Φυσική Προσανατολισμού Β Λυκείου 20/11/2014

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Φυσική Προσανατολισμού Β Λυκείου 20/11/2014"

Transcript

1 Φυσική Προσανατολισμού Β Λυκείου 0//04 ΓΕΝΙΚΗ ΦΥΣΙΚΗ Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Νοέμβριος 4 III. Χρήσιμες έννοιες. Τυπολόγιο. Πίεση 3. Χρήσιμοι ορισμοί 4. Στοιχεία στατιστικής Σύστημα & περιβάλλον I. Εισαγωγή στη Θερμοδυναμική. Σύστημα - περιβάλλον. Θερμοδυναμικό σύστημα 3. Θερμότητα 4. Θερμοκρασία (μονάδες μέτρησης) 5. Θερμική ισορροπία 6.(Αέριο) θερμοδυναμικό σύστημα. 7. Καταστατικές μεταβλητές Καταστατική εξίσωση 8. Θερμοδυναμική ισορροπία Σύστημα: Μέρος της ύλης που το απομονώνουμε για να το μελετήσουμε. Περιβάλλον: Ό,τι περιβάλλει το σύστημα και επηρεάζει τη συμπεριφορά του. Περιβάλλον Σύστημα Διαχωριστική επιφάνεια 3 4 Είδη συστημάτων Θερμοδυναμικό Σύστημα Κλειστό: αυτό που δεν ανταλλάσσει ύλη με το περιβάλλον. Θερμοδυναμικό Σύστημα: Οι μεταβολές του συνδέονται με τη θερμότητα. Απομονωμένο: Αυτό που δεν αλληλεπιδρά με το περιβάλλον. Διαχωριστική επιφάνεια Σύστημα Περιβάλλον 5 6 Φυσικός Ραδιοηλεκτρολόγος (MSc)

2 Φυσική Προσανατολισμού Β Λυκείου 0//04 Θερμότητα Θερμότητα: τρόπος μεταφοράς ενέργειας λόγω διαφοράς θερμοκρασίας. Μονάδες: Joule (J) ΠΡΟΣΟΧΗ: Δεν είναι μορφή ενέργειας. Είναι λάθος να λέμε πως ένα σύστημα (ή ένα σώμα) περιέχει θερμότητα. Θερμοκρασία Η έννοια της θερμοκρασίας χρησιμοποιείται για να εκφράσουμε ποσοτικά (αντικειμενικά) το πόσο θερμό ή ψυχρό είναι ένα σώμα. Είναι λοιπόν η θερμοκρασία το μέτρο μιας φυσικής ιδιότητας της ύλης που μας επιτρέπει, όπως και τα μέτρα άλλων μεγεθών, να περιγράφουμε ποσοτικά τη φυσική κατάσταση των σωμάτων. 7 8 Θερμοκρασία Το αίτιο της μεταβολής της θερμοκρασίας ενός σώματος είναι η παροχή στο ή η απαγωγή από το σώμα ενέργειας, μέσα από το μηχανισμό διακίνησης ενέργειας που λέγεται θερμότητα. Θερμότητα Όταν σ ένα σύστημα προστεθεί ενέργεια με μορφή θερμότητας, αυτή αποθηκεύεται με μορφή κινητικής και δυναμικής ενέργειας των δομικών λίθων του συστήματος. 9 0 Θερμική ισορροπία Απαραίτητη προϋπόθεση για να υπάρξει ανταλλαγή ενέργειας με τη μορφή θερμότητας είναι η διαφορά θερμοκρασίας. Όταν δεν υπάρχει τέτοια (καθαρή) ανταλλαγή, λέμε ότι αυτά βρίσκονται σε κατάσταση θερμικής ισορροπίας ή ότι έχουν την ίδια θερμοκρασία. Η έννοια της θερμικής ισορροπίας είναι στατιστική έννοια: καθένα μόριο μπορεί να ανταλλάσει ενέργεια, αλλά κατά μέσο όρο όση ενέργεια ανταλλάσσεται προς τη μία κατεύθυνση, η ίδια πάει και προς την άλλη. Ροή θερμότητας Η θερμότητα (λέμε ότι) ρέει από υψηλότερη θερμοκρασία προς χαμηλότερη. Αυτό σημαίνει πως η ενέργεια, υπό μορφή θερμότητας, μεταβιβάζεται από τα θερμότερα προς τα ψυχρότερα σώματα. Θερμό σώμα Ψυχρό σώμα Φορά ροής θερμότητας Φυσικός Ραδιοηλεκτρολόγος (MSc)

3 Φυσική Προσανατολισμού Β Λυκείου 0//04 Μονάδες θερμοκρασίας Μονάδες θερμοκρασίας Celsius Kelvin Fahrenheit Για τη μέτρηση της θερμοκρασίας χρησιμοποιούμε δυο μονάδες: 00 C 373,5 K F Σημείο βρασμού του νερού Βαθμοί Celsius: C Kelvin: K 0 C 73,5 K 3 F Σημείο πήξης του νερού 3 Παρατηρήσεις. Η μονάδα μέτρησης στο SI είναι ο K.. Σε μερικές χώρες χρησιμοποιείται και η μονάδα Fahrenheit: F 4 73,5 C 0 K -459,67 F K C73,5 9 F C3 K C73 5 Απόλυτο μηδέν Απόλυτη θερμοκρασία Όταν τη θερμοκρασία τη μετράμε σε Kelvin ονομάζεται απόλυτη θερμοκρασία. Η χαμηλότερη θερμοκρασία που μπορούμε να έχουμε στο σύμπαν είναι: 0 K ή -73,5 C. Η θερμοκρασία αυτή ονομάζεται απόλυτο μηδέν. Μερικές θερμοκρασίες K C F Απόλυτο μηδέν 0-73,5-459,67 Διαγαλαξιακός χώρος Βρασμός του He 4, Πήξη του CO (ξηρός πάγος) Ανθρώπινο σώμα ,6 Τήξη χρυσού Κέντρο της γης Κέντρο ήλιου Εσωτερικό αστέρα νετρονίων Αέριο Θερμοδυναμικό Σύστημα Αέριο Θερμοδυναμικό Σύστημα Ένα αέριο θερμοδυναμικό σύστημα αποτελείται από ένα ή περισσότερα αέρια που περικλείονται σ ένα δοχείο το οποίο βρίσκεται σε επαφή με το περιβάλλον. Η συμπεριφορά ενός αέριου θερμοδυναμικού συστήματος περιγράφεται από τέσσερις μεταβλητές:. Πίεση (). Θερμοκρασία () 3. Όγκος () 4. Μάζα (m) Πυκνότητα (ρ ή d) = m/ 7 8 Φυσικός Ραδιοηλεκτρολόγος (MSc) 3

4 Φυσική Προσανατολισμού Β Λυκείου 0//04 Καταστατικά μεγέθη Τα 4 αυτά μεγέθη (,,, m), επειδή καθορίζουν πλήρως την κατάσταση του αερίου ονομάζονται καταστατικά μεγέθη ή καταστατικές μεταβλητές. Οι καταστατικές μεταβλητές εξαρτώνται μόνο από την κατάσταση και όχι από τον τρόπο (δρόμο) με τον οποίο το σύστημα βρέθηκε σ αυτήν. Θερμοδυναμική ισορροπία Ένα αέριο θερμοδυναμικό σύστημα βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας όταν η πίεση, η θερμοκρασία και η πυκνότητα (ρ = m/) έχουν την ίδια τιμή σε όλο τον όγκο (χώρο) του συστήματος. 9 0 Τυπολόγιο Πίεση Σε επιφάνεια (εμβαδού)s ασκείται η δύναμη Η πίεση ορίζεται ως: F S F S F F F Μονάδες: Pa (= /m ) atm = 760 mmhg = 0.35 Pa Pa = 0 5 Pa = bar Η μονάδα πίεσης mmhg he millimeter of mercury (symbol: mmhg) is defined as the ressure exerted at the base of a column of fluid exactly mm high, when the density of the fluid is exactly g/cm 3, at a lace where the acceleration of gravity is exactly m/s. here are several things to notice about this definition:. fluid density of g/cm was chosen for this definition because this is the aroximate density of mercury at 0 C. he definition, therefore, assumes a articular value for the density of mercury. his assumtion limits the recision of any ressure measurement (in mmhg) to six significant digits.. he definition assumes a articular value for the acceleration of gravity: the standard acceleration g n = m/sec. In ractice, of course, measurements are made using local values. 3. hese assumtions limit both the validity and the recision of the mmhg as a unit of ressure. o metrology laboratory measures or calibrates ressure directly in these terms. It would be extremely difficult to find a fluid with exactly this density, and a lace where g was exactly m/s. Ατμοσφαιρική πίεση tmosheric ressure is the ressure at any oint in the Earth's atmoshere. In most circumstances atmosheric ressure is closely aroximated by the hydrostatic ressure caused by the weight of air above the measurement oint. Low ressure areas have less atmosheric mass above their location, whereas high ressure areas have more atmosheric mass above their location. Similarly, as elevation increases there is less overlying atmosheric mass, so that ressure decreases with increasing elevation. column of air square inch in cross section, measured from sea level to the to of the atmoshere, would weigh aroximately 4.7 lbf. m² ( sq ft) column of air would weigh about 00 kilonewtons (equivalent to a mass of 0. tonnes at the surface). Κλάσμα της atm Μέσο ύψος (m) = 760 mmhg 0 / / /0 6.3 / / / / Φυσικός Ραδιοηλεκτρολόγος (MSc) 4

5 Φυσική Προσανατολισμού Β Λυκείου 0//04 Χρήσιμοι ορισμοί Σταθερά vogadro = 6, mol -. = mol -. mol ποσότητα ουσίας η οποία περιέχει ακριβώς Ν Α (= 6, mol - ) μόρια ή άτομα. Χρήσιμοι ορισμοί Γραμμομοριακή μάζα (Μ) η μάζα ενός mol μιας ουσίας. Μ = (ΜΒ) 0 3 kg/mol = (ΜΒ) gr/mol. Κανονικές συνθήκες (ΚΣ st) Πίεση: = atm Θερμοκρασία: θ = 0 C ή = 73 K. Μοριακό Βάρος (ΜΒ) η μάζα (σε gr) ενός mol. Γραμμομοριακός όγκος ( mol ) ο όγκος που καταλαμβάνει mol ενός αερίου σε ΚΣ. Είναι mol =,4 L. 5 6 Χρήσιμες σταθερές Συντελεστές μετατροπής Σταθερά oltzmann k =, J/K Σταθερά vogadro = mol - k R Ενέργεια erg = 0-7 J, cal = 4,868 J Πίεση atm = 76 cm Hg = 760 mmhg = 035 Pa ( 0 5 Pa) = bar (Παγκόσμια) σταθερά των ιδανικών αερίων R = 8,34 JK - mol - = = 0,08 L atm mol - K -. Όγκος m 3 = 0 3 L = 0 6 cm 3 = 0 6 ml Ταχύτητα m/s = 3,6 km/h = 00 cm/sec 7 8 Βασικές σχέσεις Αν m η μάζα από n mol μιας ουσίας που αποτελείται από Ν μόρια, με γραμμομοριακή μάζα M, τότε: II. Κινητική θεωρία των αερίων n m M. Θερμική κίνηση. Στατιστική Φυσική 3. Κινητική θεωρία των αερίων 4. Οι καταστάσεις της ύλης 5. Το μοντέλο του ιδανικού αερίου 6. Πραγματικά αέρια 9 30 Φυσικός Ραδιοηλεκτρολόγος (MSc) 5

6 Φυσική Προσανατολισμού Β Λυκείου 0//04 Μια παγκόσμια αλήθεια Μια παγκόσμια αλήθεια Σε κάθε σώμα στη φύση, και κάτω από οποιεσδήποτε συνθήκες, τα στοιχειώδη μέρη που το αποτελούν κινούνται: Τα μόρια κάθε τμήματος της ύλης κινούνται Τα άτομα αυτών των μορίων κινούνται Τα ηλεκτρόνια των ατόμων κινούνται 3 3 Θερμική κίνηση Ισοκατανομή της ενέργειας Η χαρακτηριστική ιδιότητα της κίνησης που συζητάμε είναι ότι γίνεται με τυχαίο τρόπο. Αυτή τη τυχαία και άτακτη κίνηση των μορίων της ύλης θα την ονομάζουμε θερμική κίνηση. nimation Παράδειγμα τυχαίας κίνησης D 3D Στατιστική Φυσική Η στατιστική φυσική μελετάει τις φυσικές ιδιότητες συστημάτων που αποτελούνται από πολύ μεγάλο αριθμό ατόμων ή μορίων (0 3!). 0 3 = !!! Ακόμη κι αν είναι γνωστός ο νόμος αλληλεπίδρασης μεταξύ των σωματιδίων, ο αριθμός τους δεν επιτρέπει την αντιμετώπιση ενός τέτοιου συστήματος όπως θα αντιμετωπίζαμε ένα απλό σύστημα Φυσικός Ραδιοηλεκτρολόγος (MSc) 6

7 Φυσική Προσανατολισμού Β Λυκείου 0//04 Στατιστική Φυσική Οι νόμοι των μακροσκοπικών σωμάτων δεν κάνουν πλήρη μικροσκοπική περιγραφή ενός συστήματος (δηλ δεν δίνουν τη θέση κάθε μορίου ενός αερίου σε κάθε χρονική στιγμή). Παρέχουν ορισμένα μετρήσιμα μακροσκοπικά μεγέθη, όπως η πίεση, η θερμοκρασία, κλπ, που αποτελούν μέσους όρους μικροσκοπικών ιδιοτήτων. Στατιστική Φυσική Οι μακροσκοπικοί νόμοι είναι λοιπόν στατιστικής φύσης. Λόγω του τεράστιου αριθμού σωματιδίων οι διακυμάνσεις είναι εξαιρετικά μικρές. Έτσι οι στατιστικοί νόμοι οδηγούν σε αποτελέσματα απόλυτης βεβαιότητας! Κινητική θεωρία των αερίων Το αποτέλεσμα της εφαρμογής της στατιστικής μηχανικής στα αέρια αποτελεί το αντικείμενο της κινητικής θεωρίας των αερίων. Οι μέθοδοι που χρησιμοποιεί η κινητική θεωρία είναι οι γενικές μέθοδοι της στατιστικής φυσικής που συνδυάζει τους νόμους της κλασικής μηχανικής με τους νόμους της θεωρίας των πιθανοτήτων. εκατομμύρια Κ 40 δεκάδες χιλιάδες Κ χιλιάδες Κ εκατοντάδες Κ Οι (3+) καταστάσεις της ύλης Πλήρως ιον(τ)ισμένο πλάσμα: Τα άτομα είναι έντονα ιον(τ)ισμένο Κατάσταση πλάσματος: Ελεύθερα ηλεκτρόνια κινούνται ανάμεσα σε θετικά φορτισμένα ιόντα. Τα μόρια διαχωρίζονται στα άτομα που τα απαρτίζουν Στερεή κατάσταση: Τα άτομα ή τα μόρια κρατούνται στη θέση τους Υγρή κατάσταση: Τα άτομα ή τα μόρια παραμένουν μαζί αλλά κινούνται πιο ελεύθερα Αέρια κατάσταση: Τα άτομα ή τα μόρια κινούνται χωρίς σχεδόν κανένα περιορισμό Το ιδανικό αέριο ορισμός # Από μακροσκοπικής άποψης το ιδανικό αέριο είναι αυτό που υπακούει στην (καταστατική) εξίσωση nr : πίεση, : όγκος, R: σταθερά, n: αριθμός mol (μάζα), : (απόλυτη) θερμοκρασία. Το ιδανικό αέριο Λόγω της καταστατικής εξίσωσης, η κατάσταση μιας συγκεκριμένης ποσότητας ιδανικού αερίου είναι πλήρως καθορισμένη όταν είναι γνωστά δύο από τα τρία μεγέθη (,, ). πχ nr, : nr 4 4 Φυσικός Ραδιοηλεκτρολόγος (MSc) 7

8 Φυσική Προσανατολισμού Β Λυκείου 0//04 43 Το ιδανικό αέριο ορισμός # Μικροσκοπικά, οι παραδοχές της κινητικής θεωρίας για το μοντέλο του ιδανικού αερίου είναι:. Το πλήθος των μορίων είναι πολύ μεγάλο.. Τα μόρια του είναι σφαιρικές σημειακές μάζες χωρίς εσωτερική δομή. 3. Κατά την κίνηση και κατά την κρούση των μορίων ισχύουν οι νόμοι της κλασικής μηχανικής. 4. Όλες οι κρούσεις μεταξύ των μορίων αλλά και αυτές μεταξύ των μορίων και των τοιχωμάτων του δοχείου θεωρούνται απολύτως ελαστικές. 5. Η διάρκεια κάθε κρούσης είναι αμελητέα. 44 Το ιδανικό αέριο ορισμός # Μικροσκοπικά, οι παραδοχές της κινητικής θεωρίας για το μοντέλο του ιδανικού αερίου είναι: 6. Δυνάμεις στα μόρια ασκούνται μόνο στη διάρκεια των κρούσεων. Άρα, μεταξύ των κρούσεων η κίνηση είναι ευθύγραμμη ομαλή. 7. Τα μόρια του αερίου βρίσκονται σε διαρκή κίνηση και όλες οι κατευθύνσεις είναι ισοπίθανες. 8. Ο όγκος κάθε μορίου χωριστά είναι αμελητέος σε σχέση με τον όγκο που καταλαμβάνει το αέριο. 9. Η κινητική ενέργεια κατανέμεται το ίδιο σε όλες τις δυνατές κινήσεις (βαθμούς ελευθερίας) του μορίου. Πραγματικά αέρια Ένα πραγματικό αέριο αποτελείται από μόρια που: Έχουν εσωτερική δομή Δεν είναι σφαιρικά Καταλαμβάνουν όγκο Αλληλεπιδρούν μεταξύ τους Πραγματικά αέρια Ένα πραγματικό αέριο συμπεριφέρεται ιδανικά όταν βρίσκεται μακριά από τις συνθήκες υγροποίησής του, δλδ βρίσκεται σε : Χαμηλή πίεση Μικρή πυκνότητα Σχετικά υψηλή θερμοκρασία Πραγματικά αέρια Ο J. an der Waals πρότεινε τον 9 ο αιώνα μια καταστατική εξίσωση για τα πραγματικά αέρια: na nbnr a, b : χαρακτηριστικές σταθερές του κάθε αερίου n a/ : ενδοπίεση λόγω αλληλεπίδρασης των μορίων. nb : σύνογκος λόγω του όγκου των μορίων. III. Μεταβολές & νόμοι των αερίων. Διάγραμμα (, ). Αντιστρεπτές μεταβολές 3. Μη αντιστρεπτές μεταβολές 4. Νόμοι των αερίων( oyle, Gay Lussac, Charles) 5. Η καταστατική εξίσωση του ιδανικού αερίου Φυσικός Ραδιοηλεκτρολόγος (MSc) 8

9 Φυσική Προσανατολισμού Β Λυκείου 0//04 Διάγραμμα ( / ) Ένα σύστημα βρίσκεται σε κατάσταση (θερμοδυναμικής) ισορροπίας όταν οι μεταβλητές που το περιγράφουν έχουν την ίδια τιμή σε όλη την έκταση του συστήματος και δεν αλλάζουν με την πάροδο του χρόνου. Μια κατάσταση ισορροπίας παριστάνεται σ ένα διάγραμμα (ή ή ) από ένα σημείο. (,, ) Αντιστρεπτές μεταβολές Μια μεταβολή λέγεται αντιστρεπτή αν ακολουθώντας την αντίστροφη πορεία το σύστημα επανέρχεται στην αρχική του κατάσταση και δεν υπάρχει καμιά αλλαγή στο σύστημα και στο περιβάλλον. μπορούμε να προσεγγίσουμε μια αντιστρεπτή μεταβολή όταν:. Πραγματοποιείται πάρα πολύ αργά ώστε κάθε ενδιάμεση κατάσταση, να είναι κατάσταση ισορροπίας, και. Δεν έχουμε απώλεια ενέργειας υπό μορφή τριβών, υστερήσεων, κλπ Αντιστρεπτές μεταβολές Μη αντιστρεπτές μεταβολές Σ ένα διάγραμμα μια αντιστρεπτή μεταβολή παριστάνεται από μια συνεχή γραμμή όπως η μεταβολή ΑΒ δίπλα. Β Αν υπάρχουν απώλειες ενέργειας και οι ενδιάμεσες καταστάσεις δεν είναι καταστάσεις ισορροπίας, η μεταβολή ονομάζεται μη αντιστρεπτή. Β Στο διάγραμμα σημειώνεται μόνο η αρχική και τελική κατάσταση. 5 5 Μη αντιστρεπτές μεταβολές Όλες οι μεταβολές στη φύση είναι μη αντιστρεπτές Φυσικός Ραδιοηλεκτρολόγος (MSc) 9

10 Φυσική Προσανατολισμού Β Λυκείου 0//04 Νόμος oyle (ισόθερμη μετ.) Νόμος oyle (ισόθερμη μετ.) Μια μεταβολή (συγκεκριμένης ποσότητας) ενός αερίου, κατά την οποία η θερμοκρασία του P P αερίου παραμένει σταθερή, ονομάζεται ισόθερμη μεταβολή. Νόμος oyle: Η πίεση ορισμένης ποσότητας αερίου σε σταθερή θερμοκρασία, είναι αντιστρόφως ανάλογη του όγκου του., Β Νόμος oyle (ισόθερμη μετ.) Νόμος oyle (ισόθερμη μετ.) ΑΒ: ισόθερμη εκτόνωση ΒΑ: ισόθερμη συμπίεση Η σχέση μπορεί να γραφεί και με τη μορφή Β, Όπου () και () δυο τυχαίες καταστάσεις πάνω στην ισόθερμη Η σταθερά στο νόμο του oyle εξαρτάται από τη μάζα και από τη θερμοκρασία (στην οποία γίνεται η μεταβολή) του αερίου Νόμος oyle (ισόθερμη μετ.) Νόμος oyle (ισόθερμη μετ.) Η σταθερά στο νόμο του oyle εξαρτάται από τη μάζα και από τη θερμοκρασία (στην οποία γίνεται η μεταβολή) του αερίου. μάζα: σταθερή θερμοκρασία: σταθερή Για την ισόθερμη μεταβολή που φαίνεται στο διάγραμμα, συμπληρώστε τον παρακάτω πίνακα. Τ > Τ n > n σημείο i i i i 4 Β Τ n 8 4 Οι μονάδες είναι στο SI Φυσικός Ραδιοηλεκτρολόγος (MSc) 0

11 Φυσική Προσανατολισμού Β Λυκείου 0//04 Νόμος oyle (ισόθερμη μετ.) Να γίνει γραφική παράσταση του νόμου του oyle (της ισόθερμης μεταβολής) σε άξονες. Νόμος oyle (ισόθερμη μετ.) Η θερμοκρασία παραμένει σταθερή. Άρα η καμπύλη θα είναι κάθετη στον άξονα των θερμοκρασιών? Β Β Τ Τ 6 6 Νόμος oyle (ισόθερμη μετ.) Νόμος oyle (ισόθερμη μετ.) Από το διάγραμμα, παρατηρούμε πως πηγαίνοντας από την κατάσταση Α στην κατάσταση Β η πίεση μειώνεται Άσκηση: Να γίνει γραφική παράσταση του νόμου του oyle (της ισόθερμης μεταβολής) σε άξονες.? Β Β Β Τ Α =Τ Β Τ Τ Πίεση αερίου σε δοχείο με έμβολο Οι δυνάμεις που δέχεται το έμβολο είναι: Η F έ Η F ί Το βάρος του w mg F ί w F έ Θεωρούμε ότι το έμβολο δεν παρουσιάζει τριβές με τα τοιχώματα του δοχείου. Πίεση αερίου σε δοχείο με έμβολο F ί w F έ Το έμβολο ισορροπεί, άρα: F 0 wfέ Fί 0 wf F 0 έ ί Φυσικός Ραδιοηλεκτρολόγος (MSc)

12 Φυσική Προσανατολισμού Β Λυκείου 0//04 Πίεση αερίου σε δοχείο με έμβολο Νόμος Gay-Lussac (ισοβαρής μετ.) 67 F ί w F έ Όπου S είναι το εμβαδό του εμβόλου. Από τον ορισμό της πίεσης F S Έχουμε: w F F 0 έ ί w F F έ ί 0 S S S w atm S 68 Μια μεταβολή (συγκεκριμένης ποσότητας) ενός αερίου, κατά την οποία η πίεση του αερίου παραμένει σταθερή, ονομάζεται ισοβαρής μεταβολή. Νόμος Gay-Lussac: Ο όγκος ορισμένης ποσότητας αερίου υπό σταθερή πίεση, είναι ανάλογος της θερμοκρασίας του. Νόμος Gay-Lussac (ισοβαρής μετ.) : ισοβαρής εκτόνωση (θέρμανση) ΒΑ: ισοβαρής συμπίεση (ψύξη) Νόμος Gay-Lussac (ισοβαρής μετ.) Να γίνει γραφική παράσταση του νόμου του Gay - Lussac (της ισοβαρούς μεταβολής) σε άξονες.? Α Νόμος Gay-Lussac (ισοβαρής μετ.) Τ Α Α Τ Β : ισοβαρής εκτόνωση (θέρμανση) ΒΑ: ισοβαρής συμπίεση (ψύξη) Νόμος Gay-Lussac (ισοβαρής μετ.) Η σχέση μπορεί να γραφεί και ως Όπου () και () δυο τυχαίες καταστάσεις πάνω στην ισοβαρή. Η σταθερά στο νόμο του Gay Lussac εξαρτάται από τη μάζα και από τη πίεση (στην οποία γίνεται η μεταβολή) του αερίου. Α Τ Α Α Τ Β 7 7 Φυσικός Ραδιοηλεκτρολόγος (MSc)

13 Φυσική Προσανατολισμού Β Λυκείου 0//04 Νόμος Gay-Lussac (ισοβαρής μετ.) Η σταθερά στο νόμο του Gay Lussac εξαρτάται από τη μάζα και από τη πίεση (στην οποία γίνεται η μεταβολή) του αερίου. Νόμος Gay-Lussac (ισοβαρής μετ.) Άσκηση: Να γίνει γραφική παράσταση του νόμου του Gay - Lussac (της ισοβαρούς μεταβολής) σε άξονες. μάζα: σταθερή πίεση: σταθερή > n > n n? Νόμος Charles (ισόχωρη μετ.) Νόμος Charles (ισόχωρη μετ.) Μια μεταβολή (συγκεκριμένης ποσότητας) ενός αερίου, κατά την οποία ο όγκος του αερίου παραμένει σταθερός, ονομάζεται ισόχωρη μεταβολή. Νόμος Charles: Η πίεση ορισμένης ποσότητας αερίου υπό σταθερό όγκο, είναι ανάλογη της (απόλυτης) θερμοκρασίας του. : ισόχωρη θέρμανση ΒΑ: ισόχωρη ψύξη Νόμος Charles (ισόχωρη μετ.) Να γίνει γραφική παράσταση του νόμου του Charles (της ισόχωρης μεταβολής) σε άξονες.? Νόμος Charles (ισόχωρη μετ.) Τ Α Τ Β Α : ισόχωρη θέρμανση ΒΑ: ισόχωρη ψύξη Φυσικός Ραδιοηλεκτρολόγος (MSc) 3

14 Φυσική Προσανατολισμού Β Λυκείου 0//04 Νόμος Charles (ισόχωρη μετ.) Νόμος Charles (ισόχωρη μετ.) 79 Η σχέση μπορεί να γραφεί και ως Όπου () και () δυο τυχαίες καταστάσεις πάνω στην ισόχωρη. Η σταθερά στο νόμο του Charles εξαρτάται από τη μάζα και από τον όγκο (στον οποία γίνεται η μεταβολή) του αερίου. Τ Α Τ Β Α 80 Η σταθερά στο νόμο του Charles εξαρτάται από τη μάζα και από τον όγκο (στον οποία γίνεται η μεταβολή) του αερίου. μάζα: σταθερή > n > n όγκος: σταθερός n Νόμος Charles (ισόχωρη μετ.) Άσκηση: Να γίνει γραφική παράσταση του νόμου του Charles (της ισόχωρης μεταβολής) σε άξονες.? Το ιδανικό αέριο Από μακροσκοπικής άποψης το ιδανικό αέριο είναι αυτό που υπακούει στην (καταστατική) εξίσωση nr : πίεση, : όγκος, R: σταθερά, n: αριθμός mol (μάζα), : (απόλυτη) θερμοκρασία. 8 8 Πραγματικά αέρια Πραγματικά αέρια Θυμάστε πότε ένα πραγματικό αέριο συμπεριφέρεται (περίπου) ως ιδανικό? Ένα πραγματικό αέριο συμπεριφέρεται ιδανικά όταν βρίσκεται μακριά από τις συνθήκες υγροποίησής του: Χαμηλή πίεση Μικρή πυκνότητα Σχετικά υψηλή θερμοκρασία Στη συνέχεια ΟΛΑ τα αέρια θα τα θεωρούμε ιδανικά Φυσικός Ραδιοηλεκτρολόγος (MSc) 4

15 Φυσική Προσανατολισμού Β Λυκείου 0//04 Σταθερά ιδανικού αερίου Η σταθερά R στην καταστατική εξίσωση των ιδανικών αερίων έχει την τιμή: R = 8,34 JK - mol - = = 0,08 L atm mol - K -. nr Η καταστατική εξίσωση του ΙΑ nr m M R m M R R M n = αριθμός mol m = μάζα αερίου Μ = γραμμομοριακή μάζα ρ = πυκνότητα m n M m Παράδειγμα / σελ Παράδειγμα / σελ Στην αρχή ενός ταξιδιού η θερμοκρασία των ελαστικών ενός αυτοκινήτου είναι 7 C. Κατά τη διάρκεια του ταξιδιού τα ελαστικά θερμαίνονται στους 7 C. Αν στην αρχή του ταξιδιού ο αέρας στο εσωτερικό των ελαστικών βρισκόταν σε πίεση 3 atm, πόση θα έχει γίνει η πίεση στο τέλος του ταξιδιού; Υποθέτουμε ότι ο όγκος των ελαστικών παραμένει αμετάβλητος. = 3 atm = 7 C = 80 K = 7 C = 300 K = σταθ. K C73,5 =? K C Παράδειγμα / σελ Παράδειγμα / σελ = 3 atm = 7 C = 80 K = 7 C = 300 K = σταθ. =? Αφού υποθέτουμε ότι ο όγκος παραμένει σταθερός, μπορούμε να θεωρήσουμε πως η μεταβολή είναι ισόχωρη και συνεπώς ισχύει ο νόμος του Charles. = 3 atm = 7 C = 80 K = 7 C = 300 K = σταθ. =? Αφού υποθέτουμε ότι ο όγκος παραμένει σταθερός, μπορούμε να θεωρήσουμε πως η μεταβολή είναι ισόχωρη και συνεπώς ισχύει ο νόμος του Charles. Άρα θα έχουμε: Φυσικός Ραδιοηλεκτρολόγος (MSc) 5

16 Φυσική Προσανατολισμού Β Λυκείου 0//04 Παράδειγμα / σελ Παράδειγμα / σελ = 3 atm = 7 C = 80 K = 7 C = 300 K = σταθ. =? Αφού υποθέτουμε ότι ο όγκος παραμένει σταθερός, μπορούμε να θεωρήσουμε πως η μεταβολή είναι ισόχωρη και συνεπώς ισχύει ο νόμος του Charles. Άρα θα έχουμε: = 3 atm = 7 C = 80 K = 7 C = 300 K = σταθ. =? Αφού υποθέτουμε ότι ο όγκος παραμένει σταθερός, μπορούμε να θεωρήσουμε πως η μεταβολή είναι ισόχωρη και συνεπώς ισχύει ο νόμος του Charles. Άρα θα έχουμε: και συνεπώς: και συνεπώς: με αντικατάσταση: 300K 3atm 3, atm 80K 9 9 Παράδειγμα 3 / σελ 3 0, mol H βρίσκονται σε δοχείο με κινητό έμβολο σε θερμοκρασία Τ = 300 Κ και πίεση atm (κατάσταση Α). Διατηρώντας σταθερή την πίεσή του θερμαίνουμε το αέριο μέχρις ότου η θερμοκρασία του γίνει Τ = 400 Κ (κατάσταση Β). Στη συνέχεια το αέριο εκτονώνεται ισόθερμα μέχρις ότου η πίεσή του γίνει ίση με,5 atm (κατάσταση Γ) και μετά ψύχεται με σταθερό όγκο μέχρι η θερμοκρασία του να γίνει Τ = 300 Κ (κατάσταση Δ). Τέλος, το αέριο συμπιέζεται ισόθερμα μέχρι να φτάσει στην αρχική του κατάσταση. Να βρείτε τις τιμές του όγκου της πίεσης, και της θερμοκρασίας που αντιστοιχούν στις καταστάσεις Α, Β, Γ και Δ και να αποδώσετε την παραπάνω διαδικασία σε διαγράμματα με άξονες,, και. Δίνεται η τιμή της σταθεράς R = 0,08 L atm mol - K -. Παράδειγμα 3 / σελ 3 n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα Για κάθε κατάσταση πρέπει να ξέρουμε τις τιμές των καταστατικών μεταβλητών (,, ) Παράδειγμα 3 / σελ 3 n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα Για κάθε κατάσταση πρέπει να ξέρουμε τις τιμές των καταστατικών μεταβλητών (,, ). κατάσταση Α = atm =? = 300 K Τ: σταθ κατάσταση Δ =? =? = 300 K : σταθ : σταθ κατάσταση Β = atm =? = 400 K Τ: σταθ κατάσταση Γ =,5 atm =? = 400 Κ Παράδειγμα 3 / σελ 3 n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα Στην κατάσταση Α μπορούμε να υπολογίσουμε τον όγκο του αερίου από την καταστατική εξίσωση: nr nr L atm 0,mol 0,08 300K mol K atm,46 L Άρα, για την κατάσταση Α έχουμε: κατάσταση Α = atm =,46 L = 300 K Φυσικός Ραδιοηλεκτρολόγος (MSc) 6

17 Φυσική Προσανατολισμού Β Λυκείου 0//04 n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm με : σταθ. Τ Δ = 300 K Παράδειγμα 3 / σελ 3 Η μεταβολή ΑΒ είναι ισοβαρής, άρα μπορούμε να εφαρμόσουμε τον νόμο του Gay Lussac. 400K,46 L 300K 3, 8L n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm με : σταθ. Τ Δ = 300 K Παράδειγμα 3 / σελ 3 Η μεταβολή ΓΔ είναι ισόχωρη, άρα μπορούμε να εφαρμόσουμε τον νόμο του Charles. 300 K, 5atm 400 K,5atm με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα κατάσταση Α = atm =,46 L = 300 K : σταθ κατάσταση Β = atm = 3,8 L = 400 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα κατάσταση Γ =,5 atm = 4,37 L = 400 Κ : σταθ κατάσταση Δ =,5 atm = 4,37 L = 300 K n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm Παράδειγμα 3 / σελ 3 Για κάθε κατάσταση πρέπει να ξέρουμε τις τιμές των καταστατικών μεταβλητών (,, ). κατάσταση Α = atm =,46 L = 300 K : σταθ κατάσταση Β = atm = 3,8 L = 400 K n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Γ =,5 atm Παράδειγμα 3 / σελ 3 Δημιουργία του διαγράμματος. κατάσταση Α = atm =,46 L = 300 K κατάσταση Β = atm = 3,8 L = 400 K κατάσταση Γ =,5 atm = 4,37 L = 400 K κατάσταση Δ =,5 atm = 4,37 L = 300 K με : σταθ. Τ Δ = 300 K Τ: σταθ Τ: σταθ με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα κατάσταση Δ =,5 atm = 4,37 L = 300 K : σταθ κατάσταση Γ =,5 atm = 4,37 L = 400 Κ με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε και βαθμολογούμε τους άξονες. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε την ισοβαρή μεταβολή ΑΒ. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm με : σταθ. Τ Β = 400 K με Τ: σταθ. = =,46 L 300 K = 3,8 L = 400 K (atm) = = 4,37 L 400 K = = 4,37 L 300 K με : σταθ. Τ Β = 400 K με Τ: σταθ. = =,46 L 300 K = 3,8 L = 400 K (atm) = = 4,37 L 400 K = = 4,37 L 300 K Γ =,5 atm με : σταθ. Τ Δ = 300 K Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. (,, ) Α/Β/Γ/Δ? Διαγράμματα (L) (,, ) Α/Β/Γ/Δ? Διαγράμματα,46 3,8 (L) 0 0 Φυσικός Ραδιοηλεκτρολόγος (MSc) 7

18 Φυσική Προσανατολισμού Β Λυκείου 0//04 n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε τις δυο ισόθερμες των 300 K και 400 Κ. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε την ισόθερμη μεταβολή ΒΓ. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm με : σταθ. Τ Β = 400 K με Τ: σταθ. = =,46 L 300 K = 3,8 L = 400 K (atm) = = 4,37 L 400 K = = 4,37 L 300 K με : σταθ. Τ Β = 400 K με Τ: σταθ. = =,46 L 300 K = 3,8 L = 400 K (atm) = = 4,37 L 400 K = = 4,37 L 300 K Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. 400 Κ 300 Κ Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. Γ,5 400 Κ 300 Κ (,, ) Α/Β/Γ/Δ? Διαγράμματα,46 3,8 (L) (,, ) Α/Β/Γ/Δ? Διαγράμματα,46 3,8 4,37 (L) n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε την ισόχωρη μεταβολή ΓΔ. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm n = 0, mol = 300 K = atm Παράδειγμα 3 / σελ 3 Σχεδιάζουμε και την ισόθερμη μεταβολή ΔΑ. κατάσταση Α = atm κατάσταση Β = atm κατάσταση Γ =,5 atm κατάσταση Δ =,5 atm με : σταθ. Τ Β = 400 K με Τ: σταθ. = =,46 L 300 K = 3,8 L = 400 K (atm) = = 4,37 L 400 K = = 4,37 L 300 K με : σταθ. Τ Β = 400 K με Τ: σταθ. =,46 L = 300 K (atm) = = 3,8 L 400 K = = 4,37 L 400 K = = 4,37 L 300 K Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση.,5,5 Γ Δ 400 Κ 300 Κ Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση.,5,5 Γ Δ 400 Κ 300 Κ (,, ) Α/Β/Γ/Δ? Διαγράμματα 05,46 3,8 4,37 (L) (,, ) Α/Β/Γ/Δ? Διαγράμματα 06,46 3,8 4,37 (L) n = 0, mol = 300 K = atm με : σταθ. Τ Β = 400 K με Τ: σταθ. Παράδειγμα 3 / σελ 3 Έχοντας έτοιμο το διάγραμμα μπορούμε πολύ εύκολα (?) να κάνουμε και τα υπόλοιπα διαγράμματα: &. (atm),5 Γ 400 Κ Άσκηση.8 / σελ 7 Δυο ποσότητες (n και n ) ιδανικού αερίου εκτελούν ισοβαρή μεταβολή στην ίδια πίεση. n πίεση: σταθερή n Γ =,5 atm με : σταθ. Τ Δ = 300 K με Τ: σταθ μεταβαίνει στην αρχική κατάσταση. κατάσταση Α = atm =,46 L = 300 K κατάσταση Γ =,5 atm = 4,37 L κατάσταση Β = atm = 3,8 L = 400 K κατάσταση Δ =,5 atm = 4,37 L,5,46 Δ 300 Κ 3,8 4,37 (L) Να αποδείξετε ότι n > n. = 400 K = 300 K (,, ) Α/Β/Γ/Δ? Διαγράμματα Φυσικός Ραδιοηλεκτρολόγος (MSc) 8

19 Φυσική Προσανατολισμού Β Λυκείου 0//04 Άσκηση.8 / σελ 7 Άσκηση.8 / σελ 7 Γνωρίζουμε για την κλίση μιας ευθείας της μορφής y axb y Από το διάγραμμα παρατηρούμε πως ω > ω. Άρα: n πίεση: σταθερή n ότι ισχύει a ω x Οι ευθείες είναι της μορφής a ω ω 09 0 Άσκηση.8 / σελ 7 Άσκηση.8 / σελ 7 Άρα α > α. Αφού είναι ιδανικό αέριο θα ισχύει: και συνεπώς nr nr πίεση: σταθερή n n ω ω Συγκρίνοντας τις σχέσεις a nr Καταλαβαίνουμε πως: nr a πίεση: σταθερή n n ω ω Άσκηση.8 / σελ 7 και επειδή α > α θα έχουμε: πίεση: σταθερή Στοιχεία Στατιστικής nr nr n n n ω ω n 3 4 Φυσικός Ραδιοηλεκτρολόγος (MSc) 9

20 Φυσική Προσανατολισμού Β Λυκείου 0//04 Στοιχεία Στατιστικής Έστω ένα σύνολο Ν αριθμών: 3 Συμβολίζεται και ως: x, x, x,... x,... x, x : j,,... j j Στοιχεία Στατιστικής Η μέση τιμή αυτών των αριθμών ορίζεται ως: x x xk x x... x k Το τετράγωνο της μέσης τιμής είναι: Πχ: 4,8,5 άρα: x 4, x 8, x3 5 x x xk x x... x k 5 6 Στοιχεία Στατιστικής Η μέση τιμή του τετραγώνου αυτών των αριθμών ορίζεται ως: x x x x x x k... k Στοιχεία Στατιστικής Η τετραγωνική ρίζα της μέσης τιμής των τετραγώνων αυτών των τιμών ονομάζεται ενεργός τιμή: x x x rms xk x x... x k 7 8 Στοιχεία Στατιστικής Στοιχεία Στατιστικής Έστω το σύνολο των Ν (=8) αριθμών του πίνακα. Η μέση τιμή τους είναι: x x x k k ,5 x j (x j ) Έστω το σύνολο των Ν (=8) αριθμών του πίνακα. Το τετράγωνο της μέσης τιμής τους είναι: k x xk 7,5 5,565 x j (x j ) Φυσικός Ραδιοηλεκτρολόγος (MSc) 0

21 Φυσική Προσανατολισμού Β Λυκείου 0//04 Στοιχεία Στατιστικής Στοιχεία Στατιστικής Έστω το σύνολο των Ν (=8) αριθμών του πίνακα. Η μέση τιμή των τετραγώνων τους είναι: x x xk k ,5 x j (x j ) Έστω το σύνολο των Ν (=8) αριθμών του πίνακα. Η ενεργός τιμή τους είναι: x x x x rms 66,5 8,5 k k x j (x j ) Στοιχεία Στατιστικής Έστω το σύνολο των Ν (=8) αριθμών του πίνακα. Προσοχή! Μέση τιμή των τετραγώνων: x 66,5 Τετράγωνο της μέσης τιμής: Άρα: x 5,565 x x x j (x j ) I. Κινητική θεωρία των αερίων. θερμική κίνηση στατιστική μηχανική ιδανικό/πραγματικό αέριο..πίεση ιδανικού αερίου 3.Μέση κινητική ενέργεια ενεργός ταχύτητα 4.Βαθμοί ελευθερίας, θεώρημα ισοκατανομής της ενέργειας. 5.Κατανομή Maxwell oltzmann 3 4 Θερμική κίνηση Σε κάθε σώμα στη φύση, και κάτω από οποιεσδήποτε συνθήκες, τα στοιχειώδη μέρη που το αποτελούν κινούνται. Η χαρακτηριστική ιδιότητα της κίνησης που συζητάμε είναι ότι γίνεται με τυχαίο τρόπο. Αυτή τη τυχαία και άτακτη κίνηση των μορίων της ύλης θα την ονομάζουμε θερμική κίνηση. nimation Στατιστική Φυσική Η στατιστική φυσική μελετάει τις φυσικές ιδιότητες συστημάτων που αποτελούνται από πολύ μεγάλο αριθμό ατόμων ή μορίων (0 3!). Ακόμη κι αν είναι γνωστός ο νόμος αλληλεπίδρασης μεταξύ των σωματιδίων, ο αριθμός τους δεν επιτρέπει την αντιμετώπιση ενός τέτοιου συστήματος όπως θα αντιμετωπίζαμε ένα απλό σύστημα 5 6 Φυσικός Ραδιοηλεκτρολόγος (MSc)

22 Φυσική Προσανατολισμού Β Λυκείου 0//04 Στατιστική Φυσική Οι νόμοι των μακροσκοπικών σωμάτων δεν κάνουν πλήρη μικροσκοπική περιγραφή ενός συστήματος (δηλ δεν δίνουν τη θέση κάθε μορίου ενός αερίου σε κάθε χρονική στιγμή). Παρέχουν ορισμένα μετρήσιμα μακροσκοπικά μεγέθη, όπως η πίεση, η θερμοκρασία, κλπ, που αποτελούν μέσους όρους μικροσκοπικών ιδιοτήτων. Στατιστική Φυσική Οι μακροσκοπικοί νόμοι είναι λοιπόν στατιστικής φύσης. Λόγω του τεράστιου αριθμού σωματιδίων οι διακυμάνσεις είναι εξαιρετικά μικρές. Έτσι οι στατιστικοί νόμοι οδηγούν σε αποτελέσματα απόλυτης βεβαιότητας! 7 8 Κινητική θεωρία των αερίων Το αποτέλεσμα της εφαρμογής της στατιστικής μηχανικής στα αέρια αποτελεί το αντικείμενο της κινητικής θεωρίας των αερίων. Οι μέθοδοι που χρησιμοποιεί η κινητική θεωρία είναι οι γενικές μέθοδοι της στατιστικής φυσικής που συνδυάζει τους νόμους της κλασικής μηχανικής με τους νόμους της θεωρίας των πιθανοτήτων. Το ιδανικό αέριο Από μακροσκοπικής άποψης το ιδανικό αέριο είναι αυτό που υπακούει στην (καταστατική) εξίσωση nr : πίεση, : όγκος, R: σταθερά, n: αριθμός mol (μάζα), : (απόλυτη) θερμοκρασία Το ιδανικό αέριο Μικροσκοπικά, οι παραδοχές της κινητικής θεωρίας για το μοντέλο του ιδανικού αερίου είναι:. Το πλήθος των μορίων είναι πολύ μεγάλο.. Τα μόρια του είναι σφαιρικές σημειακές μάζες χωρίς εσωτερική δομή. 3. Κατά την κίνηση και κατά την κρούση των μορίων ισχύουν οι νόμοι της κλασικής μηχανικής. 4. Όλες οι κρούσεις μεταξύ των μορίων αλλά και αυτές μεταξύ των μορίων και των τοιχωμάτων του δοχείου θεωρούνται απολύτως ελαστικές. 5. Η διάρκεια κάθε κρούσης είναι αμελητέα. 6. Δυνάμεις στα μόρια ασκούνται μόνο στη διάρκεια των κρούσεων. Άρα, μεταξύ των κρούσεων η κίνηση είναι ευθύγραμμη ομαλή. 7. Τα μόρια του αερίου βρίσκονται σε διαρκή κίνηση και όλες οι κατευθύνσεις είναι ισοπίθανες. 8. Ο όγκος κάθε μορίου χωριστά είναι αμελητέος σε σχέση με τον όγκο που καταλαμβάνει το αέριο. 9. Η κινητική ενέργεια κατανέμεται το ίδιο σε όλες τις δυνατές κινήσεις (βαθμούς ελευθερίας) του μορίου. Πραγματικά αέρια Ένα πραγματικό αέριο αποτελείται από μόρια που: Έχουν εσωτερική δομή Δεν είναι σφαιρικά Καταλαμβάνουν όγκο Αλληλεπιδρούν μεταξύ τους 3 3 Φυσικός Ραδιοηλεκτρολόγος (MSc)

23 Φυσική Προσανατολισμού Β Λυκείου 0//04 Πραγματικά αέρια Ένα πραγματικό αέριο συμπεριφέρεται ιδανικά όταν βρίσκεται μακριά από τις συνθήκες υγροποίησής του: Χαμηλή πίεση Μικρή πυκνότητα Σχετικά υψηλή θερμοκρασία Πραγματικά αέρια Ο J. an der Waals πρότεινε τον 9 ο αιώνα μια καταστατική εξίσωση για τα πραγματικά αέρια: na nb nr a, b : χαρακτηριστικές σταθερές του κάθε αερίου n a/ : ενδοπίεση λόγω αλληλεπίδρασης των μορίων. nb : σύνογκος λόγω του όγκου των μορίων Πίεση ιδανικού αερίου Πίεση ιδανικού αερίου Σύμφωνα με την κινητική θεωρία, η πίεση ενός αερίου οφείλεται στις συγκρούσεις των μορίων του αερίου (λόγω της τυχαίας / άτακτης κίνησής τους) πάνω στα τοιχώματα του δοχείου που περιέχει το αέριο. Αν: =όγκος δοχείου Ν = αριθμός μορίων m 0 = μάζα ενός μορίου. Αποδεικνύεται ότι 3 m0 Όπου η μέση τιμή των τετραγώνων των ταχυτήτων των μορίων Πίεση ιδανικού αερίου Η μάζα (m) του αερίου είναι m m 0 Η μέση κινητική ενέργεια Για Ν μόρια, από τον ορισμό της μέσης τιμής, θα έχουμε για τη (μέση) κινητική ενέργεια: Άρα η πίεση γίνεται: m0 m 3 3 K m m K j m0 j 0 j 0 j j j Και συνεπώς: m 3 3 K KK... K m0 m0... m0 m0... m Φυσικός Ραδιοηλεκτρολόγος (MSc) 3

24 Φυσική Προσανατολισμού Β Λυκείου 0//04 Η μέση κινητική ενέργεια m0 Από τη σχέση 3 έχουμε: m m m0 K 3 Η μέση κινητική ενέργεια Χρησιμοποιώντας και την καταστατική εξίσωση έχουμε: 3 nr K nr K R 3 K R K k Η μέση κινητική ενέργεια Τελικά λοιπόν: 3 K k K 3 k Δηλαδή η μέση κινητική ενέργεια εξαρτάται μόνο από τη θερμοκρασία και όχι από τη μάζα των μορίων. Η μέση κινητική ενέργεια 3 K k 0 K 0 Παρατηρήσεις:. Για δηλαδή στο απόλυτο μηδέν τα μόρια ηρεμούν?. Αν τοποθετήσουμε ένα δοχείο με ιδανικό αέριο σ ένα κινούμενο όχημα, η θερμοκρασία του αερίου θα αυξηθεί? 4 4 Η ενεργός ταχύτητα Από τη σχέση 3 K k έχουμε: 3 k m0 k 3 m Εξ ορισμού: 3k m 0 0 Η ενεργός ταχύτητα Η σχέση 3k m Όπου Μ = γραμμομοριακή μάζα. 0 παίρνει μια πιο χρήσιμη μορφή: R 3 3k 3R 3R m m m M Φυσικός Ραδιοηλεκτρολόγος (MSc) 4

25 Φυσική Προσανατολισμού Β Λυκείου 0//04 est: Πέμπτη, 0 Νοεμβρίου 04. Να δείξετε ότι η πίεση δίνεται από τη σχέση:. Η μέση κινητική ενέργεια δίνεται από την: 3. Η ενεργός ταχύτητα είναι: Διάρκεια: 5 min. Καλή επιτυχία. 3 K m0 3k m 0 Ασκήσεις: 0//04. Μέσα σε δοχείο όγκου 0 L περιέχονται,0 0 3 μόρια ιδανικού αερίου. Αν η ασκούμενη πίεση είναι,0 0 5 Pa, να βρεθεί η μέση κινητική ενέργεια των μορίων του αερίου.. Μια ποσότητα αερίου που έχει όγκο = 5 L θερμαίνεται υπό σταθερή πίεση. Αν η ενεργός ταχύτητα των μορίων του διπλασιάστηκε, να βρείτε τον τελικό όγκο του αερίου Ασκήσεις: 0//04 3. Σε δοχείο όγκου L περιέχεται ήλιον (He) υπό θερμοκρασία 300 K και πίεση 0 - /m.. Πόσα μόρια περιέχονται στο δοχείο;. Πόση είναι η ενεργός ταχύτητας; 3. Συμπιέζουμε το αέριο ώστε ο όγκος του να γίνει L. Πόση θα είναι η νέα ενεργός ταχύτητα, αν η συμπίεση γίνει: i. Με σταθερή πίεση. ii. Με σταθερή θερμοκρασία. = μόρια/mol, R = 8,34 J mol - K -, M He = 4 Βαθμοί ελευθερίας Στη μηχανική βαθμοί ελευθερίας είναι ο ελάχιστος αριθμός των ανεξάρτητων μεταβλητών που καθορίζουν τη θέση ενός σώματος. Στη θερμοδυναμική είναι ο ελάχιστος αριθμός των ανεξάρτητων μεταβλητών που καθορίζουν την ενέργεια ενός σωματιδίου (μορίου) Βαθμοί ελευθερίας m0 Για την απόδειξη της σχέσης 3 δεχθήκαμε τρεις δυνατές κινήσεις των μορίων (x, y, z) και μάλιστα ισοπίθανες: Ισοκατανομή της ενέργειας Σύμφωνα με το θεώρημα ισοκατανομής της ενέργειας, σε κάθε έναν από τους f βαθμούς ελευθερίας, αποδίδεται (μέση) ενέργεια k/. K m0 m0x m0y m0z k k k 3 k Άρα: K k k... k f k f έ Φυσικός Ραδιοηλεκτρολόγος (MSc) 5

26 Φυσική Προσανατολισμού Β Λυκείου 0//04 Ισοκατανομή της ενέργειας Είδη αερίων Τα άτομα θεωρούνται σημειακά. Μονοατομικά αέρια: Εκτελούν μόνο μεταφορική κίνηση. Άρα : f Είδη αερίων Διατομικά αέρια: Με σταθερή σύνδεση ατόμων: Μεταφορική κίνηση: f 3 Περιστροφική κίνηση: (ως προς τον άξονα που διέρχεται από τα άτομα η ροπή αδράνειας είναι μηδέν. Άρα: f 35 f Είδη αερίων Διατομικά αέρια: Με χαλαρή σύνδεση ατόμων: Δυναμική ενέργεια ταλάντωσης: Κινητική ενέργεια ταλάντωσης: Άρα: f 57 f f Είδη αερίων Ιδανικό vs πραγματικό αέριο Τριατομικά αέρια: Συνήθως θεωρούμε : Μεταφορική κίνηση: Περιστροφική κίνηση: f 336 f 3 f 3 Η ατομικότητα και το είδος των δεσμών επιδρούν όπως θα δούμε αργότερα στο λόγο των γραμμομοριακών ειδικών θερμοτήτων (γ). C 5 Για ιδανικό αέριο: C 3 Για πραγματικό αέριο: C f C f Φυσικός Ραδιοηλεκτρολόγος (MSc) 6

27 Φυσική Προσανατολισμού Β Λυκείου 0//04 Κατανομή Maxwell oltzmann Κατανομή Maxwell oltzmann Επειδή δεν υπάρχει τρόπος καθορισμού των ταχυτήτων των μορίων, δεχόμαστε ότι αυτές καλύπτουν μια περιοχή από το μηδέν μέχρι το άπειρο. Με τη στατιστική μηχανική μπορούμε να υπολογίσουμε το ποσοστό των μορίων που έχουν ταχύτητες μέσα σε μια ορισμένη περιοχή τιμών Κατανομή Maxwell oltzmann Σύμφωνα με την κατανομή Maxwell oltzmann ο αριθμός των μορίων (d) που έχουν ταχύτητες μεταξύ υ και υ+dυείναι: Όπου d f d Κατανομή Maxwell oltzmann Το ποσοστό των μορίων με ταχύτητες στο διάστημα υ και υ+dυ είναι d/ν. Είναι φανερό πως ο λόγος d/ν μας δίνει την πιθανότητα να βρούμε ένα μόριο με ταχύτητα διάστημα υ και υ+dυ 3/ m0 m0 k f 4 e k Κατανομή Maxwell oltzmann Από τι εξαρτάται η κατανομή των ταχυτήτων? Κατανομή Maxwell oltzmann 3/ m0 f 4 e k m0 k f 3/ m0 m0 k 4 k e 6 6 Φυσικός Ραδιοηλεκτρολόγος (MSc) 7

28 0 Φυσική Προσανατολισμού Β Λυκείου 0//04 Κατανομή Maxwell oltzmann Η καμπύλη τείνει ασυμπτωτικά προς τον άξονα των ταχυτήτων για μεγάλες ταχύτητες αφού δεν υπάρχει ανώτερο όριο ταχύτητας. Κατανομή Maxwell oltzmann 3/ m 0 f 4 e k m k Αυτός είναι και ο λόγος της ασυμμετρίας της καμπύλης. υ 0 Το εμβαδό που περικλείεται από την καμπύλη και τον άξονα των ταχυτήτων ισούται με τον συνολικό αριθμό των μορίων. Το γραμμοσκιασμένο εμβαδό αντιστοιχεί στο ποσοστό των μορίων που έχουν ταχύτητες μικρότερες ή ίσες με υ Κατανομή Maxwell oltzmann Με τον γνωστό τρόπο αναζήτησης ακρότατων τιμών βρίσκουμε πως η πιθανότερη ταχύτητα είναι: max k m 0 Κατανομή Maxwell oltzmann 3/ m0 f 4 e k m0 k Επίσης, η ενεργός ταχύτητα: 3 max Και η μέση ταχύτητα: max υ max <υ> υ εν Κατανομή Maxwell oltzmann Για Τ > Τ η καμπύλη μετατοπίζεται δεξιά. Άρα ο αριθμός των μορίων που έχουν ταχύτητες μεγαλύτερες από μια συγκεκριμένη τιμή αυξάνεται. Τ Τ > Τ Κατανομή Maxwell oltzmann Η πιθανότερη ταχύτητα αυξάνεται, όμως μειώνεται το ποσοστό των μορίων που έχουν αυτή τη ταχύτητα. max k m 0 Τ Τ > Τ Φυσικός Ραδιοηλεκτρολόγος (MSc) 8

29 Φυσική Προσανατολισμού Β Λυκείου 0//04 Κατανομή Maxwell oltzmann Κατανομή Maxwell oltzmann Η πιθανότερη (ΜΒ) (ΜΒ) < (ΜΒ) Ο αριθμός των μορίων που έχουν ταχύτητες μεγαλύτερες από κάποια συγκεκριμένη τιμή είναι μεγαλύτερος στο αέριο με το μικρότερο ΜΒ. ταχύτητα μειώνεται με αύξηση του ΜΒ, αυξάνεται όμως το ποσοστό των μορίων που έχουν αυτή την ταχύτητα. (ΜΒ) (ΜΒ) < (ΜΒ) Φυσικός Ραδιοηλεκτρολόγος (MSc) 9

Φυσική Προσανατολισμού Β Λυκείου 20/11/2014

Φυσική Προσανατολισμού Β Λυκείου 20/11/2014 ΓΕΝΙΚΗ ΦΥΣΙΚΗ Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Νοέμβριος 14 III. Χρήσιμες έννοιες 1. Τυπολόγιο. Πίεση 3. Χρήσιμοι ορισμοί 4. Στοιχεία στατιστικής I. Εισαγωγή στη Θερμοδυναμική 1. Σύστημα - περιβάλλον.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης

Επανάληψη των Κεφαλαίων 1 και 2 Φυσικής Γ Έσπερινού Κατεύθυνσης Επανάληψη των Κεφαλαίων 1 και Φυσικής Γ Έσπερινού Κατεύθυνσης Φυσικά µεγέθη, µονάδες µετρήσεως (S.I) και µετατροπές P: Η πίεση ενός αερίου σε N/m (1atm=1,013 10 5 N/m ). : Ο όγκος τουαερίου σε m 3 (1m

Διαβάστε περισσότερα

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15949 Ποσότητα ιδανικού αέριου ίση με /R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «Κινητική Θεωρία των Αερίων» ο κεφάλαιο: «O 1 ος θερµοδυναµικός νόµος» ΘΕΜΑ 1 Ο 1Α Ερωτήσεις πολλαπλής επιλογής. Σηµειώστε τη σωστή από τις προτάσεις που ακολουθούν. 1) Κατά την

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 103 Α. ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1. Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο ακόλουθο διάγραμμα P-V. α. Αν δίνονται Q ΑΒΓ

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΚΑΙ ο : 1. ΝΟΜΟΣ ΤΟΥ oyle:.=σταθ. για Τ =σταθ. για δύο καταστάσεις Α και Β : Α. Α = Β. Β (α)ισόθερμη εκτόνωση:αύξηση όγκου > και μείωση της πίεσης

Διαβάστε περισσότερα

Προσανατολισμού Θερμοδυναμική

Προσανατολισμού Θερμοδυναμική ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 60 Ον/μο:.. Β Λυκείου Ύλη: Κινητική θεωρία αερίων Προσανατολισμού Θερμοδυναμική 8-2-2015 Θέμα 1 ο : 1. Η απόλυτη θερμοκρασία ορισμένης ποσότητας αερίου διπλασιάζεται υπό σταθερό όγκο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Β Λυκείου Οκτώβριος 01 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να επιλέξετε την σωστή απάντηση. κατεύθυνσης 1. Η καταστατική εξίσωση των ιδανικών αερίων εφαρμόζεται και στα πραγματικά

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

Διαγώνισμα B Λυκείου Σάββατο 09 Μαρτίου 2019

Διαγώνισμα B Λυκείου Σάββατο 09 Μαρτίου 2019 Διαγώνισμα B Λυκείου Σάββατο 09 Μαρτίου 019 Διάρκεια Εξέτασης ώρες Ονοματεπώνυμο. Αξιολόγηση : Θέμα Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 1--015 1. Ορισμένη ποσότητα ιδανικού αερίου υπόκειται σε μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία του παραμένει σταθερή, ενώ η πίεση του

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Δ ΘΕΜΑΤΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ» ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 1. ΘΕΜΑ Δ Ορισμένη

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10) Θερμοδυναμική 1 1 Θερμοδυναμική 11 Τυπολόγιο Θερμοδυναμικής Πίνακας 1: Οι Μεταβολές Συνοπτικά Μεταβολή Q, W, ΔU Παρατηρήσεις Ισόθερμη Μεταβολή Νόμος oyle = σταθερό (1) 1 1 = 2 2 (2) Q = nrt ln ( 2 W =

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 16111 Στο πιο κάτω διάγραμμα παριστάνονται τρεις περιπτώσεις Α, Β και Γ αντιστρεπτών μεταβολών τις οποίες

Διαβάστε περισσότερα

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10)

Μεταβολή Q, W, ΔU Παρατηρήσεις (3) ) Q = nrt ln V 1. W = Q = nrt ln U = 0 (5). Q = nc V T (8) W = 0 (9) U = nc V T (10) Θερμοδυναμική 1 1 Θερμοδυναμική 11 Τυπολόγιο Θερμοδυναμικής Πίνακας 1: Οι Μεταβολές Συνοπτικά Μεταβολή Q, W, ΔU Παρατηρήσεις Ισόθερμη Μεταβολή Νόμος oyle = σταθερό (1) 1 1 = 2 2 (2) Q = nrt ln ( 2 W =

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23 ΝΟΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Για τα έργα και που παράγει το αέριο κατά τις διαδρομές και, αντίστοιχα, ισχύει η σχέση: α. β. γ. δ. Μονάδες 5. p A B O V

Για τα έργα και που παράγει το αέριο κατά τις διαδρομές και, αντίστοιχα, ισχύει η σχέση: α. β. γ. δ. Μονάδες 5. p A B O V ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ - Β ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 2 1. Β.2 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση 1 atm και θερμοκρασία 27 C). Το μπαλόνι με κάποιο τρόπο ανεβαίνει σε

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: νόμοι αερίων, θερμοδυναμική) ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1 4 να γράψετε στο

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

P,V PV=nRT : (p), ) ) ) :

P,V PV=nRT :     (p), ) ) ) : Εισαγωγή: ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2017

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 217 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5)

α. 0 β. mωr/2 γ. mωr δ. 2mωR (Μονάδες 5) γ) στην ισόθερμη εκτόνωση δ) στην ισόχωρη ψύξη (Μονάδες 5) ΜΑΘΗΜΑ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λαμπρος ΗΜΕΡΟΜΗΝΙΑ 5 - - 07 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ ο Α. Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Μικρό σώμα μάζας m εκτελεί

Διαβάστε περισσότερα

P = 1 3 Nm V u2 ή P = 1 3 ΦΥΣΙΚΗ (ΚΑΤΕΥΘΥΝΣΗ Β ΛΥΚΕΙΟΥ) ΤΥΠΟΛΟΓΙΟ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ Καταστατική Εξίσωση Αερίων PV = nrt Nm u V εν PV = m M r RT P = drt M r Κινητική Θεωρία 2 ή P = 1 3 du2 ή P = 1 du 3 εν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑ 4 ΘΕΜΑ 4 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15984 Ποσότητα μονατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (ρ0, V0, To). Το αέριο εκτελεί αρχικά ισόθερμη αντιστρεπτή μεταβολή

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Β ΛΥΚΕΙΟΥ 15 / 04 / 2018

ΦΥΣΙΚΗ Ο.Π Β ΛΥΚΕΙΟΥ 15 / 04 / 2018 Β ΛΥΚΕΙΟΥ 1 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Ένα μικρό σώμα εκτελεί ομαλή κυκλική κίνηση ακτίνας R. Η σχέση που συνδέει το μέτρο της γωνιακής ταχύτητας του σώματος με τη συχνότητα της κυκλικής του κίνησης

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 82 ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1. Η πίεση του αέρα στα λάστιχα ενός ακίνητου αυτοκινήτου με θερμοκρασία θ 1 =7 ο C είναι P 1 =3 atm. Κατά την

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λάμπρος ΗΜΕΡΟΜΗΝΙΑ 4- - 08 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Η μεταβολή

Διαβάστε περισσότερα

P 1 V 1 = σταθ. P 2 V 2 = σταθ.

P 1 V 1 = σταθ. P 2 V 2 = σταθ. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ 83 Την κατάσταση ενός αερίου μέσα σε ένα δοχείο μπορούμε να την κατανοήσουμε, άρα και να την περιγράψουμε πλήρως, αν γνωρίζουμε τις τιμές των παραμέτρων εκείνων που επηρεάζουν την συμπεριφορά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής κατεύθυνσης Β Λυκείου (3/11/2013)

Διαγώνισμα Φυσικής κατεύθυνσης Β Λυκείου (3/11/2013) Διαγώνισμα Φυσικής κατεύθυνσης Β Λυκείου (//0) Ονοματεπώνυμο εξεταζόμενου: Καμιά άλλη σημείωση δεν επιτρέπεται στα θέματα τα οποία θα παραδώσετε μαζί με το γραπτό σας. Έτσι οι απαντήσεις όλων των θεμάτων

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ Α Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για τη μεταβολή που παθαίνει ένα ιδανικό αέριο

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ 2 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΠΟ ΤΗ ΒΕΡΩΝΗ ΕΙΡΗΝΗ ΜΗΧΑΝΙΚΗ Ο κλάδος της Φυσικής που εξετάζει μόνο όσες ενεργειακές ανταλλαγές γίνονται με την εκτέλεση έργου. ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ο κλάδος της Φυσικής που εξετάζει

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΑΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Κατά την αδιαβατική αντιστρεπτή µεταβολή ποσότητας αερίου ισχύει η σχέση P γ = σταθερό. Ο αριθµός γ: α) εξαρτάται από την ατοµικότητα του αερίου και είναι γ < 1 β) εξαρτάται

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΑΕΡΙΑ 1) Η αντιστρεπτή θερµοδυναµική µεταβολή ΑΒ που παρουσιάζεται στο διάγραµµα πίεσης όγκου (P V) του σχήµατος περιγράφει: α. ισόθερµη εκτόνωση β. ισόχωρη ψύξη γ. ισοβαρή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ- ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ημερομηνία: 15/2/15 Διάρκεια διαγωνίσματος: 18 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Ο Στις

Διαβάστε περισσότερα

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου:

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου: ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.-ΚΟΡΚΙΔΑΚΗΣ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε

Διαβάστε περισσότερα

ΑΕΡΙΑ ΚΑΤ ΚΑ Α Τ ΣΤ ΑΣΗ

ΑΕΡΙΑ ΚΑΤ ΚΑ Α Τ ΣΤ ΑΣΗ ΑΕΡΙΑ ΚΑΤΑΣΤΑΣΗ H αποστολή Pthfid Pathfinder το 1997 με το μικρό όχημα της ("Sojourner") ") ήταν δραστήρια στην Αρειανή επιφάνεια για αρκετούς μήνες, επιστρέφοντας μια μεγάλη συλλογή στοιχείων για το Αρειανό

Διαβάστε περισσότερα

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται.

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται. Λυμένα παραδείγματα 1.Οι ισόθερμες καμπύλες σε δυο ποσοτήτων ιδανικού αερίου, n 1 και n 2 mol, στην ίδια θερμοκρασία Τ φαίνονται στο διπλανό διάγραμμα. Να αποδείξετε ότι είναι n 2 > n 1. ΑΠΑΝΤΗΣΗ: Παίρνουμε

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου-

Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου- Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου- ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 3-0- ΣΕΙΡΑ Α ΔΙΑΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστ

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

Ημερομηνία: Παρασκευή 05 Ιανουαρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Παρασκευή 05 Ιανουαρίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ //07 ΕΩΣ 05/0/08 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 05 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Φυσική. Θετικής & Τεχνολογικής Κατεύθυνσης. Ενιαίου Λυκείου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Φυσική. Θετικής & Τεχνολογικής Κατεύθυνσης. Ενιαίου Λυκείου MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Ενιαίου Λυκείου Φυσική Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Περιεχόμενα * ΚΕΦΑΛΑΙΟ : Κινητική Θεωρία Αέριων ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης Κριτήριο Αξιολόγησης - 26 Ερωτήσεις Θεωρίας Κεφ. 4 ο ΑΡΧΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ - ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης: Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Σε μια αδιαβατική εκτόνωση

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικού Προσανατολισμού Σχ. έτος Επαναληπτικό Διαγώνισμα Φυσικής Β Λυκείου Θετικού Προσανατολισμού.

Φυσική Β Λυκείου Θετικού Προσανατολισμού Σχ. έτος Επαναληπτικό Διαγώνισμα Φυσικής Β Λυκείου Θετικού Προσανατολισμού. Επαναληπτικό Διαγώνισμα Φυσικής Β Λυκείου Θετικού Προσανατολισμού Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση που συμπληρώνει σωστά την πρόταση (4x5=20 μονάδες) 1.1. Για ένα

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΙΣΟΧΩΡΗ ΜΕΤΑΒΟΛΗ

ΜΕΤΑΒΟΛΕΣ ΙΣΟΧΩΡΗ ΜΕΤΑΒΟΛΗ Δοχείο περιέχει ιδανικό αέριο υπό πίεση Ρ 1 =2atm και θερμοκρασία Τ 1 =300Κ. Αφαιρούμε με κάποιο τρόπο από το δοχείο 0,8Kg αερίου οπότε η πίεση στο δοχείο γίνεται Ρ 2 =0,95atm και η θερμοκρασία Τ 2 =285Κ.

Διαβάστε περισσότερα

Φυσική Κατεύθυνσης Β Λυκείου.

Φυσική Κατεύθυνσης Β Λυκείου. Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α

ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α ΔΙΑΓΩΝΙΣΜΑ ΙΔΑΝΙΚΑ ΑΕΡΙΑ/ΘΕΡΜΟΔΥΝΑΜΙΚΗ Φυσική Προσανατολισμού Β Λυκείου Κυριακή 6 Μαρτίου 2016 Θέμα Α Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό

Διαβάστε περισσότερα

2 mol ιδανικού αερίου, η οποία

2 mol ιδανικού αερίου, η οποία ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΓΑΣΙΑ 7 ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Μια μηχανή Carnot λειτουργεί μεταξύ των θερμοκρασιών Τ h =400Κ και Τ c =300Κ. Αν στη διάρκεια ενός κύκλου, η μηχανή αυτή απορροφά

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2019

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ / ΤΜΗΜΑ : Β ΛΥΚΕΙΟΥ ΔΙΑΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 219 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Κυκλική Κίνηση-Ορµή-Θερµοδυναµική

Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Κυκλική Κίνηση-Ορµή-Θερµοδυναµική Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Κυκλική Κίνηση-Ορµή-Θερµοδυναµική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π B ΛΥΚΕΙΟΥ 15 / 04 / ΘΕΜΑ Α Α1. α, Α2. β, Α3. δ, Α4. α, Α5. γ.

ΦΥΣΙΚΗ Ο.Π B ΛΥΚΕΙΟΥ 15 / 04 / ΘΕΜΑ Α Α1. α, Α2. β, Α3. δ, Α4. α, Α5. γ. B ΛΥΚΕΙΟΥ 1 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. α, Α2. β, Α3. δ, Α4. α, Α. γ. ΘΕΜΑ Β B1. ΜΕΤΑΒΟΛΗ Q ΔU W ΑΒ +3600J 3600J Μονάδες 1 0 Μονάδες 1 ΒΓ 0 Μονάδες 1-3600J Μονάδες 1 3600J Μονάδες 1 ΓΑ -1680J Μονάδες

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 30// ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις Α.- Α.4

Διαβάστε περισσότερα

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια Ενδεικτικές Λύσεις Θέµα Α Α.1 Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί ισοβαρή ϑέρµανση κατά την διάρκεια της οποίας η ϑερµοκρασία

Διαβάστε περισσότερα

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΠΑΝΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1&2 2001 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 2001 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ημερομηνία: Σάββατο 0 Απριλίου 09 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή

Κατά την αδιαβατική αντιστρεπτή µεταβολή ενός ιδανικού αερίου, η πίεση του αερίου αυξάνεται. Στην περίπτωση αυτή Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Θερμοδυναμική Ονοματεπώνυμο Μαθητή: Ημερομηνία: 20-02-2017 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1.

ΠΑΡΑΔΕΙΓΜΑ Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1. ΠΑΡΑΔΕΙΓΜΑ Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1. Ποιος είναι ο λόγος των μέσων μεταφορικών κινητικών ενεργειών

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

2. Ασκήσεις Θερµοδυναµικής

2. Ασκήσεις Θερµοδυναµικής 1) Πολλά Έργα σε εποχές αν-εργείας. 2. Ασκήσεις ς Α) ίνεται η µεταβολή του πρώτου σχήµατος. Να υπολογιστούν τα έργα σε κάθε επιµέρους µεταβολή, καθώς και το συνολικό έργο στη διάρκεια του κύκλου. Β) ίνεται

Διαβάστε περισσότερα