογράμμων. -Σχήματα σε σύστημα αξόνων. -Μετασχηματισμοί.
83 Δείκτες Επιτυχίας Ενότητας
84
85 Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές: Αναγνωρίζουν, ονομάζουν και κατασκευάζουν σημεία, ευθείες, ημιευθείες και ευθύγραμμα τμήματα Κατασκευάζουν παράλληλες και κάθετες ευθείες Διερευνούν σχέσεις εγκλεισμού μεταξύ δισδιάστατων σχημάτων Ταξινομούν δισδιάστατα σχήματα με βάση τις ιδιότητές τους Αναγνωρίζουν είδη τριγώνων ως προς το μήκος των πλευρών και το μέτρο των γωνιών τους Κατασκευάζουν σχήματα σε ορθοκανονικό σύστημα αξόνων Διερευνούν τις ιδιότητες των συμμετρικών σχημάτων Εκτελούν περιστροφές και μεταφορές σε καθορισμένες θέσεις Εκτιμούν και μετρούν γωνίες
86 Διάκριση μεταξύ ευθειών, ημιευθειών και ευθύγραμμων τμημάτων
87 Ερμηνεία ορισμού. Για παράδειγμα «Τι σημαίνει κατασκευάζεται με χάρακα;» Έμφαση στην ακρίβεια
88 Αρχικό κριτήριο ταξινόμησης «Τέμνονται ή δεν τέμνονται». Κάθετες ευθείες ως ειδική περίπτωση ευθειών που τέμνονται.
89 Η μοίρα ως μονάδα μέτρησης του μέτρου της γωνίας. Το μοιρογνωμόνιο ως ένα από τα εργαλεία που χρησιμοποιούνται στη μέτρηση γωνιών
90 Ταξινόμηση τριγώνων με κριτήριο το μήκος των πλευρών και το μέτρο των γωνιών. Διερεύνηση ειδικών περιπτώσεων.
91
92 Αξιοποίηση δυναμικής γεωμετρίας Λειτουργία συρσίματος Εφαρμογίδιο ως πολλαπλασιαστής Μελέτη ειδικών περιπτώσεων Μεταβλητές και μη ιδιότητες σχημάτων
93
94 Σχέσεις εγκλεισμού Το ορθογώνιο και ο ρόμβος ως ειδικές περιπτώσεις παραλληλογράμμων Το τετράγωνο ως ειδική περίπτωση ορθογωνίου και ρόμβου
95 Κατασκευή σχημάτων σε ορθοκανονικό σύστημα αξόνων, έννοια συντεταγμένων.
96 Διερεύνηση ιδιοτήτων συμμετρικών σχημάτων: (α) Δύο ίσα σχήματα που εφάπτονται, όταν διπλωθούν κατά μήκος του άξονα συμμετρίας (β) Ίσες αποστάσεις συμμετρικών σημείων από άξονα συμμετρίας
97 Μαθηματικά και Τέχνη
98 ΕΝΟΤΗΤΑ 5 ΡΗΤΟΙ ΑΡΙΘΜΟΙ (Κλάσματα, δεκαδικοί, μικτοί) ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ - Έννοια ΕΚΠ, ΜΚΔ -Έννοια κλάσματος (μέρος επιφάνειας, έννοια ακεραίας μονάδας) -Κλάσμα ως μέρος ποσότητας -Ισοδυναμία και σύγκριση κλασμάτων. -Πρόσθεση και αφαίρεση κλασμάτων -Έννοια δεκαδικού αριθμού ισοδύναμες μορφές, αξία θέσης ψηφίου -Σύγκριση δεκαδικών αριθμών -Γραμμική γραφική παράσταση -Πρόσθεση και αφαίρεση δεκαδικών αριθμών -Μικτοί αριθμοί, καταχρηστικά κλάσματα
99 Εισαγωγή βέννειου διαγράμματος ώστε να αξιοποιηθεί στην κατανόηση του ΕΚΠ και ΜΚΔ
100 Υπολογισμός ΜΚΔ μέσω της καταγραφής κοινών διαιρετών και αξιοποίησης της ανάλυσης σε γινόμενο πρώτων παραγόντων
101 Υπολογισμός ΕΚΠ με την αξιοποίηση του βέννειου διαγράμματος για τα πολλαπλάσια
102 Έννοια κλάσματος, το κλάσμα σε αντιπαραβολή προς τον απόλυτο αριθμό Το κλάσμα ως μέρος επιφάνειας
103 Το κλάσμα ως μέρος ποσότητας, αξιοποίηση κατάλληλων μοντέλων για υπολογισμό του κλασματικού μέρους αριθμού
104 Ισοδυναμία κλασμάτων, αξιοποίηση μοντέλων και κατάλληλων υλικών. Γενίκευση διαδικασίας
105 H Εισαγωγή πρόσθεσης ετερωνύμων κλασμάτων. Αξιοποίηση διαισθητικής γνώσης για χρήση κοινού μέτρου
106 Χρήση διαφορετικών μοντέλων για αναπαράσταση καταστάσεων πρόσθεσης και αφαίρεσης ετερωνύμων κλασμάτων
107 ΔΕΚΑΔΙΚΟΙ
108 Εισαγωγή έννοιας μικτού αριθμού σε ρεαλιστικό πλαίσιο
109 ΕΝΟΤΗΤΑ 6 Λόγοι, αναλογίες, ποσοστά ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ - Έννοια λόγου (μέρος-μέρος, μέρος-όλο, συσχέτιση με κλάσμα) -Ίσοι λόγοι -Προβλήματα αναλογίας -Στρατηγικές επίλυσης προβλημάτων αναλογίας αναγωγή στη μονάδα -Έννοιες στατιστικής -Έννοιες χρόνου - δευτερόλεπτο -Ποσοστά -Πιθανότητες
110 Εισαγωγή έννοιας λόγου σε ρεαλιστικό πλαίσιο, ο λόγος ως πολλαπλασιαστική σύγκριση μέρος-μέρος και μέρος-όλο
111 Συσχέτιση λόγου με κλάσμα
112 Εισαγωγή έννοιας ίσων λόγων, χρήση μοντέλων
113 Προβλήματα αναλογίας, διερεύνηση στρατηγικών επίλυσης προβλημάτων αναλογίας
114 Αξιοποίηση διαισθητικών γνώσεων για εισαγωγή έννοιας ποσοστού
115 Χρήση διαφορετικών μοντέλων και αναπαραστάσεων, συσχέτιση με κλάσμα και δεκαδικό
116 Αξιοποίηση ποσοστού σε ρεαλιστικές καταστάσεις
117 Χρήση μοντέλων για υπολογισμό ποσοστού, διασύνδεση με ισοδύναμα κλάσματα
118 Υπολογισμός ποσοστού αριθμού, αξιοποίηση μοντέλων
119 Υπολογισμός πιθανότητας
120 Πειράματα τύχης
121 ΕΦΑΡΜΟΓΗ ΝΕΩΝ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΩΝ ΤΑΞΕΩΝ Α, Β, Γ, Δ & Ε Ιστοσελίδα: Πρόγραμμα Σπουδών Μαθηματικών Οδηγοί Εκπαιδευτικού Δημοτικής Εκπαίδευσης (τάξεις Α - Ε ) Ενδεικτική οργάνωση της ύλης (τάξεις Α - Ε ) Οδηγοί ενοτήτων (τάξεις Α - Ε ) Εκπαιδευτικό υλικό (τάξεις Α - Ε )
122 ΔΟΜΗΣΗ ΟΔΗΓΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Δείκτες Ενδεικτική οργάνωση μαθημάτων Σημεία προσοχής Τεχνολογία *Υπάρχει μόνο σε ηλεκτρονική μορφή
123 ΔΟΜΗΣΗ ΣΧΟΛΙΚΟΥ ΕΓΧΕΙΡΙΔΙΟΥ 1. Εξερεύνηση 2. Διερεύνηση 3. Δραστηριότητες 4. Δραστηριότητες Εμπλουτισμού: Υπάρχουν στο τέλος κάθε ενότητας - Διαβαθμισμένες με βάση την έννοια που διδάσκεται
6 Φεβρουαρίου 2016, Λεμεσός
6 Φεβρουαρίου 2016, Λεμεσός Τα ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ περιγράφει: τα Μαθηματικά που αναμένουμε να κατανοήσουν οι μαθητές μέχρι το τέλος της σχολικής τους εκπαίδευσης, από το Νηπιαγωγείο μέχρι
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότεραΕνδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Σεπτέμβριος 2015 Συγγραφική ομάδα: Ακαδημαϊκοί Συνεργάτες για Δημοτική
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Σεπτέμβριος 2015 Συγγραφική ομάδα: Ακαδημαϊκοί Συνεργάτες για Δημοτική
Διαβάστε περισσότεραΝοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
Διαβάστε περισσότεραΑναλυτικό Πρόγραμμα Μαθηματικών
Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Φεβρουάριος 2015 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:
Διαβάστε περισσότεραΒ ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών
Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Σεπτέμβριος 2013 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης: Σύνδεσμος Επιθεωρητής: Eνδοτμηματική Επιτροπή Μαθηματικών: Σύμβουλοι Μαθηματικών:
Διαβάστε περισσότεραΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία
Διαβάστε περισσότεραA ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας αντικείμενα,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΦεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,
Διαβάστε περισσότεραΔιήμερο Εκπαιδευτικού 2018
Διήμερο Εκπαιδευτικού 2018 Σχεδιασμός και οργάνωση διδασκαλίας στα Μαθηματικά Αποτελεσματική διδασκαλία και μάθηση Δρ. Μάριος Πιττάλης Δομή Παρουσίασης Μέρος Α Αναλυτικό Πρόγραμμα και Σχεδιασμός Διδασκαλίας
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Φεβρουάριος /2/2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Φεβρουάριος 2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 20 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Επέκταση της έννοιας του αριθμού μέχρι
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΠρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν
Διαβάστε περισσότεραΑ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,
Διαβάστε περισσότεραΜαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας
Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας
Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ. ΔΕΙΓΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Διδακτέα: Πληροφορίες, Έννοιες, Δεξιότητες, Στρατηγικές / Τρόπος Σκέψης
ΤΑΞΗ: Ε ΔΗΜΟΤΙΚΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΜΑΘΗΜΑΤΙΚΑ (ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ) ΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,
Διαβάστε περισσότεραΑ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΝΝΟΙΕΣ ΜΕΤΡΗΣΗΣ
ΕΝΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΝΝΟΙΕΣ ΜΕΤΡΗΣΗΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 3 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ. ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα (!,!,!,!,! ) ενός συνόλου ή μιας επιφάνειας,!!!!! χρησιμοποιώντας αντικείμενα, εικόνες και εφαρμογίδια.
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα
Διαβάστε περισσότεραΓεωμετρία, Αριθμοί και Μέτρηση
1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ
ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της
Διαβάστε περισσότεραΣτόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,
Διαβάστε περισσότεραΎλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού.
ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΔΙΑΙΡΕΣΗ ΑΡΙΘΜΟΙ. Υπολογισμοί και εκτίμηση
ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου
ΕΠΑΝΑΛΗΨΗ Μαθηματικών Α Γυμνασίου ΑΡΙΘΜΟΙ Σύνολο είναι μια καλώς ορισμένη συλλογή διαφορετικών μεταξύ τους αντικειμένων. Τα αντικείμενα που αποτελούν ένα σύνολο λέγονται στοιχεία ή μέλη του συνόλου. Για
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ. Διδακτέα: Πληροφορίες, Έννοιες, Δεξιότητες, Στρατηγικές / Τρόπος Σκέψης. Παραδείγματα. Παράδειγμα αναπαράστασης
ΤΑΞΗ: Δ ΔΗΜΟΤΙΚΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΜΑΘΗΜΑΤΙΚΑ (ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ) ΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ
Διαβάστε περισσότεραΠΡΑΚΤΙΚΕΣ ΜΑΘΗΜΑΤΙΚΩΝ
Συγγραφική ομάδα: Δεληγιάννη Ελένη Μάκη-Παναούρα Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία ΠΡΑΚΤΙΚΕΣ ΜΑΘΗΜΑΤΙΚΩΝ Επιμόρφωση Εκπαιδευτικών Νέο Πρόγραμμα Σπουδών Μαθηματικών
Διαβάστε περισσότεραΜαθηματικα A Γυμνασιου
Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΕΓΟΜΕΝΑ 17 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί 26 Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών 27 Η αναπαράσταση
Διαβάστε περισσότεραΠεριεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους
Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( ) ενός συνόλου ή μιας επιφάνειας, χρησιμοποιώντας αντικείμενα, εικόνες
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν
Διαβάστε περισσότεραΠρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν
Διαβάστε περισσότεραΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΟΓΚΟΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΟΓΚΟΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος,
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί
Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ1.15 Αναπτύσσουν την έννοια του πολλαπλασιασμού ως αθροιστικής επανάληψης ίσων προσθετέων και διαισθητικά την έννοια της
Διαβάστε περισσότεραΛογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού
Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΚαθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ:
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13 5. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...25
Διαβάστε περισσότεραΒ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών
ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 8. Συμμετρία - Πολλαπλασιασμός και επιμεριστική ιδιότητα ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
Συμμετρία - Πολλαπλασιασμός και επιμεριστική ιδιότητα ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,
Διαβάστε περισσότεραΦίλη μαθήτρια, φίλε μαθητή
Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΓ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ1.15 Αναπτύσσουν την έννοια του πολλαπλασιασμού ως αθροιστικής επανάληψης ίσων προσθετέων και διαισθητικά την έννοια της
Διαβάστε περισσότερα22/2/2013. Αναλυτικό πρόγραμμα Μαθηματικών. Επιμόρφωση Εκπαιδευτικών Α και Β Τάξης
Αναλυτικό πρόγραμμα Μαθηματικών πιμόρφωση κπαιδευτικών Α και Β άξης λένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) λένη Μιχαηλίδου (Σύμβουλος Μαθηματικών) Αρετή Παναούρα (Πανεπιστήμιο
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Δείκτες Επιτυχίας Α3.2 Κατανοούν την έννοια της μεταβλητής, ερμηνεύουν και επεξηγούν σχέσεις μεταξύ μεταβλητών.
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 5 ΑΡΙΘΜΟΙ ΩΣ ΤΟ 100
ΑΡΙΘΜΟΙ ΩΣ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος, διαιρέτης, διαιρετέος,
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Επίπεδο Δραστηριοτήτων Δείκτες Επάρκειας Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος
Διαβάστε περισσότερα