Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50"

Transcript

1 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων / 50

2 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι ιδιοτιµές λ i, i = ()n και τα αντίστοιχα ιδιοδιανύσµατα x (i), i = ()n του πίνακα A. Ax = λx det(a λi) = 0 Επίλυση της πολυωνυµικής εξίσωσης (εύρεση ιδιοτιµών) det(a λi) = ( ) N λ N + c λ (N ) + + c N λ + c }{{ N = 0 () } p(λ) Επίλυση του οµογενούς γραµµικού συστήµατος (εύρεση ιδιοδιανυσµάτων) (A λi)x = 0 (2) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 2 / 50

3 Μέθοδος των δυνάµεων (Power method) Εστω ότι ο πίνακας A έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα x (i), i = ()n και αντίστοιχες ιδιοτιµές λ i, i = ()n µε λ > λ 2 λ 3 λ n Τότε έχουµε Ax (i) = λ i x (i), i =, 2,, n Τα x (i) αποτελούν µια ϐάση του C n και αν y (0) C n τότε y (0) = n a i x (i), i= a i C Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 3 / 50

4 Μέθοδος των δυνάµεων Σχηµατίζουµε την επαναληπτική µέθοδο y (m+) = Ay (m), m = 0,, 2, Ετσι έχουµε y (m+) = Ay (m) = A 2 y (m ) = = A m+ y (0) Αρα ισχύει y (m+) = A m+ y (0) οπότε έχουµε n y (m+) = A m+ ( a i x (i) ) = i= n a i A m+ x (i) = i= n i= a i λ m+ i x (i) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 4 / 50

5 Μέθοδος των δυνάµεων y (m+) = λ m+ [ n i= ( ) ] m+ λi a i x (i) λ y (m) = λ m [ n i= ( ) ] m λi a i x (i) λ y (m+) j y (m) j = λ m+ λ m [ [ a x () j + a x () j + n ( λi a i i=2 n i=2 λ a i ( λi λ ) m+ x (i) j ] ) m x (i) j ] Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 5 / 50

6 Μέθοδος των δυνάµεων y (m+) j lim m y (m) j = λ y (m) lim = m λ m a x () Ταχύτητα σύγκλισης Εξαρτάται από τις σταθερές a i και τους λόγους λ 2 λ, λ 3 λ, λ n λ Οσο µικρότεροι είναι οι λόγοι αυτοί τόσο ταχύτερη είναι η σύγκλιση της µεθόδου. Ιδιαίτερα αν λ2 λ είναι κοντά στη µονάδα, τότε η σύγκλιση πιθανόν να είναι πολύ αργή. Θεωρητικά αν τύχει y (0) : a = 0 και λ 2 > λ 3 λ 4 λ n τότε η µέθοδος ϑα συγκλίνει στην λ 2 και σε ένα πολλαπλάσιο του x (2). Στην πράξη όµως λόγω των σφαλµάτων στρογγύλευσης δηµιουργείται µια µικρή Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 6 / 50

7 Περίπτωση: λ = λ 2 και λ 2 > λ j, j = 3, 4, n Τότε έχουµε: y (m) = λ m [ a x () + a 2 x (2) + Αν a + a 2 0, τότε παρόµοια προκύπτουν : y (m+) j lim m y (m) j y (m) lim m λ m n i=3 = λ = a x () + a 2 x (2) ( ) ] m λi a i x (i) λ δηλαδή ένα ιδιοδιάνυσµα που αντιστοιχεί στην ιδιοτιµή λ. Στην πράξη για να ϐρεθεί ένα ιδιοδιάνυσµα µη συγγραµµικό προς το a x () + a 2 x (2) που αντιστοιχεί στην ίδια ιδιοτιµή λ αλλάζουµε το αρχικό διάνυσµα y (0). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 7 / 50

8 Περίπτωση: λ = λ 2 y (m) = λ m [ και λ 2 > λ j, j = 3, 4, n a x () + ( ) m a 2 x (2) + n i=3 ( ) ] m λi a i x (i) λ από την οποία δεν µπορεί να ϐρεθεί η λ. Οµως µπορούν να σχηµατισθούν οι εξής δύο ακολουθίες : [ n ( ) ] 2m y (2m) = λ 2m a x () + a 2 x (2) λi + a i x (i), λ i=3 [ n ( ) ] 2m+ y (2m+) = λ 2m+ a x () a 2 x (2) λi + a i x (i), λ m = 0,, 2, οπότε προκύπτει : y (2m+2) j lim m y (2m) j από την οποία υπολογίζουµε τις τιµές λ. i=3 = λ 2 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 8 / 50

9 Υπολογισµός ιδιοδιανυσµάτων Για την εύρεση των αντιστοίχων ιδιοδιανυσµάτων έχουµε και y (2m) lim m λ 2m y (2m+) lim m λ 2m+ = a x () + a 2 x (2) (2) = a x () a 2 x (2) (22) Με πρόσθεση και αφαίρεση κατά µέλη ϐρίσκουµε τα ιδιοδιανύσµατα a x () και a 2 x (2) που αντιστοιχούν στις ιδιοτιµές λ και λ 2 (= λ ). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205 Ιδιοδιανυσµάτων 9 / 50

10 Περίπτωση: λ = r + iq και λ 2 = r iq = λ Αν A R nn τότε ειναι x (2) = x () Επίσης αν y (0) το αρχικό πραγµατικό διάνυσµα τότε έχουµε a 2 = a. Ετσι µετά από m επαναλήψεις έχουµε: y (m) = λ m [ = λ m a x () + [ ( λ λ a x () + ) m n ( ) ] m a x () λi + a i x (i) λ i=3 ) m ] a x () + ɛ (m) ( λ λ όπου ή ɛ (m) = lim m y(m) = λ m n i=3 [ ( ) m λi a i x (i) λ a x () + ( λ λ ) m a x () ]. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 0 / 50

11 Υπολογισµός των ιδιοτιµών και ιδιοδιανυσµάτων Αν λ και λ είναι οι ϱίζες της εξίσωσης λ 2 + bλ + c = 0, b, c R τότε αφού έχουµε ή n n y (m) = a i A m x (i) = a i λ m i x (i) i= i= λ m+2 + bλ m+ + cλ m = 0 y (m+2) + by (m+) + cy (m) = 0 όπου υποθέτουµε ότι lim m ɛ(m+i) = 0, i = 0,, 2. Οι σταθερές b και c µπορούν να υπολογισθούν από δύο οποιεσδήποτε εξισώσεις. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων / 50

12 Μια καλύτερη διαδικασία για τον υπολογισµό των σταθερών b και c Χρήση όλων των n εξισώσεων ως εξής: Υπολογισµός των b και c έτσι ώστε η ποσότητα n i= [ y (m+2) i + by (m+) i ] + cy (m) 2 i να είναι η ελάχιστη (γραµµικό πρόβληµα ελαχίστων τετραγώνων). Υπολογισµός των λ και λ 2 (= λ ) Υπολογισµός των αντιστοίχων ιδιοδιανυσµάτων x () και x (2) (= x () ) για δύο διαδοχικά διανύσµατα y (m) και y (m+). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 2 / 50

13 Ετσι έχουµε : y (m) lim m λ m = a x () + ( λ λ ) m a x () και y (m+) lim m λ m+ = a x () + ( λ λ ) m+ a x () λ Πολ/ζοντας επί λ και αφαιρώντας κατά µέλη υπολογίζεται το ιδιοδιάνυσµα a x () που αντιστοιχεί στην ιδιοτιµή λ. Για τον υπολογισµό του ιδιοδιανύσµατος που αντιστοιχεί στην ιδιοτιµή λ 2 αρκεί να πάρουµε το συζυγές του a x (). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 3 / 50

14 Γενίκευση Η ανωτέρω διαδικασία µπορεί να γενικευθεί έτσι ώστε να υπολογίζει οποιονδήποτε αριθµό άνισων ιδιοτιµών που έχουν το ίδιο µέτρο, ή τις ιδιοτιµές λ, λ 2,, λ k πραγµατικές ή µιγαδικές οι οποίες να ικανοποιούν τις σχέσεις λ λ 2 λ k > > λ k+ λ n Οµως είναι γνωστό ότι υπάρχουν ουσιαστικά προβλήµατα αριθµητικής αστάθειας µε τη µέθοδο των ελαχίστων τετραγώνων για k 8. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 4 / 50

15 Παρατήρηση y (m) = λ m [ n i= ( ) ] m λi a i x (i) = λ m λ [ a x () + n i=2 ( ) ] m λi a i x (i) λ και επειδή λ i λ < τότε ενώ για i = 2()n, προκύπτει ότι lim m y(m) = λ m a x () (4) για λ > lim m y(m) j = ± για λ < lim m y(m) j = 0 Αρα εκτελούνται πράξεις µε απόλυτα πάρα πολύ µεγάλους ή πάρα πολύ µικρούς αριθµούς. Αυτό αποφεύγεται µόνο στην περίπτωση που είναι λ. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 5 / 50

16 Τροποποιηµένη µέθοδος των δυνάµεων y (m) j m = max j y (m) j = y (m) z (m) = y (m) j m y (m) y (m+) = Az (m) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 6 / 50

17 Τροποποιηµένη µέθοδος των δυνάµεων [ y (m) = y (0) j 0 y () y (m ) λ m a x () + j m y (m ) j m οπότε έχουµε [ j y (0) j 0 y () j z (m ) = y (m 2) j m 2 n i=2 y (m ) j m y (m ) = λ m ( a x () + n i=2 ( ) ] m λi a i x (i) λ ( ) )] m λi a i x (i) λ lim m y (m) j m z (m ) j m = λ Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 7 / 50

18 αλλά z (m ) j m = οπότε προκύπτει και lim m y(m) j m = λ lim m z(m) = cx () όπου c σταθερά τέτοια ώστε η απόλυτα µεγαλύτερη συνιστώσα cx () να είναι µονάδα. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 8 / 50

19 Αλγόριθµος της µεθόδου των δυνάµεων Β. ιάβασε n, ɛ, maxiter Για i = ()n επανάλαβε ιάβασε y i για j = ()n επανάλαβε ιάβασε a ij Β2. m = 0 λ0 = 0 Β3. Εύρεση του µικρότερου ακέραιου p : y p = max y i i=()n Β4. Για i = ()n επανάλαβε z i = y p y i Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 9 / 50

20 Β5. Οσο ισχύει m maxiter επανάλαβε Β5. Για i = ()n επανάλαβε n y i = j= a ijz j Β5.2 Εύρεση του µικρότερου ακέραιου p : y p = max y i i=()n Β5.3 λ = y p Β5.4 Αν y p = 0 τότε Τύπωσε ( ο A έχει ιδιοτιµή 0, επέλεξε νέο αρχικό διανυσµα και άρχισε πάλι τη διαδικασία ). Τέλος. Β5.5 Για i = ()n επανάλαβε z i = y p y i Β5.6 Αν λ λ0 < ɛ τότε Τύπωσε (λ, z) Τέλος. Β5.7 m = m + λ0 = λ Β6. Τύπωσε( Οχι σύγκλιση µετά από µαξιτερ επαναλήψεις ) Β7. Τέλος Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 20 / 50

21 Εφαρµογή του αλγορίθµου της µεθόδου των δυνάµεων ίνεται ο πίνακας A = (µε ιδιοτιµές λ = 6, λ 2 = 3, λ 3 = 2). Εφαρµόστε δύο ϐήµατα της µεθόδου των δυνάµεων (µε αρχικό διάνυσµα [,, ] T ) για τον υπολογισµό της µεγαλύτερης κατά µέτρο ιδιοτιµής και του αντιστοίχου ιδιοδιανύσµατος του πίνακα Α.. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 2 / 50

22 Εφαρµογή m = 0 λ0 = 0 y (0) = max{,, } = άρα p = z (0) = [,, ] T y () = Az (0) = [0, 8, ] T y () = max{ 0, 8, } = 0 άρα p = λ = y () = 0 z () = y () y () = [, 0.8, 0.] T λ λ0 = 0 0 = 0 < ɛ = 0.00 ΟΧΙ Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 22 / 50

23 m = λ0 = λ = 0 y (2) = Az () = [7.2, 5.4, 0.8] T y (2) = max{ 7.2, 5.4, 0.8 } = 7.2 άρα p = m = 2 λ = y (2) = 7.2 z (2) = y (2) y (2) = [, 0.75, 0.] T λ λ0 = = 2.8 < ɛ = 0.00 ΟΧΙ λ0 = λ = 7.2. κ.ο.κ. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 23 / 50

24 Υπολογισµός της µικρότερης κατά µέτρο ιδιοτιµής Αν λ n < λ n λ τότε ο υπολογισµός της µικρότερης κατά µέτρο ιδιοτιµής λ n γίνεται ως εξής : Επειδή Ax = λx και A x = λ x και λ n > λ i εφαρµόζεται η µέθοδος των δυνάµεων y (m+) = A y (m), m = 0,, 2, ή Ay (m+) = y (m), m = 0,, 2, δηλ. η επίλυση των γραµµικών συστηµάτων Ay () = y (0), Ay (2) = y (), Ay (3) = y (2), Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 24 / 50

25 Τεχνικές επιτάχυνσης της µεθόδου των δυνάµεων Μέθοδος των πηλίκων του Rayleigh Αν A πραγµατικός και συµµετρικός πίνακας τότε είναι δυνατόν να επιταχυνθεί η σύγκλιση της µεθόδου των δυνάµεων προς την µεγαλύτερη κατά µέτρο ιδιοτιµή χρησιµοποιώντας την µέθοδο των πηλίκων του Rayleigh. Ορισµός Για κάθε διάνυσµα x 0 η ποσότητα (x, Ax) (x, x) λέγεται πηλίκο του Rayleigh που αντιστοιχεί στο x. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 25 / 50

26 Θεώρηµα των πηλίκων του Rayleigh Αν A πραγµατικός και συµµετρικός n n πίνακας και x 0 ένα αυθαίρετο διάνυσµα, τότε ισχύουν και λ = max x 0 (x, Ax) (x, x) = (x(), Ax () ) (x (), x () ) (x, Ax) λ n = min x 0 (x, x) = (x(n), Ax (n) ) (x (n), x (n) ) όπου λ, λ n είναι η µεγαλύτερη και η µικρότερη κατά µέτρο ιδιοτιµή αντίστοιχα και x (), x (n) τα αντίστοιχα ιδιοδιανύσµατα. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 26 / 50

27 Αλγόριθµος της µεθόδου των πηλίκων του Rayleigh Β. ιάβασε n, ɛ, maxiter Για i = ()n επανάλαβε ιάβασε y i για j = ()n επανάλαβε ιάβασε a ij Β2. m = 0 λ0 = 0 Β3. Για i = ()n επανάλαβε y i z i = y 2 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 27 / 50

28 Β4. Οσο ισχύει m maxiter επανάλαβε Β4. Για i = ()n επανάλαβε n y i = j= a ijz j Β4.2 Για i = ()n επανάλαβε n λ = z iy i i= Β4.3 Αν y 2 = 0 τότε Τύπωσε ( ο A έχει ιδιοτιµή 0, επέλεξε νέο αρχικό διανυσµα και άρχισε πάλι τη διαδικασία ). Τέλος. Β4.4 Για i = ()n επανάλαβε yi z i = y 2 Β4.5 Αν λ λ0 < ɛ τότε Τύπωσε (λ, z) Τέλος. Β4.6 m = m + λ0 = λ Β5. Τύπωσε( Οχι σύγκλιση µετά από maxiter επαναλήψεις ) Β6. Τέλος Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 28 / 50

29 Χρήση των πηλίκων του Rayleigh για την επιτάχυνση της µεθόδου των δυνάµεων τότε y (m+) = Ay (m) καθόσον (y (m), y (m+) ) = (y (m), Ay (m) ) n = α 2 i λ 2m+ i i= (x (i), x (j) ) = δ ij = {, αν i = j 0, αν i j (3) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 29 / 50

30 Χρήση των πηλίκων του Rayleigh Επίσης οπότε έχουµε (y (m), y (m) ) = n i= α 2 i λ 2m i (4) Συµπέρασµα (y (m), Ay (m) ) (y (m), y (m) ) = λ + O(λ i /λ ) 2m ) (5) Το πηλίκο του Rayleigh που αντιστοιχεί στο y (m) γενικά ϑα συγκλίνει ταχύτερα (O(λ i /λ ) 2m ) από την µέθοδο των δυνάµεων (O(λ i /λ ) m ). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 30 / 50

31 Μετατόπιση της αρχής των αξόνων Πρόταση Οι πίνακες A και A qi έχουν τα ίδια ιδιοδιανύσµατα και αν λ i είναι ιδιοτιµή του A τότε η αντίστοιχη ιδιοτιµή του A qi είναι η λ i q. Απόδειξη Αν Ax (i) = λ i x (i) τότε (A qi)x (i) = Ax (i) qix (i) = (λ i q)x (i) Αφαιρώντας λοιπόν την ποσότητα q από τα διαγώνια στοιχεία του A έχει σαν αποτέλεσµα την αφαίρεση της q από τις ιδιοτιµές. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 3 / 50

32 Μετατόπιση της αρχής των αξόνων Υποθέτουµε ότι ο A R nn έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα και όλες οι ιδιοτιµές του είναι πραγµατικές και ικανοποιούν τη σχέση λ > λ 2 λ 3... λ n λ n (6) Αν αφαιρέσουµε την ποσότητα q R µε q / ( λ n, λ ) από τα διαγώνια στοιχεία του A, τότε ανεξάρτητα από την τιµή της q, η µεγαλύτερη κατά µέτρο ιδιοτιµή του A qi ϑα είναι πάντα η λ q ή η λ n q. Ας υποθέσουµε ότι ϑέλουµε να προσδιορίσουµε την λ. Οι ιδιοτιµές του A qi είναι οι µ i = λ i q. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 32 / 50

33 Μετατόπιση της αρχής των αξόνων Ταχύτητα σύγκλισης της µεθόδου των δυνάµεων Με τη χρήση του πίνακα A qi αντί του A, εξαρτάται από την ποσότητα max i λi q λ q (7) Οσο µικρότερη είναι η ανωτέρω ποσότητα, τόσο ταχύτερη η σύγκλιση της µεθόδου. Αρκεί δηλαδή να εκλέξουµε το q τέτοιο ώστε να ελαχιστοποιείται η ποσότητα Αποδεικνύεταιότι η ανωτέρω ποσότητα γίνεται ελάχιστη αν max λ i q (8) i q = /2(λ 2 + λ n). Οµοια εργαζόµενοι ϐρίσκουµε ότι η µέγιστη ταχύτητα σύγκλισης στην λ n q επιταχύνεται αν επιλέξουµε q = /2(λ + λ n ). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 33 / 50

34 Παρατήρηση Με τη µέθοδο αυτή µπορούµε να υπολογίσουµε τόσο την λ όσο και την λ n, ωστόσο όµως χρειαζόµαστε κάποιες εκτιµήσεις των ιδιοτιµών λ 2 και λ n (ή των λ και λ n ) πράγµα που απαιτεί επιπλέον υπολογισµούς στην πράξη και είναι ένα µειονέκτηµα αυτής της µεθόδου. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 34 / 50

35 Η αντίστροφη µέθοδος των δυνάµεων Εχει το πλεονέκτηµα να υπολογίζει µια οποιαδήποτε ιδιοτιµή και το αντίστοιχο ιδιοδιάνυσµα και να έχει γρήγορη ταχύτητα σύγκλισης. Λήµµα Οι πίνακες A και A έχουν τα ίδια ιδιοδιανύσµατα και αν λ i είναι µια ιδιοτιµή του A τότε η αντίστοιχη ιδιοτιµή του A είναι η /λ i. Απόδειξη Αν Ax (i) = λ i x (i) τότε πολ/ζοντας από αριστερά µε A έχουµε λ i x (i) = A x (i). Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 35 / 50

36 Η αντίστροφη µέθοδος των δυνάµεων Ας υποθέσουµε ότι ο A R nn, έχει n γραµµικά ανεξάρτητα ιδιοδιανύσµατα και όλες οι ιδιοτιµές του είναι πραγµατικές. Επίσης αν γνωρίζουµε κάποια ποσότητα q R η οποία ϐρίσκεται πλησιέστερα στην απλή ιδιοτιµή λ k του A από οποιαδήποτε άλλη ιδιοτιµή του, τότε ϑα ισχύει λ k q < λ i q, i = ()n, i k (9) ηλαδή η ιδιοτιµή λ k q είναι η µικρότερη κατά απόλυτο τιµή ιδιοτιµή του πίνακα A qi. Συνεπώς, αν αντί του A χρησιµοποιήσουµε τον πίνακα (A qi) στο ϐασικό επαναληπτικό σχήµα της µεθόδου των δυνάµεων, τότε είναι δυνατόν να υπολογισθεί η ποσότητα και από λ k q αυτήν η λ k. Ο επαναληπτικός τύπος της µεθόδου Πράγµατι, αν εφαρµοστεί η ε.µ. (A qi)y (m+) = y (m), m = 0,, 2,... (0) όπου y (0) 0 αυθαίρετο διάνυσµα είναι δυνατόν να υπολογισθεί η απόλυτα µεγαλύτερη ιδιοτιµή του (A qi) δηλαδή η /(λ k q) και το αντίστοιχο ιδιοδιάνυσµα. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 36 / 50

37 Ταχύτητα σύγκλισης Εξαρτάται από την ποσότητα αφού max i k λ k q λ i q () y (m) = (A qi) y (m ) = (A qi) m y (0) = α (λ q) m x() + = α 2 (λ 2 q) m x(2) α n (λ n q) m x(n) [ ( ) λk m q α (λ k q) m x () α k x (k) λ q ( ) ] λk m q α n x (n) λ n q Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 37 / 50

38 Παρατηρήσεις Η επιλογή της q καθορίζει και την ταχύτητα σύγκλισης της µεθόδου. Οσο πλησιέστερα η q είναι στην ιδιοτιµή λ k τόσο ταχύτερη ϑα είναι και η σύγκλιση της µεθόδου. Επειδή η q µπορεί να εκλεγεί αυθαίρετα, µπορούµε να ϐρούµε µια προσέγγιση σε οποιαδήποτε ιδιοτιµή του A. Ο προσδιορισµός των y (m) γίνεται από την επίλυση των συστηµάτων (A qi)y (m) = y (m ), m =, 2,... (2) Στην πράξη τα διανύσµατα κανονικοποιούνται, µε άλλα λόγια, εφαρµόζεται η παραλλαγή της µεθόδου των δυνάµεων. Τα γραµµικά συστήµατα που προκύπτουν έχουν τον ίδιο πίνακα και διαφορετικά δεύτερα µέλη. Χρήση µιας άµεσης µεθόδου για την επίλυση τους. Σχηµατισµός της LU διάσπασης του A qi µόνο µία ϕορά. Αν λοιπόν χρησιµοποιήσουµε κανονικοποιηµένα διανύσµατα και την LU µέθοδο τότε το ϐασικό επαναληπτικό σχήµα ϑα είναι το παρακάτω: Lx = z (m) Uy (m+) = x (3) όπου LU = A qi Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 38 / 50

39 Υπολογισµός των υπερεχουσών ιδιοτιµών Υπάρχουν πολλές µέθοδοι για τον προσδιορισµό των άλλων υπερεχουσών κατά µέτρο ιδιοτιµών από τη στιγµή που υπολογισθεί η µεγαλύτερη. Στη συνέχεια ϑα αναφερθούµε σε µία µόνο µέθοδο που ϐασίζεται σε µετασχηµατισµούς οµοιότητας. Ας υποθέσουµε ότι οι ιδιοτιµές ενός πίνακα A ικανοποιούν τη σχέση λ > λ 2 >... > λ m >> λ m+... λ n (4) δηλαδή οι τιµές λ, λ 2,..., λ m απέχουν αρκετά η µία από την άλλη. Τότε η λ µπορεί να υπολογισθεί µε τη µέθοδο των δυνάµεων και αποµένει ο υπολογισµός των άλλων ιδιοτιµών που υπερέχουν, των λ 2, λ 3,..., λ m. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 39 / 50

40 Υπολογισµός των υπερεχουσών ιδιοτιµών Κατασκευή νέου πίνακα από τον αρχικό µε υποβιβασµό (deflation). Ο νέος πίνακας κατασκευάζεται κατά τέτοιο τρόπο ώστε να έχει σαν ιδιοτιµές µόνο τις υπόλοιπες άγνωστες ιδιοτιµές του αρχικού πίνακα. Η επαναληπτική εφαρµογή της διαδικασίας αυτής ϑα υπολογίσει όλες τις υπόλοιπες υπερέχουσες ιδιοτιµές και τα αντίστοιχα ιδιοδιανύσµατα. Οι πιο εύχρηστες µέθοδοι υποβιβασµού είναι εκείνες που ϐασίζονται στους µετασχηµατισµούς οµοιότητας. Για την περιγραφή της µεθόδου υποθέτουµε κατ αρχήν ότι η ιδιοτιµή λ και το αντίστοιχο ιδιοδιάνυσµα x () του πίνακα A έχουν υπολογιστεί. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 40 / 50

41 Υπολογισµός των υπερεχουσών ιδιοτιµών Εστω τώρα H ένας µη ιδιάζων πίνακας τέτοιος ώστε H x () = ke () (5) όπου k 0 και e () = (, 0, 0,..., 0) T. Αν αναβάλουµε τη διαδικασία εύρεσης του H, τότε έχουµε από την οποία λαµβάνουµε η οποία λόγω της (5) γράφεται A x () = λ x () H A H (H x () ) = λ H x () (6) H A H e () = λ e () (7) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 4 / 50

42 Υπολογισµός των υπερεχουσών ιδιοτιµών που δηλώνει ότι η πρώτη στήλη του πίνακα H A H πρέπει να είναι η λ e (), άρα µπορούµε να γράψουµε [ A 2 = H A H λ b T = 0 B 2 ], (8) όπου ο πίνακας B 2 είναι n τάξης και το διάνυσµα b έχει n στοιχεία. Επειδή ο A 2 έχει τις ίδιες ιδιοτιµές µε τον A, έπεται ότι ο πίνακας B 2 έχει ιδιοτιµές τις λ 2, λ 3,..., λ n. Μπορούµε λοιπόν να εργαστούµε µε τον πίνακα B 2 προκειµένου να προσδιορίσουµε την επόµενη ιδιοτιµή λ 2 και το αντίστοιχο ιδιοδιάνυσµα y (2) του B 2 που ικανοποιούν την B 2 y (2) = λ 2 y (2). (9) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 42 / 50

43 Υπολογισµός των υπερεχουσών ιδιοτιµών Αυτό που αποµένει είναι η εύρεση του ιδιοδιανύσµατος x (2) του A που αντιστοιχεί στην λ 2. Εστω z (2) το ιδιοδιάνυσµα του A 2 που αντιστοιχεί στην λ 2, τότε ή A 2 z (2) = λ 2 z (2) (20) ή συνεπώς H A H z (2) = λ 2 z (2) A (H z (2) ) = λ 2 (H z (2) ) x (2) = H z (2) (2) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 43 / 50

44 Υπολογισµός των υπερεχουσών ιδιοτιµών αφού A x (2) = λ 2 x (2). Αρκεί λοιπόν να υπολογισθεί το z (2) για την εύρεση του x (2). Η (20) λόγω της (8) γράφεται λ b T 0 B 2 z(2) = λ 2 z (2) (22) λόγω όµως της (9) µπορούµε να λάβουµε z (2) = [ α y (2) όπου α ένα ϐαθµωτό µέγεθος, που προσδιορίζεται από την (22) ή την ή ] λ α + b T y (2) = λ 2 α (23) α = bt y (2) λ 2 λ. (24) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 44 / 50

45 Υπολογισµός των υπερεχουσών ιδιοτιµών Συµπέρασµα Παρατηρούµε ότι τα λ 2, y (2) υπολογίζονται µε τη µέθοδο των δυνάµεων [ϐλ. (9)], το z (2) υπολογίζεται από την (23), όπου το α δίνεται από την (24). Εχοντας υπολογίσει το z (2), το x (2) ϐρίσκεται από την (2). Συνεχίζοντας κατ αυτό τον τρόπο υπολογίζουµε τις υπόλοιπες υπερέχουσες ιδιοτιµές και τα αντίστοιχα ιδιοδιανύσµατα του A. Είναι ϕανερό ότι οι διαδοχικοί υποβιβασµοί του A ϑα τον µετασχηµατίσουν, στο όριο, σε ένα άνω τριγωνικό πίνακα. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 45 / 50

46 Υπολογισµός των υπερεχουσών ιδιοτιµών Στη συνέχεια ϑα περιγράψουµε ένα τρόπο για την εκλογή του H έτσι ώστε η διαδικασία της διατάραξης να είναι αριθµητικά ευσταθής. ιαλέγουµε τον H τέτοιον ώστε H = L I,p (25) όπου L είναι ένας στοιχειώδης κάτω τριγωνικός πίνακας και I,p ένας µεταθετικός πίνακας, όπου p είναι τέτοιο ώστε η x () p είναι η µεγαλύτερη κατά µέτρο συνιστώσα του x (). Από τις (5) και (25) έχουµε ότι y = I,p x () (26) και L y = ke () (27) Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 46 / 50

47 Υπολογισµός των υπερεχουσών ιδιοτιµών όπου L = y 2 /y y n /y (28) και k = y = x () p. Η εισαγωγή του µεταθετικού πίνακα I,p ουσιαστικά ορίζει µία διαδικασία οδήγησης, η οποία απαιτεί τα στοιχεία του H να είναι κατά µέτρο µικρότερα ή ίσα από τη µονάδα, εξασφαλίζοντας έτσι την αριθµητική ευστάθεια όπως και στη µέθοδο της απαλοιφής του Gauss. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 47 / 50

48 Παράδειγµα Εστω ο πίνακας A = Με τη µέθοδο των δυνάµεων υπολογίζουµε την ιδιοτιµή λ =.0 και το αντίστοιχο ιδιοδιάνυσµα x () = (0.5,.0, 0.75) T. Παρατηρούµε ότι k = y =.0 = x () 2, άρα p = 2 και y = (.0, 0.5, 0.75) T έτσι L = Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 48 / 50

49 Αρα A 2 = L I,2 A I,2 L = = = Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 49 / 50

50 Παρατηρούµε ότι ο πολ/µός µε L δεν χρειαζόταν αφού γνωρίζουµε ότι η πρώτη στήλη του A 2 είναι ίση µε λ e (). Από την τελευταία σχέση έχουµε ότι [ ] 3 0 B 2 = και οι υπόλοιπες ιδιοτιµές του είναι -3 και -2. Εύκολα υπολογίζονται και τα αντίστοιχα ιδιοδιανύσµατα. Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και 205 Ιδιοδιανυσµάτων 50 / 50

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 4 1 / 48

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα) Επαναληπτικές µέθοδοι και Ηµι-Επαναληπτικές Μέθοδοι Πανεπιστήµιο Αθηνών 31 Μαρτίου 2017 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4) -- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation)

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation) Επιστηµονικοί Υπολογισµοί 3.6.1 Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation) Πανεπιστήµιο Αθηνών 10 Μαΐου 2017 (Πανεπιστήµιο Αθηνών) Επιστηµονικοί Υπολογισµοί3.6.1 Μέθοδοι µεταβλητής παρεκτροπής(variable

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ Καθηγητής ΦΤζαφέρης ΕΚΠΑ 3 Μαρτίου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 2η Οµάδα Ασκήσεων 1442008 ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα / 77 Επαναληπτικές

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 4 Νοεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) 4

Διαβάστε περισσότερα

Αριθµητική Ανάλυση ΕΚΠΑ. 11 Μαΐου 2016

Αριθµητική Ανάλυση ΕΚΠΑ. 11 Μαΐου 2016 Αριθµητική Ανάλυση Κεφάλαιο 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ιδάσκων: ΦΤζαφέρης ΕΚΠΑ 11 Μαΐου 2016 ιδάσκων: ΦΤζαφέρης (ΕΚΠΑ) Αριθµητική ΑνάλυσηΚεφάλαιο 4 Αριθµητικός Υπολογισµός

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 3 Αριθµητικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων Ν Μ Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν Μ Μισυρλής Αριθµητική Ανάλυση - Ενότητα 3 1 / 9 Η

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 11/5/2012 Σηµαντικό χαρακτηριστικό µέγεθος (ϐαθµωτός) για κάθε τετραγωνικό

Διαβάστε περισσότερα

Αριθµητική Ανάλυση ΕΚΠΑ. 18 Απριλίου 2019

Αριθµητική Ανάλυση ΕΚΠΑ. 18 Απριλίου 2019 Αριθµητική Ανάλυση Κεφάλαιο 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ιδάσκων: ΦΤζαφέρης ΕΚΠΑ 18 Απριλίου 2019 2019 1 / 74 Η µέθοδος του Jacobi Η µέθοδος των δυνάµεων, σε συνδυασµό µε τις

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα)

Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης 14 Μαρτίου 2019 ιδάσκων: Επίκ Καθηγητής ΦΤζαφέρης Επιστηµονικοί Υπολογισµοί(Αριθµητική Γραµµική Αλγεβρα) 14 Μαρτίου

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28 Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ IV ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ IV. Γενικές επαναληπτικές µέθοδοι Όπως είδαµε η ανάλυση της µεθόδου Guss έδειξε ότι η υπολογιστική προσπάθεια της µεθόδου για τη λύση ενός

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

Διανύσµατα στο επίπεδο

Διανύσµατα στο επίπεδο Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Αριθµητική Γραµµική Αλγεβρα

Αριθµητική Γραµµική Αλγεβρα Αριθµητική Γραµµική Αλγεβρα ιδάσκων: Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 7 Μαρτίου 019 ιδάσκων: Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) Αριθµητική Γραµµική Αλγεβρα 7 Μαρτίου 019 1 / 99 Επαναληπτικές Μέθοδοι για

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 7 Οκτωβρίου 2014 ιδάσκοντες: Καθηγητής Ν. Μισυρλής,Επίκ.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36 Αριθµητική Παραγώγιση

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα