3η ΕΡΓΑΣΙΑ. 3.1 Αµεσοι µέθοδοι για την Αριθµητική Επίλυση Γραµµικών Συστηµάτων
|
|
- Μενέλαος Ρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : Αριθµητικές Μέθοδοι και Προγραµµατισµός(ΧΗΜΙΚΟ) Καταληκτική ηµεροµηνία υποβολής µέχρι και την ευτέρα , ώρα 22: Προσοχή : Η Εργασία είναι ατοµική (δηλαδή ο κάθε ϕοιτητής ϑα πρέπει να εργαστεί µόνος του) (Η ένδειξη σηµαίνει ότι το αντίστοιχο ερώτηµα είναι προαιρετικό) 3η ΕΡΓΑΣΙΑ 31 Αµεσοι µέθοδοι για την Αριθµητική Επίλυση Γραµµικών Συστηµάτων ίνεται ο κώδικας της µεθόδου απαλοιφής του Gauss µε µερική οδήγηση για την αριθµητική επίλυση ενός γραµµικού συστήµατος Ax = b στον ϕάκελο Εγγραφα/ Κώδικας Gauss στην ιστοσελίδα eclass του µαθήµατος 311 Να µετατρέψετε τον κώδικα της µεθόδου απαλοιφής του Gauss µε µερική οδήγηση στον κώδικα της µεθόδου Jordan µε µερική οδήγηση 312 Να µετατρέψετε τον κώδικα της µεθόδου Jordan του Ερωτήµατος 311 έτσι ώστε η main να αποτελείται από κλήσεις συναρτήσεων Πιο συγκεκριµένα η main να αποτελείται από τις κλήσεις των ακόλουθων συναρτήσεων : 1 diavase 2 jordan 3 ektyposi Η diavase να διαβάζει την τάξη n του πίνακα A, τον πίνακα A και το διάνυσµα b Η jordan να επιλύει το γραµµικό σύστηµα Ax = b και η ektyposi να τυπώνει τον τελικό πίνακα A, όπως έχει τροποποιηθεί και τη λύση x 313 Να µετατρέψετε τον κώδικα της µεθόδου Jordan του Ερωτήµατος 312 έτσι ώστε να υπολογίζει τον αντίστροφο A 1 ηλαδή να επιλύει n το πλήθος γραµµικά συστήµατα µε τον ίδιο πίνακα A της µορφής A X = I, όπου X n n πίνακας και I ο n n µοναδιαίος πίνακας Τώρα ο επαυξηµένος πίνακας είναι ο [A ] I 31 Στιγµιότυπα Αποτελεσµάτων 311 Να τυπωθεί η λύση του γραµµικού συστήµατος : = 6 x [] = x [1] = 312 Να τυπωθεί η λύση του γραµµικού συστήµατος : = 3 21
2 O telikos pinakas A einai : a [] [] = a [] [1] = a [] [2] = a [1] [] = a [1] [1] = a [1] [2] = a [2] [] = a [2] [1] = a [2] [2] = 313 Να τυπωθεί ο αντίστροφος πίνακας A 1 Η εκτύπωση να είναι της ακόλουθης µορφής : O antistrofos pinakas toy A einai: x [] = x [1] = x [] [] = x [] [1] = x [] [2] = x [1] [] = x [1] [1] = x [1] [2] = x [2] [] = x [2] [1] = x [2] [2] = 32 Επαναληπτικές µέθοδοι για την Αριθµητική Επίλυση Γραµµικών Συστηµάτων ίνεται το ακόλουθο τριδιαγώνιο n n γραµµικό σύστηµα Ax = d b 1 c 1 a 2 b 2 c 2 a 3 b 3 d 3 a n 2 b n 2 c n 2 µε b i, i = 1, 2, n a n 1 b n 1 c n 1 a n b n x n 2 x n 1 x n = d 1 d 2 d 3 d n 2 d n 1 d n Οι τύποι υπό µορφή συνιστωσών της επαναληπτικής µεθόδου SOR για την αριθµητική επίλυση του γραµ- µικού συστήµατος (1) λαµβάνοντας υπόψη την ειδική δοµή του πίνακα είναι οι ακόλουθοι : 1 = (1 ω)x (k) 1 + ω( c 1 x (k) 2 + d 1 )/b 1 i = (1 ω)x (k) i + ω( a i i 1 c i x (k) i+1 + d i)/b i, i = 2, 3,, n 1 n = (1 ω)x (k) n + ω( a n n 1 + d n )/b n 321 Να γράψετε ένα πρόγραµµα σε γλώσσα C το οποίο να επιλύει µε την επαναληπτική µέθοδο SOR το ανωτέρω τριδιαγώνιο γραµµικό σύστηµα (1) Το πρόγραµµά σας να διαβάζει την τάξη n του πίνακα A, τον τριδιαγώνιο πίνακα A και το διάνυσµα d Λάβετε ω = 8, αρχικό διάνυσµα x () = d, επιθυµητή ακρίβεια ɛ = και µέγιστος επιτρεπτός αριθµός επαναλήψεων M = 2 (1)
3 322 Να µετατρέψετε τον κώδικα του Ερωτήµατος 321 έτσι ώστε η main να αποτελείται από κλήσεις συναρτήσεων Πιο συγκεκριµένα η main να αποτελείται από τις κλήσεις των ακόλουθων συναρτήσεων : 1 diavase 2 sor 3 ektyposi 1 Η diavase να διαβάζει την τάξη n του πίνακα A, τον τριδιαγώνιο πίνακα A και το διάνυσµα d 2 Η sor για δεδοµένη τιµή του ω να επιλύει το γραµµικό σύστηµα Ax = d 3 Η ektyposi να τυπώνει την τιµή του ω, το πλήθος των επαναλήψεων niter και τη λύση x 323 Να µετατρέψετε τον κώδικα του Ερωτήµατος 322 έτσι ώστε για τις τιµές του ω = 8, 9, 1,, 15 (i) να επιλύει το γραµµικό σύστηµα Ax = d και (ii) να υπολογίζει την τιµή του ω για την οποία επιτυγχάνεται το µικρότερο πλήθος επαναλήψεων 32 Στιγµιότυπα Αποτελεσµάτων 321 ίνεται το ακόλουθο τριδιαγώνιο γραµµικό σύστηµα : = 4 omega =, niter = x [] = x [1] = 322 ίνεται το ακόλουθο τριδιαγώνιο γραµµικό σύστηµα : = omega =, niter = x [] = x [1] =
4 323 Για το γραµµικό σύστηµα του Ερωτήµατος 322, η εκτύπωση να είναι της ακόλουθης µορφής : omega niter H timh toy omega me to mikrotero plithos epanalipsewn einai : omega = Οδηγίες για την παράδοση(υποβολή) της 3ης Εργασίας Σηµείωση : Ολες οι υλοποιήσεις της Εργασίας να γίνουν σε γλώσσα Προγραµµατισµού C Προσοχή : Η Εργασία είναι ατοµική (δηλαδή ο κάθε ϕοιτητής ϑα πρέπει να εργαστεί µόνος του και να παρουσιάσει στην παρούσα εργασία την προσωπική του προσπάθεια) Καταληκτική ηµεροµηνία υποβολής : Ο κάθε ϕοιτητής ϑα πρέπει εµπρόθεσµα να υποβάλει ηλεκτρονικά την 3η Εργασία στην e_class του µαθήµατος µέχρι και την ευτέρα και ώρα 22:3 Για την υποβολή στην e_class πρέπει να επισυνάψετε ΜΟΝΟ ένα Φάκελο (συµπιεσµένο) µε όνοµα ERG3_xxxxxxx, όπου xxxxxxx τα τελευταία ψηφία του ΑΜ σας Μέσα στον ϕάκελο αυτό να περιέχονται τα ακόλουθα αρχεία : 1) Τα αρχεία erg311_xxxxxxx, erg312_xxxxxxx, erg313_xxxxxxx τα οποία ϑα περιέχουν µόνο τους πηγαίους (source) κώδικες για τα ερωτήµατα 311, 312, 313, αντίστοιχα 2) Τα αρχεία erg311_apotel_xxxxxxx, erg312_apotel_xxxxxxx, erg313_apotel_xxxxxxx τα ο- ποία ϑα περιέχουν αντίστοιχα τα στιγµιότυπα(print screen) των αποτελέσµάτων σας που προκύπτουν από την εκτέλεση των προγραµµάτων(κωδίκων) στο 31) 3) Τα αρχεία erg321_xxxxxxx, erg322_xxxxxxx, erg323_xxxxxxx τα οποία ϑα περιέχουν µόνο τους πηγαίους (source) κώδικες για τα ερωτήµατα 321, 322, 323, αντίστοιχα 4) Τα αρχεία erg321_apotel_xxxxxxx, erg322_apotel_xxxxxxx, erg323_apotel_xxxxxxx τα ο- ποία ϑα περιέχουν αντίστοιχα τα στιγµιότυπα(print screen) των αποτελέσµάτων σας που προκύπτουν από την εκτέλεση των προγραµµάτων(κωδίκων) στο 32)
5 ΠΡΟΣΟΧΗ 1 Είναι απαραίτητο στην αρχή του κάθε αρχείου (κώδικα, αποτελεσµάτων και κειµένου) να αναγρά- ϕετε το Ονοµατεπώνυµό σας και τον ΑΜ 2 Η Εργασία είναι ατοµική και σε περίπτωση αντιγραφής δεν ϐαθµολογείται 3 Η Εργασία ϑα πρέπει να λυθεί µε ϐάση τη ϑεωρία που έχετε διδαχθεί 4 Μετά την λήξη της καταληκτικής ηµεροµηνίας παράδοσης η εργασία δεν ϑα γίνεται δεκτή 5 Θα πρέπει να επισκέπτεστε συχνά την ιστοσελίδα (στην e-class) του µαθήµατος και να ενηµερώνεστε µε το σχετικό υλικό
2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 2η Οµάδα Ασκήσεων 1442008 ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)
µέχρι και την Τρίτη 24.3.2015 και ώρα 22:30 1η Ασκηση ΑΜΕΣΟΙ ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΗΜΕΡ/ΝΙΑ 9.3.205 Καταληκτική Ηµερ/νία υποβολής µέχρι
1 η ΑΣΚΗΣΗ. 1. Θεωρία (Κεφ. 1, 2) ξ = 2 της εξίσωσης fx ( ) = 0 για x
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 0/3/009 η ΑΣΚΗΣΗ. Θεωρία (Κεφ., ). α) Σε πόσα σηµαντικά ψηφία
1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα
1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 5(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 6(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 15 Οκτωβρίου 2006
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 2 ΙΟΥΝΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72
Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας
Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
ΘΕΜΑ 1ο Α. 1. Να αναφέρετε τα κριτήρια που πρέπει να ικανοποιεί κάθε αλγόριθµος.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 8 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ
ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.
Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης
ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2007
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2007 ΣΤΑΤΙΣΤΙΚΑ Αποτελέσματα γραπτής εξέτασης στο μάθημα ΑΕΠΠ (Ιούλιος 2007) 18-20 15-17,9 12-14,9 10-11,9 5-9,9 0-4,9 13,96% 13,90% 12,36% 10,19% 28,34% 21,22% ΘΕΜΑ 1
ΚΕΦΑΛΑΙΟ 10 Ο ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΚΕΦΑΛΑΙΟ 10 Ο ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Να σχηματίσετε τον πίνακα τιμών του παρακάτω αλγορίθμου. Τί θα εκτυπωθεί; ΠΡΟΓΡΑΜΜΑ Πίνακας_Τιμών2 ΑΚΕΡΑΙΕΣ: Α, Β, Γ Α < 3 Β < 13 Γ < 2 ΓΡΑΨΕ Α, Β, Γ ΚΑΛΕΣΕ Επεξεργασία_Τιμών2
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 3 Ηµεροµηνία αποστολής στον φοιτητή: 3 Iανουαρίου 004. Τελική ηµεροµηνία αποστολής από τον φοιτητή: 8 Φεβρουαρίου
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,
x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη.
1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2015 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΟΥΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Φεβρουάριος 5 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυία! Θέµα ο α Χρησιµοποιείστε τη µέθοδο
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 2(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Β.1. i. Να εξηγήσετε τι εννοούμε με τον όρο μεταφερσιμότητα των προγραμμάτων. Μονάδες 3
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 31 MAΪΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..
Μαρία Λουκά. Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Μαρία Λουκά Εργαστήριο Matlab Άμεσες Μέθοδοι. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βασικές συναρτήσεις του Matlab b = trace(a) : Είναι το άθροισμα των διαγωνίων στοιχείων του πίνακα Α. d = det(a) : επιστρέφει
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 3(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50
Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205
Α. Η «στοίβα» είναι µια δοµή δεδοµένων. 1. Να περιγράψετε τη «στοίβα» µε ένα παράδειγµα από την καθηµερινή ζωή. Μονάδες 6
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
ΕΞΕΤΑΣΗ ΙΑΝΟΥΑΡΙΟΥ (28/1/2011)
Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις
A[0] = 0; /* To μηδέν δεν έχει διαιρέτες */ for (i=1; i<n; i++) { S=0; for (d=1; d<=i; d++) if (i % d == 0) S += d; A[i] = S; }
TEI Λάρισας / ΣΤΕΦ Τμ. Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών B Εξεταστική Περίοδος, 19 Φεβρουαρίου 2009 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι Ηλίας. Κ. Σάββας Α 1) Να γράψετε ένα πρόγραμμα το οποίο να γεμίζει ένα ακέραιο
ΘΕΜΑ 1ο Α. ίνεται η παρακάτω αλληλουχία εντολών: ιάβασε α, β Αν α > β τότε c α / (β - 2) Τέλος_αν Εκτύπωσε c
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 4 ΙΟΥΛΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ
Εργαστήριο 2 - Απαντήσεις. Επίλυση Γραμμικών Συστημάτων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΟ Ι Ιστοσελίδα : http://www.math.ntua.gr/~fargyriou Εργαστήριο 2 - Απαντήσεις Επίλυση
ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό κάθε πρότασης και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασµένη.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό κάθε πρότασης και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασµένη.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016
ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2015 2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΔΙΑΡΚΕΙΑ: 2 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: ΤΡΙΤΗ, 07/06/2016 ΑΡΙΘΜΗΤΙΚΩΣ: ΟΛΟΓΡΑΦΩΣ:
ΕΡΓΑΣΤΗΡΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ C. Τµήµα Πληροφορικής και Τηλεπικοινωνιών
ΕΡΓΑΣΤΗΡΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ C Τµήµα Πληροφορικής και Τηλεπικοινωνιών Περιεχόµενα Εισαγωγή Πρόγραµµα Φάσεις Υλοποίησης µε χρήση του εργαλείου DEV C + + οµή Προγράµµατος Η συνάρτηση main Μεταβλητές Τι είναι
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Κεφάλαιο 10. Ερωτήσεις ανάπτυξης
Κεφάλαιο 10 Ερωτήσεις ανάπτυξης 1. Τι ονομάζουμε τμηματικό προγραμματισμό; 2. Τι ονομάζουμε υποπρόγραμμα; 3. Ποια τα χαρακτηριστικά των υποπρογραμμάτων; 4. Ποια τα πλεονεκτήματα του τμηματικού προγραμματισμού;
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 1: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις
Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ
ΤΑΞΗ: 3 η ΤΑΞΗ ΕΠΑ.Λ. ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ / ΕΙΔΙΚΟΤΗΤΑΣ Ημερομηνία: Τετάρτη 11 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ9) Θέμα. (μονάδες.0) Οι ορίζουσες των πινάκων ABC,, βρεθούν οι ορίζουσες των πινάκων:
20 7ω ΘΕΜΑ Α ,5x γδ ωx. 5 2 (όπου x, y, ω, γ, δ, μ, z μεταβλητές)
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ & Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ KAI Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
3. Να γραφεί πρόγραμμα που θα διαβάζει 100 ακεραίους αριθμούς από το πληκτρολόγιο και θα υπολογίζει το άθροισμά τους.
ΑΕσΠΠ-Δομή Επανάληψης 9 ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1. Να γραφεί πρόγραμμα που να υπολογίζει το άθροισμα των πρώτων 100 φυσικών αριθμών. 2. Να τροποποιηθεί ο παραπάνω πρόγραμμα ώστε να υπολογίζει το άθροισμα των πρώτων
ÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ
ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 9 ΙΟΥΛΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα)
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα) Επικοινωνία Το υποπρόγραμμα δέχεται τιμές από το πρόγραμμα Επιστρέφει,
Περιεχόµενα. 1 Εισαγωγή στις οµές εδοµένων 3. 2 Στοίβα (Stack) 5
Περιεχόµενα 1 Εισαγωγή στις οµές εδοµένων 3 2 Στοίβα (Stack) 5 i ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ ii Πληροφορίες Εργαστηρίου Σκοπός του εργαστηρίου Το εργαστήριο οµές εδοµένων αποσκοπεί στην εφαρµογή των τεχνολογιών
D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].
4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
Εισαγωγή στους Αλγόριθµους Σεπτέµβριος Εξεταστές: Χ. Ζαρολιάγκης, Θ. Παπαθεοδώρου
Ονοµατεπώνυµο: Εισαγωγή στους Αλγόριθµους Σεπτέµβριος Εξεταστές: Χ. Ζαρολιάγκης, Θ. Παπαθεοδώρου Α.Μ.: Έτος: ιάρκεια Εξέτασης: ώρες ο Θέµα ( µονάδα) i) ίνεται το διάνυσµα A µε N 8 στοιχεία. Να υπολογιστεί
Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως
Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων
Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,
Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων. Μιχάλης Δρακόπουλος
Επαναληπτικές μέθοδοι για την επίλυση γραμμικών συστημάτων Μιχάλης Δρακόπουλος Σημειώσεις Αριθμητικής Γραμμικής Άλγεβρας 2012 2013 Εισαγωγή Στην αριθμητική επίλυση μαθηματικών εφαρμογών, όπως για παράδειγμα
ΘΕΜΑ 1 ο. Στήλη Β Προτάσεις. β. Ο βρόχος επανάληψης τερµατίζεται, όταν η συνθήκη είναι αληθής. όταν η συνθήκη είναι ψευδής.
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
1. Ουρά α. Απώθηση 2. Στοίβα β. Εξαγωγή γ. Ώθηση δ. Εισαγωγή
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 1 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..
ΛΥΣΕΙΣ ΣΤΗΝ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ
ΛΥΣΕΙΣ ΣΤΗΝ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΗΜΕΡΟΜΗΝΙΑ : 08 / 04 / 2010 ΘΕΜΑ 1 Α1. 1-Σ, 2-Λ, 3-Λ, 4-Λ, 5-Σ Α2. Κ 1 Χ 10 _ΕΠΑΝΑΛΗΨΗΣ ΑΝ Κ < Α ΚΑΙ Χ < >
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Τµήµα Ψηφιακών Συστηµάτων Μάθηµα: «Αντικειµενοστρεφής Προγραµµατισµός» 2 ο εξάµηνο, Εαρινή περίοδος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Τµήµα Ψηφιακών Συστηµάτων Μάθηµα: «Αντικειµενοστρεφής Προγραµµατισµός» 2 ο εξάµηνο, Εαρινή περίοδος 2015-2016 ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ Η εργασία αυτή θα σας βοηθήσει να εξοικειωθείτε µε
Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ
Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 4(β): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος. Μονάδες 5 2. Ποιο κριτήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Εισαγωγή στον Προγραμματισμό. Ενότητα 9: Συναρτήσεις Εμβέλεια
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στον Προγραμματισμό Ενότητα 9: Συναρτήσεις Εμβέλεια Κ. Κουκουλέτσος Τμήμα: Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης
Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ
Γ ΤΑΞΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ÑÏÌÂÏÓ
Γ ΤΑΞΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,αν είναι σωστή,
Κεφάλαιο Πέµπτο: Η Εξάσκηση
Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 1 Εισαγωγή στη C Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Διαδικαστικά Ιστοσελίδα μαθήματος: http://eclass.uoa.gr/courses/f30/ Υποχρεωτική παρακολούθηση: Παρασκευή 14:00 16:00 στην
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο
Θέματα Μεταγλωττιστών
Γιώργος Δημητρίου Ενότητα 10 η : Βελτιστοποιήσεις Τοπικότητας και Παραλληλισμού: Εξαρτήσεις και Μετασχηματισμοί Βρόχων Επεξεργασία Πινάκων Παραλληλισμός επιπέδου βρόχου Λόγω παραλληλισμού δεδομένων Επιτυγχάνεται
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for
Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο
Οικονοµικό Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής. Φθινοπωρινό Εξάµηνο 2015. Δοµές Δεδοµένων - Εργασία 2. Διδάσκων: E. Μαρκάκης
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015 Δοµές Δεδοµένων - Εργασία 2 Διδάσκων: E. Μαρκάκης Ταξινόµηση και Ουρές Προτεραιότητας Σκοπός της 2 ης εργασίας είναι η εξοικείωση
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις
3ο σετ σημειώσεων - Πίνακες, συμβολοσειρές, συναρτήσεις 5 Απριλίου 01 1 Πίνακες Είδαμε ότι δηλώνοντας μία μεταβλητή κάποιου συγκεκριμένου τύπου δεσμεύουμε μνήμη κατάλληλη για να αποθηκευτεί μία οντότητα
Β. ίνεται το παρακάτω τμήμα δηλώσεων ενός προγράμματος σε «ΓΛΩΣΣΑ»: ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Χ, Ζ[15] ΠΡΑΓΜΑΤΙΚΕΣ: Ω
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ