Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής"

Transcript

1 Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

2 Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ϱητώς. 1 / 33

3 Χρηµατοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδηµαϊκά Μαθήµατα στο Πανεπιστήµιο Πατρών» έχει χρηµατοδοτήσει µόνο τη αναδιαµόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράµµατος «Εκπαίδευση και ια Βίου Μάθηση» και συγχρηµατοδοτείται από την Ευρωπαϊκή Ενωση (Ευρωπαϊκό Κοινωνικό Ταµείο) και από εθνικούς πόρους. 2 / 33

4 Σκοπός Ενότητας ιανύσµατα και Γραµµικές Εξισώσεις Εννοια της απαλοιφής Αντίστροφοι Απαλοιφή Χρησιµοποιώντας Μητρώα - Απαλοιφή Gauss Απαλοιφή και Παραγοντοποίηση A = LU Μητρώα Μετάθεσης 3 / 33

5 Περιεχόµενα 1 Υπενθύµιση ( ιάλεξη 20/2) 2 Ζητήµατα κόστους 3 Αντίστροφα µητρώα Ζητήµατα σχετικά µε το αντίστροφο και την αντιστροφή 4 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία 4 / 33

6 Υπενθύµιση ( ιάλεξη 20/2) Υπενθύµιση και πρόγραµµα διάλεξης Στην προηγούµενη διάλεξη µιλήσαµε για ορισµένες χρήσεις µητρώων και διανυσµάτων. Ανάκτηση πληροφορίας από διάνυσµα. Ανάκτηση πληροφορίας από µητρώο. το πρόβληµα του υπολογισµού τιµών πολυωνυµικής συνάρτησης και µητρώα Vandermonde µητρώα και γραφήµατα µέτρηση διαδροµών µε δυνάµεις και δυναµοσειρές µητρώων. Σήµερα ϑα συζητήσουµε τα εξής: κόστη ϐασικών πράξεων µε µητρώα, αντίστροφο µητρώου, ιδιότητες και το Ϲήτηµα του υπολογισµού του, ορθογώνια και ορθοµοναδιαία µητρώα, επίλυση γραµµικών εξισώσεων (εισαγωγή). 5 / 33

7 Υπενθύµιση ( ιάλεξη 20/2) Υπό συζήτηση ενότητες 6 / 33

8 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: 7 / 33

9 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; 7 / 33

10 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m 7 / 33

11 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; 7 / 33

12 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 7 / 33

13 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; 7 / 33

14 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) 7 / 33

15 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) το γινόµενο διανύσµατος στήλης επί διανύσµατος γραµµή pw ; 7 / 33

16 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) το γινόµενο διανύσµατος στήλης επί διανύσµατος γραµµή pw ; Ω = mn 7 / 33

17 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) το γινόµενο διανύσµατος στήλης επί διανύσµατος γραµµή pw ; Ω = mn το γινόµενο µητρώων AB; 7 / 33

18 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) το γινόµενο διανύσµατος στήλης επί διανύσµατος γραµµή pw ; Ω = mn το γινόµενο µητρώων AB; Ω = (2k 1)mn 7 / 33

19 Ζητήµατα κόστους Ζητήµατα κόστους Εστω ότι A R m k, B R k n, p R m, q R m, w R n Πόσες αριθµητικές πράξεις χρειάζονται: ο γραµµικός συνδυασµός διανυσµάτων αp + βq; Ω = 3m το εσωτερικό γινόµενο p q; Ω = 2m 1 το γινόµενο µητρώου επί διάνυσµα Bw; Ω = k(2n 1) το γινόµενο διανύσµατος στήλης επί διανύσµατος γραµµή pw ; Ω = mn το γινόµενο µητρώων AB; Ω = (2k 1)mn 7 / 33

20 Αντίστροφα µητρώα Ταυτοτικά µητρώα (υπενθύµιση) Είδαµε ότι για κάθε A R n n υπάρχει το µηδενικό µητρώο A + 0 = 0 + A = A Ταυτοτικό ως προς την πρόσθεση µητρώων Ορίζουµε και το ταυτοτικό µητρώο I R n n A I = I A = A Ταυτοτικό ως προς τον πολλαπλασιασµό µητρώων Ερώτηµα Υπάρχει αντίστροφο µητρώο; A ; = ; A = I 8 / 33

21 Αντίστροφα µητρώα Αν υπήρχε... πώς ϑα το γράφαµε; Μάλλον A 1 πώς ϑα έµοιαζε; A = ( ) 4 0 = A = ( 1 ) / 33

22 Αντίστροφα µητρώα Αν υπήρχε... πώς ϑα το γράφαµε; Μάλλον A 1 πώς ϑα έµοιαζε; A = A = ( ) = A 1 = ( ) 4 0 = A = ( ), A = ( 1 ) ( ) ( 1 = A 1 = ) 9 / 33

23 Αντίστροφα µητρώα Αν υπήρχε... πώς ϑα το γράφαµε; Μάλλον A 1 πώς ϑα έµοιαζε; A = A = ( ) = A 1 = A = ( ) 4 0 = A = ( ( ) πώς ϑα το υπολογίζαµε; ; ; ; 1 2 ), A = ( 1 ) ( ) = A 1 = ( ( 1 = A 1 = ) 2 ) 9 / 33

24 Αντίστροφα µητρώα Ιδιότητες αντιστρόφου Ακόµα και αν A 0, µπορεί να µην υπάρχει αντίστροφο! εν ϕαίνεται πάντα µε γυµνό µάτι! Αν δεν υπάρχει αντίστροφο, το A λέγεται µη αντιστρέψιµο, ή ιδιάζον ή και ιδιόµορφο. Ενα διαγώνιο ή τριγωνικό µητρώο είναι αντιστρέψιµο τα διαγώνια στοιχεία είναι όλα µη µηδενικά. Το αντίστροφο διαγωνίου είναι διαγώνιο. Το αντίστροφο τριγωνικού είναι τριγωνικό (ίδιας δοµής.) 10 / 33

25 Αντίστροφα µητρώα Ιδιότητες και Ορθογώνια µητρώα (A 1 ) 1 = A (AB) 1 = B 1 A 1 Γενικά (A + B) 1 A 1 + B 1, ενώ πάντα (A + B) = A + B Γενικά, άλλο η ΑΝΤΙΣΤΡΟΦΗ και άλλο η ΑΝΑΣΤΡΟΦΗ (A 1 ) = (A ) 1 = A Για ορισµένα ειδικά µητρώα, µπορεί να ισχύει A 1 = A οπότε AA = A A = I. Κάθε πραγµατικό τετραγωνικό µητρώο που ικανοποιεί A = A 1 αποκαλείται ΟΡΘΟΓΩΝΙΟ ΜΗΤΡΩΟ. Αν ένα µιγαδικό µητρώο A C n n ικανοποιεί C C = I, αποκαλείται ορθοµοναδιαίο (unitary).... προσέξτε ότι για όλες τις στήλες (και αντίστοιχα για τις γραµµές) ενός ορθογώνιου ή ορθοµοναδιαίου µητρώου ισχύει ότι { 1 αν i = j, a i, a j = 0 αν i j. 11 / 33

26 Αντίστροφα µητρώα Παράδειγµα Το µητρώο είναι ορθογώνιο: ( 3 Προσέξτε ότι αν A = R(φ) = ( 3 ) ( ) ) = ( cos φ ) sin φ sin φ cos φ ( ) τότε A = R( π 6 ). Ενδιαφέρον: Τα R(φ) είναι µητρώα µε στοιχεία που είναι συναρτήσεις κάποιας παραµέτρου φ. Επίσης, για κάθε φ, το µητρώο R(φ) είναι ορθογώνιο. 12 / 33

27 Αντίστροφα µητρώα Σχετικά µε το αντίστροφο µητρώο ΥΠΑΡΧΕΙ; ΕΙΝΑΙ ΜΟΝΑ ΙΚΟ; ΠΩΣ ΤΟ ΥΠΟΛΟΓΙΖΟΥΜΕ; όχι ( πάντα ) ναι, όταν υπάρχει σπάνια απλά Αν AB = BA = I, ( ) ( 1 ) 3 0 και CA = I = AC D = 0 4 D 1 0 = 3 1 ( ) 0 ( 4 ) δεν ξεχωρίζει εύκολα τότε L = L 1 = ( 1 2 ) (CA)B }{{} =C(AB)=C = BI = B συνήθως κοπιαστικά... από ( ένα αντιστρέψιµο ) A = A 1 = H = H 1 = ( ) ( ) 13 / 33

28 Αντίστροφα µητρώα Υπενθύµιση Είδαµε ότι στο λογισµό µητρώων µπορεί AB = 0 ενώ A 0, B 0. Παράδειγµα A = ( ) , B = ( ) AB = 0 Ενδιαφέρον: Θα δούµε ότι αν AB = 0 και A, B R n n (τετραγωνικά) τότε τουλάχιστον ένα από τα δύο είναι ιδιόµορφο Στο λογισµό µητρώων, τα ιδιόµορφα µητρώα έχουν το ϱόλο του µηδεν! Αν A ιδιόµορφο, τότε BA και AB είναι ιδιόµορφα για οποιοδήποτε B. Προσοχή: Ιδιόµορφο δεν σηµαίνει 0, απλά ε έχει το ϱόλο ιδεατού µηδενικού: Ο,τι πολλαπλασιάσει, το κάνει ιδιόµορφο. ( ) ( ) 1 2 α β 2 4 γ δ = ( ) α + 2γ β + 2δ 2α + 4γ 2β + 4δ, και προσέξτε οτι οι στήλες (και οι γραµµές) του γινοµένου είναι γραµµικά εξαρτηµένες ό,τι και να είναι τα α, β, γ, δ. 14 / 33

29 Αντίστροφα µητρώα Ελέγξτε ότι για να υπάρχει B = A 1 ϑα πρέπει AB = I. Για να υπάρχει τέτοιο B ϑα πρέπει η πρώτη στήλη του B(:, 1) που µπορούµε χάριν οικονοµίας να τη συµβολίσουµε ως b 1 = [β 11, β 21 ] να ικανοποιεί εποµένως Ab 1 = e 1 που είναι αδύνατο γιατί τότε ( ) ( ) 1 2 β β = 21 β 1 + 2β 2 = 1 2β 1 + 4β 2 = 0 ( ) 1 0 2(β 1 + 2β 2 ) (2β 1 + 4β 2 ) = = 0 15 / 33

30 Αντίστροφα µητρώα Ζητήµατα σχετικά µε το αντίστροφο και την αντιστροφή Αναζήτηση αντιστρόφου αν υπάρχει Θα το αναζητήσουµε λύνοντας µία σειρά από υποπροβλήµατα (που εντέλει είναι πιο σηµαντικό)! ίνεται A R n n και Ϲητούµε το B R n n ώστε AB = I A[b 1, b 2,..., b n ] = [e 1, e 2,..., e n ], όπου e 1 = (1, 0,...), κ.λπ. Υπολογίζουµε το B ανά στήλες, δηλ. κάθε διάνυσµα b j που ικανοποιεί το γραµµικό σύστηµα Ab j = e j, j = 1,..., n. Το επόµενο ϐασικό Ϲήτηµα είναι η επίλυση γραµµικού συστήµατος Από τα A, b να υπολογιστεί το x ώστε Ax = b. 16 / 33

31 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Επίλυση γραµµικών συστηµάτων Μητέρα των προβληµάτων της Γραµµικής Αλγεβρας: ίδονται n «γραµµικές εξισώσεις» για m αγνώστους και Ϲητάµε να υπολογίσουµε τους αγνώστους ξ 1,..., ξ n. α 11ξ 1 + α 12ξ α 1nξ n = β 1 α 21ξ 1 + α 22ξ α 2nξ n = β 2... =... α m1ξ 1 + α 12ξ α mnξ n = β m α 11 α 12 α 1n α 21 α 22 α 2n Ax = b όπου A = α m1 α m2 α mn, x = ξ 1 ξ 2. ξ n, b = β 1 β 2.. β m 17 / 33

32 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Παράδειγµα Θεωρούµε ότι οι ϐαθµωτοί α 11 ως α 44 και β 1 ως β 4 είναι «γνωστές» τιµές που δεν έχουν ακόµα προσδιοριστεί. α 11 ξ 1 +α 12 ξ 2 +α 14 ξ 4 = 1 α 21 ξ 1 +α 23 ξ 3 = 500 +α 32 ξ 2 +α 33 ξ 3 = 1 43 α 41 ξ 1 +α 44 ξ 4 = 0 18 / 33

33 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Αλγεβρική γραφή οθέντων A R m n, b R m, ϑέλουµε να ϐρούµε τη λύση, x R n του Ax = b. Υπαρξη Υπάρχει λύση; Μοναδικότητα Αν υπάρχει, είναι µοναδική; Εύρεση Ποιά ή ποιές είναι; ηλ. ϑέλουµε να υπολογιστεί το σύνολο X = arg x R n{ax = b A R m n, x R n, b R m } ή απλά να ϐρεθεί ένα x R n τέτοιο ώστε Ax = b. 19 / 33

34 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Παρατηρήσεις Με ένα µόνο σύµβολο συνοψίζουµε Με A τους mn συντελεστές (γνωστοί) Με x το διάνυσµα µε τους n αγνώστους, Με b το διάνυσµα των m στοιχείων του δεξιού µέλους (γνωστά). Η σύντοµη διατύπωση ϐασίζεται στην «ειδική» πράξη πολλαπλασιασµού µητρώων-διανυσµάτων και επιτυγχάνει εξαιρετική οικονοµία στη γραφή. Στη συνέχεια και µέχρι να δηλωθεί διαφορετικά, ϑα ασχολούµαστε µε τετραγωνικά συστήµατα (m = n) 20 / 33

35 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Παράδειγµα ξ 1 +ξ 2 +ξ 4 = 1 πξ 1 +eξ 3 = ξ 2 44ξ 3 = 1 43 ξ 1 +7ξ 4 = 0 21 / 33

36 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Παράδειγµα Μη γραµµικό σύστηµα! ξ1 +ξ 1 ξ 2 +ξ 4 = 1 πξ 1 +e 2 ξ 3 = ξ 2 44ξ 3 = 1 43 ξ 1 + 7ξ 4 = 0 22 / 33

37 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Η «έφοδος» του Θυµαρίδα ( π.χ.) (Ιάµβλιχος, µ.χ.) ξ 1 + +ξ n = β 1 ξ 1 +ξ 2 = β =.. ξ 1 +ξ n = β n }{{} A ξ 1.. ξ n } {{ } x = β 1.. β n } {{ } b 23 / 33

38 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Ερµηνεία µε γεωµετρία Ο γεωµετρικός τόπος των σηµείων x R n που ικανοποιούν την εξίσωση α 1,1 ξ 1 + α 1,2 ξ α 1,n ξ n = β n ονοµάζεται υπερεπίπεδο του R n. Λέγεται επίσης ότι έχει διάσταση n 1. n = 1 σηµείο στον R. n = 2 ευθεία στον R 2. n = 3 επίπεδο στον R / 33

39 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Θεώρηση γραµµών: Κάθε εξίσωση αντιστοιχεί σε ένα υπερεπίπεδο στον R n Η λύση x είναι το σηµείο τοµής των n υπερεπιπέδων (π.χ. ευθειών όταν n = 2). Θεώρηση στηλών: Εστω οι στήλες (διανύσµατα) του µητρώου A = [a 1,..., a n ]. Η λύση x είναι οι συντελεστές του γραµµικού συνδυασµού που παράγει το b, δηλ. n ξ j=1 ja j = b. Προσοχή: ΥΠΑΡΧΕΙ ΛΥΣΗ; ΕΙΝΑΙ ΜΟΝΑ ΙΚΗ; ΠΩΣ ΥΠΟΛΟΓΙΖΕΤΑΙ; 25 / 33

40 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Θεώρηση γραµµών: Κάθε εξίσωση αντιστοιχεί σε ένα υπερεπίπεδο στον R n Η λύση x είναι το σηµείο τοµής των n υπερεπιπέδων (π.χ. ευθειών όταν n = 2). Θεώρηση στηλών: Εστω οι στήλες (διανύσµατα) του µητρώου A = [a 1,..., a n ]. Η λύση x είναι οι συντελεστές του γραµµικού συνδυασµού που παράγει το b, δηλ. n ξ j=1 ja j = b. Προσοχή: ΥΠΑΡΧΕΙ ΛΥΣΗ; ΕΙΝΑΙ ΜΟΝΑ ΙΚΗ; ΠΩΣ ΥΠΟΛΟΓΙΖΕΤΑΙ; 25 / 33

41 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Ερµηνεία λύσης ως σηµείο τοµής υπερεπιπέδων Ενα υπερεπίπεδο (γραµµή στον R 2 ) ανά εξίσωση ( ) ( ) 2 1 ξ1 1 1 ξ = 2 ( ) / 33

42 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Ερµηνεία λύσης ως πολλαπλασιαστές διανυσµάτων Ενα διάνυσµα ανά στήλη Αναζητούµε το γραµµικό συνδυασµό των στηλών του A = [a 1, a 2 ] που παράγει το b: ( ) ( ) 2 1 ξ1 1 1 ξ = 2 ( ) 1 2 η λύση ικανοποιεί b = ξ 1 a 1 + ξ 2 a 2 (Τα Ϲητούµενα ξ 1, ξ 2 αντιστοιχούν στην κλιµάκωση των a 1, a 2 ώστε c 1 = ξ 1 a 1, c 2 = ξ 2 a 2 και b = c 1 + c 2.) 27 / 33

43 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία υσχέρειες επίλυσης όταν n = 2 Ερµηνεία γραµµών οι εξισώσεις ορίζουν ευθείες που είναι παράλληλες χωρίς κοινό σηµείο - ΕΝ ΥΠΑΡΧΕΙ ΛΥΣΗ οι εξισώσεις ορίζουν ευθείες που είναι παράλληλες και έχουν άπειρα κοινά σηµεία - ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ Ερµηνεία στηλών οι στήλες του µητρώου είναι στην ίδια ευθεία και το διάνυσµα b ορίζει σηµείο εκτός αυτής - ΕΝ ΥΠΑΡΧΕΙ ΛΥΣΗ οι στήλες του µητρώου είναι στην ίδια ευθεία και το διάνυσµα b ορίζει σηµείο επ αυτής - ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ 28 / 33

44 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Γενίκευση σε πολλές διαστάσεις της ερµηνείας γραµµών (δυσκολεύει) Στις n = 3 διαστάσεις σηµεία προάγονται σε γραµµές γραµµές προάγονται σε επίπεδα η λύση είναι ο γεωµετρικός τόπος των σηµείων τοµής των 3 επιπέδων (ένα για κάθε εξίσωση) Παραδείγµατα δυσκολιών αν οποιαδήποτε 2 από τα επίπεδα ή και όλα είναι παράλληλα µεταξύ τους ΛΥΣΗ ΜΗ ΥΝΑΤΗ αν η ευθεία τοµής δυο επιπέδων κείται επί του τρίτου ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ ΠΡΟΣΟΧΗ: Στην πράξη, οι δυσκολίες είναι περισσότερες γιατί οι υπολογισµοί γίνονται σε αριθµητική πεπερασµένης ακρίβειας 1 1 περισσότερα στην Αριθµητική Ανάλυση & Περιβάλλοντα Υλοποίησης 29 / 33

45 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Επίλυση γραµµικών συστηµάτων Από τα πιο σηµαντικά προβλήµατα Εµφανίζεται σε πολλές εκδοχές και µεταµφιέσεις Μία από αυτές είναι ο υπολογισµός του αντιστρόφου µητρώου Πολλές µέθοδοι επίλυσης Στη σύγχρονη έρευνα αξιοποιούν «δοµικές» πληροφορίες από την εφαρµογή για επιτάχυνση Εδώ ϑα εξετάσουµε έναν «πρωταρχικό» τρόπο Ονόµατα κλειδιά:απαλοιφή Gauss, παραγοντοποίηση LU. Στόχοι: Να προετοιµαστείτε για την «αυτοµατοποίηση» της επίλυσης µέσω αλγορίθµου, που µπορεί να εφαρµοστεί και σε µεγάλα προβλήµατα. 30 / 33

46 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Βιβλιογραφία I G. Strang. Εισαγωγή στη Γραµµική Αλγεβρα. Εκδόσεις Πανεπιστηµιου Πατρών, / 33

47 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Σηµείωµα Αναφοράς Copyright Πανεπιστήµιο Πατρών - Ευστράτιος Γαλλόπουλος 2015 Γραµµική Αλγεβρα, Εκδοση: 1.0, Πάτρα ιαθέσιµο από τη δικτυακή διεύθυνση: 32 / 33

48 Επίλυση Συστηµάτων Γραµµικών Εξισώσεων Γεωµετρική ερµηνεία Τέλος Ενότητας 33 / 33

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 4 : Ορθογωνιότητα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων. Ευστράτιος Γαλλόπουλος Ενότητα 5 - Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Ασκηση 1 Εστω ένα µητρώο A το οποίο χρησιµοποιούµε και µητρώο συντελεστών κάποιου γραµµικού συστήµατος A x = b 1.Πώς ϑα λύνατε το γραµµικό

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 5 : Ορίζουσες. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 5 : Ορίζουσες. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 5 : Ορίζουσες Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 28/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 11/5/2012 Σηµαντικό χαρακτηριστικό µέγεθος (ϐαθµωτός) για κάθε τετραγωνικό

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 3: Παραγοντοποίηση QR Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πίνακες και Γραμμικά Συστήματα: Ο Αλγόριθμος Guss Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Αριθμητική Γραμμική Άλγεβρα (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Διανύσµατα στο επίπεδο

Διανύσµατα στο επίπεδο Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διανυσματικοί Χώροι και Υπόχωροι: Βάσεις και Διάσταση Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 8: Συστήματα γραμμικών αλγεβρικών εξισώσεων Εργαλεία Excel minverse & mmult Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 5: Τεχνικές Κλιμάκωσης, Γεωμετρία Γραμμικού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Γραμμικοί Μετασχηματισμοί Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα Σκοποί ενότητας

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 6 : Παραγοντοποίηση QR και Ελάχιστα Τετράγωνα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες

Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες Ευάγγελος Ράπτης Τμήμα Πληροφορικής 23 Μάθημα 23 Παρασκευή 30 Νοεμβρίου 2012 23.1 Ορίζουσες 1. Οι ορίζουσες εκτός των άλλων εφαρμογών, βοηθούν και στην εύρεση λύσεων

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Γραµµικές απεικονίσεις Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 4 : Μοντέλο Αριθµητικής και Σφάλµατα Υπολογισµού Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

a 11 a 1n b 1 a m1 a mn b n

a 11 a 1n b 1 a m1 a mn b n Γραμμική Άλγεβρα ΙΙ Διάλεξη 13 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 28/4/2014 ΧΚουρουνιώτης (ΠανΚρήτης) Διάλεξη 13 28/4/2014 1 / 14 Πίνακες πάνω από σώμα K Πίνακες πάνω από σώμα K Το σύνολο των m n

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

Ιδιότητες. Σχετικά µετο. είναι το αντίστροφο τουαβ ΑΒ; Ποιό. Προσοχή. Αντίστοιχα µε τους βαθµωτούς: αρκεί αβ 0 ισχύει (A+B) ισχύουν όµως

Ιδιότητες. Σχετικά µετο. είναι το αντίστροφο τουαβ ΑΒ; Ποιό. Προσοχή. Αντίστοιχα µε τους βαθµωτούς: αρκεί αβ 0 ισχύει (A+B) ισχύουν όµως Ιδιότητες Ποιό είναι το αντίστροφο τουαβ ΑΒ; Αντίστοιχα µε τους βαθµωτούς: (αβ) -1 = β -1 α -1 αρκεί αβ 0 ισχύει (ΑΒ) -1 = B -1 A -1 αρκεί να υπάρχουν τα A -1, B -1 Προσοχή υπάρχει µια διαφορά ποιά; Σχετικά

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η χρησιμότητα της Γραμμικής Άλγεβρας είναι σχεδόν αυταπόδεικτη. Αρκεί μια ματιά στο πρόγραμμα σπουδών, σχεδόν κάθε πανεπιστημιακού τμήματος θετικών επιστημών, για να διαπιστώσει κανείς την παρουσία

Διαβάστε περισσότερα

Κυρτή Ανάλυση. Ενότητα: Ακραία σηµεία - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Κυρτή Ανάλυση. Ενότητα: Ακραία σηµεία - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ακραία σηµεία - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ειδικά θέματα στην επίλυση

Ειδικά θέματα στην επίλυση Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 14: Τεχνικές Βελτίωσης Απόδοσης Κώδικα σε Matlab, Ανάπτυξη Κώδικα σε Matlab για την Τεχνική Κλιμάκωσης της Ισορρόπησης Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Γραμμικά Συστήματα- Απαλοιφή Gauss Επιμέλεια: I. Λυχναρόπουλος. Χρησιμοποιείστε απαλοιφή Gauss για να επιλύσετε τα ακόλουθα συστήματα: 5x 8y = 5x= + y

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή στη Φυσική-Ακρίβεια & Σημαντικά Ψηφία- Βαθμωτά Μεγέθη-Διανυσματικά Μεγέθη

ΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή στη Φυσική-Ακρίβεια & Σημαντικά Ψηφία- Βαθμωτά Μεγέθη-Διανυσματικά Μεγέθη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 1: Εισαγωγή στη -Ακρίβεια & Σημαντικά Ψηφία- Βαθμωτά Μεγέθη-Διανυσματικά Μεγέθη Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής,

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα