Θεµελιώδη Θέµατα. 5ο εξάµηνο ΣΕΜΦΕ. Αλγοριθµικές τεχνικές, αριθµητικοί υπολογισµοί. 3η ενότητα:
|
|
- Χρύσηίς Καλλιγάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Θεµελιώδη Θέµατα Επιστήµης Υπολογιστών 5ο εξάµηνο ΣΕΜΦΕ 3η ενότητα: Αλγοριθµικές τεχνικές, αριθµητικοί υπολογισµοί Επιµέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής 1
2 Αλγόριθµος Webster s 50 χρόνια πριν: ανύπαρκτος όρος Oxford s, 1971: «erroneous refashioning of algorism: calculation with Arabic numerals» Abu Jaffar Mohammed Ibn Musa Al-Khowarizmi, µ.χ. 9 ος αι.,ا,+وارز ' و%$ #ن! د Παραδείγµατα: Ευκλείδειος αλγόριθµος (Ευκλείδης, 3 ος αι. π.χ.) για εύρεση ΜΚ Αριθµοί Fibonacci (Leonardo Pisano Filius Bonacci, 13 ος αι. µ.χ.) Τρίγωνο Pascal (Yang Hui, 13 ος αι. µ.χ.) 2
3 Αλγόριθµος (συν.) Πρωταρχική έννοια. Μέθοδος επίλυσης προβλήµατος δοσµένη ως πεπερασµένο σύνολο κανόνων (ενεργειών, διεργασιών) που επενεργούν σε δεδοµένα (data). Πεπερασµένη εκτέλεση (finiteness). Κάθε κανόνας ορίζεται επακριβώς και η αντίστοιχη διεργασία είναι συγκεκριµένη (definiteness). έχεται µηδέν ή περισσότερα µεγέθη εισόδου (input). ίνει τουλάχιστον ένα µέγεθος ως αποτέλεσµα (output). Μηχανιστικά αποτελεσµατικός, εκτέλεση µε µολύβι και χαρτί (effectiveness). 3
4 Η ιδέα του Ευκλείδη για εύρεση ΜΚ δύο φυσικών αριθµών if a>b then GCD(a,b):= GCD(a mod b, b) else GCD(a,b):= GCD(a, b mod a) // a mod b = το υπόλοιπο της διαίρεσης a div b Ο Ευκλείδειος αλγόριθµος είναι ο καλύτερος γνωστός αλγόριθµος για ΜΚ!! Ανοιχτό ερώτηµα: είναι βέλτιστος; 4
5 Παράδειγµα εκτέλεσης του Ευκλείδειου αλγόριθµου ΜΚ των 172 και ΜΚ = 2 5
6 Αριθµοί Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, 21, F n = F n-1 + F n-2 Πρόβληµα: δίνεται n, υπολόγισε τον F n Αναδροµή (recursion), επανάληψη (iteration), Πόσο γρήγορα µπορεί να υπολογιστεί ο F n ; O(1.618 n ), O(n), O(log n) 6
7 Τρίγωνο Pascal (Yang Hui) ιωνυµικοί συντελεστές / συνδυασµοί: (a+b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 7
8 Αλγοριθµικές τεχνικές Επανάληψη (Iteration) Αναδροµή (Recursion) Επαγωγή (Induction) 8
9 Πύργοι Ανόι (Hanoi Towers) πηγή: wikipedia 9
10 Πύργοι Ανόι (Hanoi Towers) πηγή: wikipedia 10
11 Πύργοι Ανόι (Hanoi Towers): αναδροµή 11
12 Πύργοι Ανόι (Hanoi Towers): επανάληψη Επανάλαβε (µέχρι να επιτευχθεί η µετακίνηση): Μετακίνησε κατά τη θετική φορά τον µικρότερο δίσκο Κάνε την µοναδική επιτρεπτή κίνηση που δεν αφορά τον µικρότερο δίσκο 12
13 Treesort µε χρήση Binary Search Tree 13
14 ίκτυα Ταξινόµησης (Sorting Networks) Συγκριτής ίκτυο ταξινόµησης 4 εισόδων 14
15 Four Color Theorem ( ) Πόσα χρώµατα απαιτούνται για τον χρωµατισµό όλων των χωρών, ώστε χώρες που συνορεύουν (µε γραµµή για σύνορο) να έχουν διαφορετικό χρώµα; 15
16 Four Color Theorem ( ) Πόσα χρώµατα απαιτούνται για τον χρωµατισµό όλων των χωρών, ώστε χώρες που συνορεύουν (µε γραµµή για σύνορο) να έχουν διαφορετικό χρώµα; 16
17 Four Color Theorem ( ) Πόσα χρώµατα απαιτούνται για τον χρωµατισµό όλων των χωρών, ώστε χώρες που συνορεύουν (µε γραµµή για σύνορο) να έχουν διαφορετικό χρώµα; Appel - Haken (απόδειξη µε πρόγραµµα!) 17
18 Μαθηµατικοί συµβολισµοί (i) 18
19 Μαθηµατικοί συµβολισµοί (ii) 19
20 Μαθηµατικοί συµβολισµοί (iii) 20
21 Μαθηµατικοί συµβολισµοί: ιδιότητες Συχνά γράφουµε (καταχρηστικά) g(n)=o(f(n)) αντί για g(n) Є O(f(n)) Θ(f) = O(f) Ω(f) p(n) = Θ(n k ), για κάθε πολυώνυµο p Ο(poly) = U O(n k ) (για όλα τα k Є N) 21
22 Μαθηµατικοί συµβολισµοί: ιδιότητες log*n: πόσες φορές πρέπει να λογαριθµήσουµε το n για να φτάσουµε κάτω από το 1 (αντίστροφη υπερεκθετικής) A: Ackermann. α: αντίστροφη της Α. 22
23 Πολλαπλασιασµός Ακεραίων 23
24 Πολυπλοκότητα Πολλαπλασιασµού 24
25 Απόδειξη: Τ(n) + cn T(n/2) T(n/2) T(n/2) T(n/2) + 4 c(n/2) Χρονική πολ/τα Ύψος δένδρου c(n/4). T(n/4) T(n/4) <(4/2) k cn T(2) (k-1) c(n/2 (k-1) ). 2 (logn+1) cn. = O(n 2 ) T(1) T(1) k φύλλα, χρονική πολυπλ/τα α. 4 k = O(n 2 ) Συνολικά: O(n 2 ) 25
26 Βελτιωµένος Πολλαπλασιασµός (Gauss-Karatsuba) 26
27 Πολυπλοκότητα Βελτίωσης 27
28 Απόδειξη: Τ(n) + cn T(n/2) T(n/2) T(n/2) T(n/2) + 3 c(n/2) Χρονική πολ/τα Ύψος δένδρου c(n/4). T(n/4) T(n/4) <2. (3/2) k cn T(2) (k-1) c(n/2 (k- 1) ). 6. (3/2) (logn) cn. = O(n log3 ) T(1) T(1) k φύλλα, χρονική πολυπλ/τα α. 3 k = O(3 logn ) = O(n log3 ) Συνολικά: O(n log3 ) 28
29 Master Theorem Αν T(n) = at(n/b) + O(n d ), τότε: για θετικούς ακέραιους a, b, d και Τ(1) = O(1) T(n) = O(n d ), O(n d logn), O(n log ba ), αν a<b d αν a=b d αν a>b d 29
30 Ύψος δένδρου Απόδειξη: Τ(n) a... T(n/b) T(n/b) T(n/b) T(n/b 2 ) T(n/b 2 ) a T(1) T(1) cn d + a c(n/b) d + a 2 c(n/b 2 ) d... + a (k-1) c(n/b (k-1) ) d Χρονική πολ/τα cn d Σ 0 k-1 (a/b d ) i O(n d ), = αν a<b d O(n d logn), αν a=b d O(n log ba ), αν a>b d a k φύλλα, χρονική πολυπλ/τα c. a k = O(a log bn ) = O(n log ba ) = 30
31 Εύρεση Μέγιστου Κοινού ιαιρέτη (gcd) εν είναι λογικό να ανάγεται στο πρόβληµα εύρεσης πρώτων παραγόντων γιατί αυτό δεν λύνεται αποδοτικά. Απλός αλγόριθµος: : O(min(α,b)) Αλγόριθµος µε αφαιρέσεις: O(max(α,b)) Αλγόριθµος του Ευκλείδη: O(log(α+b)) 31
32 Εύρεση Μέγιστου Κοινού ιαιρέτη (gcd): υλοποίηση µε αναδροµή Αλγόριθµος µε αφαιρέσεις: O(max(α,b)) if a=b then GCD(a,b):=a else if a>b then GCD(a,b):= GCD(a-b, b) else GCD(a,b):= GCD(a, b-a) Αλγόριθµος του Ευκλείδη: O(log(α+b)) if b=0 then GCD(a,b):= a else GCD(a,b):= GCD(b, a mod b) 32
33 Πολυπλοκότητα Ευκλείδειου Αλγορίθµου O(log max(a,b)): σε κάθε 2 επαναλήψεις ο µεγαλύτερος αριθµός υποδιπλασιάζεται (γιατί;) Ω(log max(a,b)): για ζεύγη διαδοχικών αριθµών Fibonacci F k-1, F k, χρειάζεται k επαναλήψεις, και k log F k, αφού F k φ k / 5, φ = (1+ 5)/2 (φ η χρυσή τοµή). Άρα η πολυπλοκότητα του Ευκλείδειου είναι Θ(log max(a,b)) = Θ(log (a+b)) 33
34 Επεκτεταµένος Ευκλείδειος Αλγόριθµος Εκφράζει τον gcd(a,b) σαν γραµµικό συνδυασµό των a και b Επιτρέπει την εύρεση πολλαπλασιαστικού αντιστρόφου στην αριθµητική modulo n: αν gcd(a,n)=1 τότε Ext. Euclid δίνει κ,λ: κa+λn=1 Άσκηση: σχεδιάστε και υλοποιήστε τον επεκτεταµένο Ευκλείδειο αλγόριθµο 34
35 Ύψωση σε δύναµη power(a, n) result := 1; for i := 1 to n do result := result*a; return result Πολυπλοκότητα: O(n) εκθετική! (γιατί;) 35
36 ... µε επαναλαµβανόµενο τετραγωνισµό (Gauss) fastpower(a, n) result := 1; while n>0 do { if odd(n) then result:=result*a; n := n div 2; a := a*a } return result Ιδέα: a 13 = a Πολυπλοκότητα: O(log n) - πολυωνυµική 36
37 Αριθµοί Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,... F 0 = 0, F 1 = 1 F n = F n-1 + F n-2, n >=2 Πρόβληµα: ίνεται n, να υπολογιστεί το F n Πόσο γρήγορο µπορεί να είναι το πρόγραµµά µας; 37
38 Αριθµοί Fibonacci αναδροµικός αλγόριθµος F(n) if (n<2) then return n else return F(n-1)+F(n-2); Πολυπλοκότητα: T(n) = T(n-1) + T(n-2) + c, δηλ. η T(n) ορίζεται όπως η F(n) (συν µια σταθερά), οπότε: Τ(n) > F(n) = Ω(1.618 n ) 38
39 Αριθµοί Fibonacci καλύτερος αλγόριθµος F(n) a:=0; b:=1; for i:=2 to n do c:=b; b:=a+b; a:=c; return b; Πολυπλοκότητα: : O(n) 39
40 Αριθµοί Fibonacci ακόµα καλύτερος αλγόριθµος Μπορούµε να γράψουµε τον υπολογισµό σε µορφή πινάκων: Από αυτό συµπεραίνουµε: Και ο αριθµός των αριθµητικών πράξεων µειώνεται σε O(log n). 40
41 Χρόνος εκτέλεσης αλγορίθµων Θεωρήστε 4 προγράµµατα µε αριθµό βηµάτων O(2 n ), O(n 2 ), O(n), και O(logn) που το καθένα χρειάζεται 1 δευτερόλεπτο για να υπολογίσει το F(100). Πόσα δευτερόλεπτα θα χρειαστούν για να υπολογίσουν το F(n); F(100) F(101) F(110) F(200) c. 2 n c. n 2 c. n c. logn ??????
42 Πρώτοι αριθµοί και κρυπτογραφία Υπολογιστικά προβλήµατα σηµαντικά για κρυπτογραφία: Primality testing: ίνεται ακέραιος n. Είναι πρώτος; Σχετικά εύκολο. Ανήκει στο P όπως έδειξαν σχετικά πρόσφατα (2002) προπτυχιακοί Ινδοί φοιτητές. Factoring (παραγοντοποίηση): ίνεται ακέραιος n. Να βρεθούν οι πρώτοι παράγοντες του. εν ξέρουµε αν είναι εύκολο ή δύσκολο. Πιστεύουµε ότι είναι υπολογιστικά δύσκολο (ότι δεν ανήκει στο P), αλλά όχι τόσο δύσκολο όσο τα NP-complete προβλήµατα. Για κβαντικούς υπολογιστές (που δεν έχουµε ακόµα καταφέρει να κατασκευάσουµε) είναι ευεπίλυτο. 42
43 Κρυπτογραφία δηµοσίου κλειδιού Συναρτήσεις µονής κατεύθυνσης (one-way functions): εύκολο να υπολογιστούν δύσκολο να αντιστραφούν Κρυπτογραφία δηµοσίου κλειδιού (κατάργησε την ανάγκη ανταλλαγής κλειδιών!): στηρίζεται στην ύπαρξη τέτοιων συναρτήσεων. Κρυπτοσύστηµα RSA [Rivest-Shamir-Adleman, 1977] συνάρτηση κρυπτογράφησης: c = m e mod n Ασφάλεια RSA: δεν υπάρχει (ελπίζουµε, χρειαζόµαστε απόδειξη!) αποδοτικός τρόπος υπολογισµού του m δεδοµένων των c, e, και n, αν n είναι σύνθετος (...εκτός αν γνωρίζουµε παραγοντοποίηση του n) ηλαδήη συνάρτηση κρυπτογράφησης RSA είναι µονής κατεύθυνσης (είναι;) 43
44 Κρυπτοσύστηµα RSA (i) Για να στείλει η A (Alice) στον B (Bob) ένα µήνυµα m: O B διαλέγει 2 µεγάλους πρώτους αριθµούς p και q, υπολογίζει το γινόµενο n = pq, και διαλέγει επίσης ακέραιο e σχετικά πρώτο µε το φ(n) = (p-1)(q-1). Ο Β στέλνει στην Α τα n και e (δηµόσιο κλειδί του Β) H Α στέλνει στον Β την τιµή c = m e mod n (κρυπτογράφηµα). Ο Β υπολογίζει m = c d mod n όπου d = e -1 (mod φ(n)) <=> de = 1 (mod φ(n)) (ο d είναι το ιδιωτικό κλειδί του Β) 44
45 Κρυπτοσύστηµα RSA (ii) Ορθότητα RSA: c d = m ed = m kφ(n)+1 = m (mod n). Παράδειγµα συστήµατος RSA: p=11, q=17, n=187, e=21, d=61, m=42, c=9 Η ασφάλεια του RSA στηρίζεται στην (εκτιµώµενη, δεν υπάρχει ακόµη απόδειξη!) υπολογιστική πολυπλοκότητα της παραγοντοποίησης (factoring). Η λειτουργία του RSA στηρίζεται σε αποδοτικούς αλγόριθµους για: primality testing (Miller-Rabin), ύψωση σε δύναµη modulo n (επαναλαµβανόµενος τετραγωνισµός) και εύρεση αντιστρόφου modulo φ(n) (επεκτεταµένος Ευκλείδειος). 45
46 Ψηφοφορίες (social choice) Εκλογές (βουλευτικές, πρυτανικές ;-)) Λήψη αποφάσεων σε εταιρείες,, οργανισµούς,... Χρήση στον παγκόσµιο ιστό: ιστοσελίδες "ψηφίζουν" ιστοσελίδες δείχνοντας σε αυτές χρήστες "ψηφίζουν" ιστοσελίδες ανάλογα µε τον χρόνο που ξοδεύουν σε αυτές Κοινωνικά δίκτυα (social networks) friends, followers 46
47 Ψηφοφορίες (social choice) Πληθώρα εκλογικών συστηµάτων Το πλειοψηφικό δεν είναι πάντα δίκαιο: Ο νικητής υποστηρίζεται µόνο από το 30% Είναι τελευταία προτίµηση για το 70%! z y x w x y w z x w z y w z x y 47
48 Ψηφοφορίες: κι άλλα παράδοξα Και το "απόλυτο" πλειοψηφικό παρουσιάζει παράδοξα: οι x, w περνούν στον 2 ο γύρο ο x κερδίζει µε 70%, παρ όλο που 74% προτιµούν τον z από τον x (ο z έφυγε από τον 1 ο γύρο!) z y x w x y w z x w z y w z x y 48
49 Ψηφοφορίες: υπολογιστικές προκλήσεις ικαιότερα συστήµατα µπορεί να απαιτούν πολύ µεγάλο χρόνο υπολογισµού του νικητή (υπολογιστικά απρόσιτο) για το σύστηµα του Dodgson (γνωστός και ως Lewis Caroll, 19 ος αιώνας) το πρόβληµα είναι πλήρες για µια κλάση πολυπλοκότητας ευρύτερη της NP Θέλουµε ο υπολογισµός του νικητή να είναι υπολογιστικά προσιτός 49
50 Ψηφοφορίες: υπολογιστικές προκλήσεις Θεώρηµα Gibbard- Satterthwaite (1973): «Πέρα από κάποιες τετριµµένες περιπτώσεις, όλα τα συστήµατα ψηφοφορίας είναι χειραγωγήσιµα (εκτός αν είναι δικτατορικά)!» Θέλουµε η χειραγώγηση να είναι δύσκολη (υπολογιστικά απρόσιτη) 50
51 Μη συνεργατικά παίγνια Παίκτες (agents: χρήστες, οντότητες λογισµικού, συστήµατα) ανταγωνίζονται, συνήθως για διεκδίκηση πόρων Κάθε παίκτης αποφασίζει µόνο τη δική του στρατηγική στόχος: ελαχιστοποίηση ατοµικού κόστους Το ατοµικό κόστος εξαρτάται από τις στρατηγικές όλων 51
52 Μη συνεργατικά παίγνια Ισορροπία Nash: κανείς δεν βελτιώνει το ατοµικό του κόστος αλλάζοντας µόνο τη δική του στρατηγική. Nash (1952): απέδειξε ότι πάντα υπάρχει τέτοια ισορροπία (αλλά µπορεί να είναι µεικτή mixed). Η ισορροπία Nash αποτελεί «λύση» του συστήµατος: αν οι παίκτες συµπεριφερθούν στρατηγικά και λογικά και έχουν στη διάθεσή τους πλήρη γνώσηκαι επαρκή χρόνο, τότε καταλήγουν σε µία ισορροπία Nash. 52
53 Ισορροπία Nash ίληµµα φυλακισµένων: συλλαµβάνονται δύο διαρρήκτες, συνεργάτες σε µεγάλη κλοπή. Κρατούνται σε χωριστά κελιά χωρίς επικοινωνία Οµολογεί Β εν οµολογεί Β Οµολογεί Α 5, 5 0, 15 εν οµολογεί Α 15, 0 1, 1 Αποτέλεσµα: αµφότεροι οµολογούν! Ισορροπία Nash δεν βελτιστοποιεί συνολικό αποτέλεσµα 53
54 Ισορροπία Nash: ερωτήµατα Τίµηµα αναρχίας: πόσο "άσχηµα" µπορεί να συµπεριφερθεί το σύστηµα; Λόγος συνολικού κόστους χειρότερης ισορροπίας προς βέλτιστη συνεργατική λύση [Koutsoupias, Papadimitriou, 1999] Μπορούµε να βρούµε την "χειρότερη" ισορροπία; Οποιαδήποτε ισορροπία; σύµφωνα µε ισχυρές ενδείξεις δυσεπίλυτο πρόβληµα: πλήρες για την κλάση PPAD. [Daskalakis, Goldberg, Papadimitriou, 2005] [Chen, Deng, 2005] «If your laptop can't find it, neither can the market!» - Kamal Jain (Microsoft Research) 54
55 Linear Programming 55
56 Επιτυχίες-σταθµοί Θεωρίας Αλγορίθµων και Πολυπλοκότητας Linear Programming [Dantzig - von Neumann, 1947, Khachiyan, 1979, Karmakar, 1984] Fast Fourier Transform [Cooley-Tukey, 1965 (αλλά και Gauss, 1805)] NP-πληρότητα [Cook-Karp, ]: αδυναµία αποδοτικής επίλυσης πολλών σηµαντικών προβληµάτων Κρυπτογραφία δηµοσίου κλειδιού [Diffie-Hellman, Rivest-Shamir-Adleman, ] 56
57 Επιτυχίες-σταθµοί Θεωρίας Αλγορίθµων και Πολυπλοκότητας Pagerank (Google) [Page-Brin-Motwani-Winograd, ] Κβαντικοί υπολογισµοί [Shor, 1996]: παραγοντοποίηση σε πολυωνυµικό χρόνο Θεώρηµα PCP, µη-προσεγγισιµότητα [Arora-Feige-Goldwasser-Lund-Lovasz-Motwani-Safra- Sudan-Szegedy, ] υσκολία υπολογισµού ισορροπιών Nash [Goldberg-Daskalakis-Papadimitriou, Chen-Deng, 2005] 57
58 Συµπεράσµατα Πολλά σύγχρονα συστήµατα στηρίζονται στην ταχύτητα υπολογισµών που επιτυγχάνεται µέσω αποδοτικών αλγορίθµων. Η υπολογιστική δυσκολία ορισµένων προβληµάτων (π.χ. factoring) µπορεί να είναι επιθυµητή (κρυπτογραφία, εκλογές). Τα µαθηµατικά είναι πάντα επίκαιρα! 58
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 2η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας:
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 4η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής http://www.corelab.ece.ntua.gr/courses/introcs
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνοσεμφε 2η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Διδάσκοντες Θεωρία: Στάθης Ζάχος, Άρης Παγουρτζής Εργαστήριο: Δώρα Σούλιου Βοηθός διδασκαλίας:
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ 3η ενότητα: Αλγοριθμικές τεχνικές, αριθμητικοί υπολογισμοί Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής http://www.corelab.ece.ntua.gr/courses/focs
Webster s 50 χρόνια πριν: ανύπαρκτος όρος Oxford s, 1971: «erroneous refashioning of algorism: calculation with Arabic numerals»
Αλγόριθμος Webster s 50 χρόνια πριν: ανύπαρκτος όρος Oxford s, 1971: «erroneous refashioning of algorism: calculation with Arabic numerals» Abu Jaffar Mohammed Ibn Musa Al-Khowarizmi, μ.χ. 9 ος αι.,الخوارزمي
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣΕΜΦΕ http://www.corelab.ece.ntua.gr/courses/ 1η ενότητα: Εισαγωγή, Αλγόριθμοι ιδάσκοντες Στάθης Ζάχος, Άρης Παγουρτζής, Κλειώ Σγουροπούλου Βοηθός διδασκαλίας:
Επιτυχίες της Αλγοριθμικής. Εισαγωγή στην Επιστήμη των Υπολογιστών. Περιεχόμενα. Εισαγωγή. Εισαγωγή. Κεντρικό ερώτημα Επιστήμης Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσεμφε http://www.corelab.ece.ntua.gr/courses/ 1η ενότητα: Εισαγωγή, Αλγόριθμοι ιδάσκοντες Στάθης Ζάχος, Άρης Παγουρτζής, Κλειώ Σγουροπούλου Βοηθός διδασκαλίας:
Θεωρία Υπολογισµού Theory of Computation
1 ο µέρος Θεωρία Υπολογισµού Theory of Computation 1 Υπολογισιµότητα - Computability o Υπολογισιµότητα (Computability) n Τι µπορεί να υπολογιστεί και τι όχι; o Υπολογιστική πολυπλοκότητα (Computational
Αριθμοθεωρητικοί Αλγόριθμοι
Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο Σ.H.M.Μ.Y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 1η ενότητα: Εισαγωγή, Αλγόριθμοι Επιμέλεια: Πάνος Χείλαρης, Βαγγέλης Μπαμπάς, Γεωργία Καούρη
Κρυπτογραφία Δημοσίου Κλειδιού
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου
Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA
Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Χρήστος Κούτρας Γιώργος
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
http://www.corelab.ntua.gr/courses/ Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ Ενότητα 0: Εισαγωγή Διδάσκοντες: Στάθης Ζάχος, Άρης Παγουρτζής Υπεύθυνη εργαστηρίου / ασκήσεων: Δώρα Σούλιου
Αλγοριθμική Θεωρία Παιγνίων
Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας
Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Πρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς
Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες
Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα αποτελούνται από πολλές
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY 4η ενόηηηα: Αιγνξηζκηθέο ηερληθέο, αξηζκεηηθνί ππνινγηζκνί Επιμέλεια διαθανειών: Σηάζεο Εάρνο, Άξεο Παγνπξηδήο http://www.corelab.ece.ntua.gr/courses/introcs
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο ΣHMΜY Εισαγωγή Διδάσκοντες: Άρης Παγουρτζής, Δώρα Σούλιου Στάθης Ζάχος, Δημήτρης Σακαβάλας Επιμέλεια διαφανειών: Άρης Παγουρτζής www.corelab.ntua.gr/courses/algorithms
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος
Πρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 25 Φεβρουαρίου 2015 1 / 53 Περιεχόµενα
Αλγόριθμοι. Κεφάλαιο Αλγόριθμοι και Πολυπλοκότητα Τι είναι αλγόριθμος
Κεφάλαιο 5 Αλγόριθμοι 5.1 Αλγόριθμοι και Πολυπλοκότητα Η ονομασία Αλγόριθμος προέρχεται από το όνομα του Αραβα Μαθηματικού Al-Khowârizmi (με καταγωγή από το Ουζμπεκιστάν, που έζησε στη Βαγδάτη τον 9ο αιώνα
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που
Στοιχεία Θεωρίας Αριθμών
Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
project RSA και Rabin-Williams
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου
ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r
ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός
Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος
Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις
Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Υπολογιστική
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα
οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ
Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις
Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA
Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 6ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 27/11/2008 1 / 55 Γενικό πλάνο 1 Ανάλυση αλγορίθµων 2 Συµβολισµοί
11.1 Συναρτήσεις. ΚΕΦΑΛΑΙΟ 11: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ : Θεωρία υπολογισµών. Συναρτήσεις και ο υπολογισµός τους. Μηχανές Turig.3 Καθολικές γλώσσες προγραµµατισµού.4 Μια µη υπολογίσιµη συνάρτηση.5 Πολυπλοκότητα προβληµάτων.6 Κρυπτογραφία δηµόσιου κλειδιού.
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διαιρετότητα Ορισμός
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ
ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ Το πρόβλημα: Δεδομένα: δύο ακέραιοι a και b Ζητούμενο: ο μέγιστος ακέραιος που διαιρεί και τους δύο δοσμένους αριθμούς, γνωστός ως Μέγιστος Κοινός Διαιρέτης τους (Greatest
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 1 Εισαγωγικές έννοιες Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 1 1 / 57 Περιεχόµενα 1.
Θεωρια Αριθµων Προβληµατα
Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Αλγόριθµοι Divide-and- Conquer
Αλγόριθµοι Divide-and- Conquer Περίληψη Αλγόριθµοι Divide-and-Conquer Master Theorem Παραδείγµατα Αναζήτηση Ταξινόµηση Πλησιέστερα σηµεία Convex Hull Αλγόριθµοι Divide-and-Conquer Γενική Μεθοδολογία Το
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Αλγεβρικές Δομές και Αριθμοθεωρία
Κεφάλαιο 9 Αλγεβρικές Δομές και Αριθμοθεωρία 9.1 Εισαγωγή Θα παρουσιάσουμε κάποια στοιχεία από Θεωρία Αριθμών και ελάχιστα από Θεωρία Ομάδων. Οι γνώσεις αυτές είναι οι ελάχιστες απαραίτητες για την κατανόηση
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018
Διακριτά Μαθηματικά [Rosen, κεφ. 3] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Οκτώβριος 2018 Αλγόριθμοι Ρυθμός αύξησης συναρτήσεων [Rosen 3.2] Αριθμητικές συναρτήσεις Τάξη αριθμητικών συναρτήσεων
* * * ( ) mod p = (a p 1. 2 ) mod p.
Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαιρετότητα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Ακέραια διαίρεση. Διαιρετότητα. ΜΚΔ: χρήσιμες ιδιότητες
Διαιρετότητα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών H διαιρετότητα
ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ
ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)
Αναδροµή (Recursion) ύο παρεξηγήσεις. Σκέψου Αναδροµικά. Τρίγωνο Sierpinski Μη αναδροµικός ορισµός;
Αναδροµή (Recursion) Πώς να λύσουµε ένα πρόβληµα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί µε τον ίδιο τρόπο. Πού χρειάζεται; Πολλές µαθηµατικές συναρτήσεις ορίζονται αναδροµικά. εν είναι
2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:
2 Αποδείξεις Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: Εκδοση 2005/03/22 Εξαντλητική µέθοδος ή µέθοδος επισκόπησης. Οταν το πρόβληµα έχει πεπερασµένες αριθµό περιπτώσεων τις εξετάζουµε
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2-1
ιαίρει και Βασίλευε Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Η Μέθοδος Σχεδιασµού Αλγορίθµων ιαίρει και Βασίλευε Επίλυση Αναδροµικών Εξισώσεων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα - ιαίρει και Βασίλευε
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true