ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α"

Transcript

1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α Α ΟΜΑ Α Πιθανότητες: 1. Να βρείτε τον δ.χ. των παρακάτω πειραµάτων τύχης. ι) Ρίχνουµε ένα νόµισµα και σταµατάµε όταν έρθουν 3 κεφαλές και γράµµατα ιι) Ρίχνουµε διαδοχικά ένα νόµισµα και ένα ζάρι ιιι) Ρίχνουµε ένα άσπρο και ένα κόκκινο ζάρι ιv) Από µία κάλπη που περιέχει ελαττωµατικά και καλά CD παίρνουµε CD µέχρι να πάρουµε καλό και µέχρι 3 φορές. Έστω ένα π.τ. µε δ.χ. Ω{ 0,1,,3,4,5,6} και τα ενδεχόµενα Α{ 0,3,5,6} και Β{ 1,5,4}. Να βρείτε τα παρακάτω καθώς και τις πιθανότητές τους. A, B, A B, ( A B), A B, A B, A B, ( A B) ( B A) 1 3. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύουν Ρ(Α )1/3, P( A B) 5/ 6 και Ρ(Β)/5. Να βρείτε τις πιθανότητες: Ρ(Α), P( A B), Ρ(Α-Β) 4. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύουν Ρ(Α )/3, P( A B) 1/ 6 και Ρ(Β)/5. Να βρείτε τις πιθανότητες των ενδεχοµένων: ι) να πραγµατοποιηθεί ένα τουλάχιστον από τα Α, Β. ιι) να µην πραγµατοποιηθεί κανένα από τα Α, Β ιιι) να πραγµατοποιηθεί µόνο το Α. iv) να µην πραγµατοποιηθεί το Β και να πραγµατοποιηθεί το Α. v) να πραγµατοποιηθεί µόνο ένα από τα Α, Β εφαρµογή της παραπάνω άσκησης: Σε µία µάντρα µεταχειρισµένων αυτοκινήτων τα /3 δεν έχουν τζάµια, τα /5 έχουν λάστιχα και το 1/6 έχουν λάστιχα και τζάµια.. Επιλογή ενός αυτοκινήτου στην τύχη. Σε ένα λύκειο τα /3 των αγοριών δεν παίζουν ποδόσφαιρο /5 παίζουν µπάσκετ και το 1/6 παίζουν και τα δύο αθλήµατα. Επιλογή ενός αγοριού από το λύκειο στην τύχη. Σε ένα τµήµα λυκείου τα /3 των µαθητών δεν έγραψαν πάνω από τη βάση στα Μαθηµατικά, τα /5 αρίστευσαν στα Αρχαία και το 1/6 έγραψε πάνω από τη βάση στα Μαθηµατικά και αρίστευσε στα Αρχαία. Επιλογή ενός µαθητή από το λύκειο στην τύχη. 5. Έστω ο δ.χ. Ω{ ω 1, ω, ω 3, ω 4 } ενός π.τ. και τα ενδεχόµενα Α{ ω 1, ω } και Β{ ω, ω 3, ω 4 } µε Ρ(Α)3/8, Ρ(Β)7/8 και Ρ(ω 3 )1/. να βρείτε τις πιθανότητες : Ρ(ω 1 ), Ρ(ω ), Ρ(ω 4 )

2 6. Έστω ένα π.τ. µε δ.χ. Ω{ -0, -19, -18,, 0}. Να γράψετε µε αναγραφή τα παρακάτω ενδεχόµενα του Ω και να βρείτε την πιθανότητα να πραγµατοποιηθεί καθένα από αυτά. Α{ χ Ω / x 5 10 } Β{ χ Ω / x 5 > 10 } Γ{ λ Ω / η εξίσωση χ -λχ-10 να είναι αδύνατη στο R} { λ Ω / η εξίσωση χ -λχ-10 να έχει δύο πραγµατικές ρίζες} Ε{χ Ω / χ-5>0 και 3χ<15+4χ } Ζ{ χ Ω / χ D f όπου f x ( ) x 16 } Η{ χ Ω / x 3 } 1 Θ{ χ Ω / χ D f όπου } Ι{ χ Ω / χ πολλαπλάσιο του και του 3 } x + 4 Ακολουθίες 1. Στις ακολουθίες : (αν):, 5/, 3, και (β ν ): -, 4, -8, να βρείτε : τη διαφορά ω και το λόγο λ, τον νοστό όρο, το άθροισµα των 10 πρώτων όρων, τον όρο α ν που ισούται µε 1, τον όρο β ν που ισούται µε 64, το άθροισµα +5/ το άθροισµα , το άθροισµα των όρων της (αν) µεταξύ του 10 ου και του 1 ου όρου της. 3. Να βρείτε την Α.Π. µε α 10-5 και α Να βρείτε τη Γ.Π. µε α 4 15 και α 10 15/64 5. Να βρείτε το χ ώστε: α) οι χ-4, χ+1, 3χ-19 να είναι διαδοχικοί όροι µιας Α.Π. Β) οι -, χ, χ-4 να είναι διαδοχικοί όροι σε Γ.Π. Εξισώσεις ανισώσεις απόλυτα ρίζες - συναρτήσεις 1. Να γίνουν οι πράξεις : (χ-) - (χ+1)(χ-1) +χ(χ-3). Να λύσετε τις εξισώσεις: α) χ 3-100χ0 β) χ +4χ 5 γ) (χ-)(χ+1) 3 +(-4χ+8)(χ+1)0 3. Αν η εξίσωση : (λ-)χκ+1 έχει άπειρες λύσεις ως προς χ, ν.δ.ο. η εξίσωση (3λ-6)χκ-3 δεν έχει λύσεις ως προς χ. 4. Να βρεθούν οι κοινές λύσεις των ανισώσεων x 1 x και χ< Αν - χ 4 και 1 ψ να βρεθεί η µέγιστη και η ελάχιστη τιµή της παράστασης : 1 χ-7ψ+5 α b 6. Αν 0 a b νδο... < 1+ a 1+ b 7. Αν 1<χ<3 να απλοποιήσετε την παράσταση: Α x x + x 5 + x 8. Να λύσετε τις εξισώσεις α) x +1 0 β) x + 4 x+ 1 γ) x 1 δ) x 1 x ε) x 4 + x x 0 στ) x 1+ x 9. Να λύσετε τις ανισώσεις α) d (x, 0) < β) d (x, 1) γ) x +5<0 δ) d (x+1, 3) < ε) 1 + x x 1 x 3 3

3 10. Να απλοποιηθούν οι ρίζες: ς 3 Α 3 4 ( 5), Β 46 5, Γ , Να δείξετε ότι τετραγωνική ρίζα του είναι ο αριθµός Να γίνουν οι πράξεις: Να αποδείξετε ότι: ( 8 3)( 18+ 1) Ν.δ.ο a) 16 b) Να λυθούν οι εξισώσεις x 5 43 x 7-3 x 6 56 x 8-4 x 5-3x 0 (3x-1) 5-3(3x-1) ) Να λυθούν οι εξισώσεις : α) 9χ -6χ+10 β) χ -5χ+60 γ) (x-1) +3 x 1-40 δ) x + ( 3 ) x 6 0 ε) χ 1-4χ Να βρείτε την εξίσωση µε ρίζες α) τους αριθµούς 3 και 5. β) τους αριθµούς χ 1 + και χ + όπου χ 1, χ ρίζες της εξίσωσης χ -5χ Να λυθούν οι ανισώσεις χ -5χ+6<0 9χ -6χ+1>0 χ -3χ+5<0 χ -4<0 χ +4>0 (χ-)(χ+1)<0 -χ +χ>0 19. Nα βρείτε την εξίσωση της ευθείας 1. που περνά από τα σηµεία: α) Α(1, -) και Β(,3) β) Α(,1) και Β(,-4) γ) Α(3,5) και Β(1,5). που έχει κλίση ¾ και περνά από το Α(1,4) 3. που σχηµατίζει γωνία 135 ο µε τον χ χ και τέµνει τν ψ ψ στο Α(0,) 4. που είναι // µε την ευθεία ψχ-1 και περνά από το Α(1,) 5. που περνά από τα σηµεία τοµής της f(x)χ -6χ+9 µε τους άξονες 0. ίνονται τα σηµεία Α(λ+3,λ) και Β(λ+1,3λ-). Να βρείτε το λ ώστε: α) το Α να βρίσκεται στον ηµιάξονα Οχ β) το Β να βρίσκεται στον ηµιάξονα Οψ γ) το Β να βρίσκεται στο 4 ο τεταρτηµόριο 1. Έστω f(χ)3χ-7 και g(χ) χ+4.να βρείτε ι) τα κοινά σηµεία της g µε τους άξονες ii) τα κοινά σηµεία των συναρτήσεων iιι) τα διαστήµατα του χ που η f βρίσκεται : α) πάνω από τη g β) κάτω από τη g γ) πάνω από τον χχ

4 . Στο παρακάτω σχήµα δίνεται η γραφική παράσταση δύο συναρτήσεων f, g. Ψ Να βρείτε τα κοινά σηµεία των δύο συναρτήσεων f g Να λύσετε την εξίσωση f(x)g(x)...1. Να λύσετε την ανίσωση f(x)>g(x) χ Να λύσετε την ανίσωση f(x) g(x) χ 3. Να συµπληρώσετε την φ(χ) ώστε να είναι άρτια και στη συνέχεια να σχεδιάσετε στο ίδιο σύστηµα την φ(χ) φ(χ) χ 0 χ 4. Να σχεδιάσετε τις γραµµές α)ψ-3χ+ β) ψ -3χ γ) ψ5/χ σε διαφορετικά συστήµατα αξόνων. (δεν είναι απαραίτητος ο πίνακας τιµών) 5. a) Αν f(x)x -5x+1, να βρείτε το f(3) και να εξετάσετε αν το σηµείο Α(1,) βρίσκεται στη γραφική παράσταση της f(x) b) Αν h(x)αχ-4, να βρείτε το α αν h()6 c) Να βρείτε τα κοινά σηµεία των φ(χ) χ 3 +χ -χ και σ(χ) χ 3

5 Β ΟΜΑ Α 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση η οποία και να υπολογιστεί. 5. Έστω οι ευθείες ε: ψ3(-λ )χ++7λ και δ: ψ(λ +)χ-5. Να βρείτε το λ ώστε ε//δ. 3. Να βρεθεί το λ ώστε το σύστηµα : ( χ-λψλ, λχ-ψ0 ) να έχει τη µοναδική λύση (χ ο,ψ ο ) (1,) 4. ίνεται το σύστηµα : (λ-1)χ+ψ3 και (λ +λ-)χ+λψλ+ α) να βρείτε τις τιµές του λ ώστε το σύστηµα να έχει µία µόνο λύση β) να βρείτε τη µοναδική λύση του συστήµατος όταν λ γ) να εξετάσετε αν υπάρχει τιµή του λ ώστε το σύστηµα να είναι αόριστο 5. α) Να δείξετε ότι οι ευθείες ε: λχ+ψ και δ: χ-λψ-1 τέµνονται για κάθε λεr και να βρεθεί το σηµείο τοµής τους (χ ο, ψ ο ). β) Να βρείτε το λ ώστε χ ο +ψ ο α) Να βρείτε το πρόσηµο του χ+5χ+7 για τις διάφορες τιµές του χ. β) Να βρείτε το Π.Ο. της f x x x x ( ) γ) Να λυθεί η εξίσωση [ + 3x 1] 7 7. α) Να βρεθεί το πρόσηµο του -3χ +6χ για τις διάφορες τιµές του χ β) να βρεθεί το Π.Ο. της 8 x x 3 γ) αν χε[0,] να λυθεί η εξίσωση : [( x 3) ] 3x + 6x + 3x 8. ίνονται οι ευθείες (ε): ψ(λ -1)χ +λ και (δ): ψ(-3λ-3)χ-. Α. να βρείτε το λ ώστε: α) (ε)//χ χ β) (δ)//(ε) γ) η (ε) να περνά από το σηµείοα(1,1) δ) αν 1<λ<1 και η (ε) τέµνει τον χ χ στο Β και τον ψ ψ στο Γ, τότε το εµβαδόν του τριγώνου ΟΒΓ να είναι τ.µ. Β. για λ0 να βρεθεί η απόσταση του Μ(,-1) από το σηµείο τοµής Κ των ε, δ Γ. να βρείτε την ευθεία που περνά από τα σηµεία Κ,Μ. να βρεθεί η ευθεία που περνά από το Α και σχηµατίζει µε τον χ χ γωνία 45 ο x 9. Έστω ανίσωση f(x) 1 x+ x x 1,να βρείτε το Π.Ο.,να απλοποιήσετε τον τύπο της και να λύσετε την 10. Έστω ( x 1) x 1+ α) να βρεθεί το Π.Ο. β) να βρείτε τα κοινά σηµεία της f µε την ευθεία ψ1 γ) ν.δ.ο. f(-x)f(x+)

6 δ) να λυθεί η ανίσωση f(-x)+f(x+)> 11. α) Να βρεθεί το πρόσηµο του χ +5χ-6 β) να βρεθεί το Π.Ο. της x 3 1 x + 5x x 1 γ) να λυθεί η εξίσωση ( ) x 4 1 δ) να λυθεί η εξίσωση ( ) 6 x x 4 1. Έστω οι συναρτήσεις f(x)x -3,g(x)5x-9 α) να βρείτε τα σηµεία τοµής τους µε τους άξονες β) να βρείτε τα σηµεία τοµής των f,g 6 γ) να βρείτε τα διαστήµατα που η C f είναι κάτω από τη C g 13. Αν χ 1,χ ρίζες της εξίσωσης χ -3χ-50 να βρεθεί η εξίσωση µε ρίζες τις: ρ 1 χ 1-4 και ρ χ Έστω η εξίσωση x x λ α) να βρεθεί το λ ώστε η εξίσωση να έχει δύο ρίζες χ 1,χ άνισες β) αν χ 1 χ να βρεθούν τα χ 1,χ,λ. 15. Έστω f x x + + x x ( ) ( 1)) 6 α) να βρείτε το Π.Ο. β) να βρείτε το πρόσηµο του χ -χ-6 για τις διάφορες τιµές του χ γ) να απλοποιηθεί ο τύπος της συνάρτησης δ) να λυθεί η εξίσωση f(x)-x Έστω ( x 1 ) + x 3 x 5 α) να βρεθεί το Π.Ο. β) να λυθεί η εξίσωση f(x)1 17. Μία βιοµηχανία παράγει χ µονάδες ενός προϊόντος ηµερησίως µε κέρδος σε εκατοντάδες ευρώ που δίνεται από τη συνάρτηση : f(x)-x +400x. α) να βρείτε πόσες µονάδες χ πρέπει να παράγει ώστε να έχει µέγιστο κέρδος και ποιο είναι το µέγιστο κέρδος. β) να παραστήσετε γραφικά τη συνάρτηση του ηµερησίου κέρδους. γ) να βρείτε µέχρι πόσες µονάδες χ το πολύ πρέπει να παράγει ηµερησίως ώστε να µην έχει ζηµιά 18. ίνεται η συνάρτηση f x t x tx ( ) ( 6) α) να λυθεί η εξίσωση f ( x ) 0 αν t 1 β) ν.δ.ο. για κάθε tε R η εξίσωση f ( x ) 0έχει δύο λύσεις γ) να βρείτε αν υπάρχει tε Rώστε η εξίσωση να έχει δύο ρίζες αντίθετες δ) να βρείτε αν υπάρχει tε Rώστε η εξίσωση να έχει δύο ρίζες αντίστροφες 19. ίνεται η ευθεία (ε) : ψ+5λχλ χ+3 α) αν το σηµείο Α(1,-1) ανήκει στην ευθεία να βρείτε το λ β) για τις τιµές του λ που βρήκατε στο α ερώτηµα: β 1 )ν.δ.ο. η (ε) ψ 1 4 χ+006

7 β )να βρείτε το κ ώστε η ευθεία (δ): ψ--κ 5χ να είναι παράλληλη στην (ε) Έστω f x x x ( ) α) Να βρεθεί το Π.Ο. β) Ν.δ.ο. ( f (5) + f ( ))( 13 6) [ f (3)] γ) Ν.δ.ο. f () 3 ( )(5+ ) 3 f (0) 1 f (0) + 1 δ) να βρείτε την εξίσωση που έχει ρίζες τους αριθµούς f(0)+1 και f(0)-1 1. α) Να γράψετε το χ +3χ- σαν γινόµενο δύο παραγόντων 1 4x 1 β) Να λύσετε την εξίσωση x 3x + 4x 1 + x +. Έστω η 6x x 9x 4 Να βρεθεί το Π.Ο., να απλοποιηθεί ο τύπος της και να λυθεί η ανίσωση 1 3. ίνεται η x+ + x x+ x Να βρείτε το Π.Ο., ν.δ.ο. είναι περιττή και να γράψετε τον τύπο της χωρίς τα απόλυτα. 4. Ένα πλοίο κινείται σε ευθεία γραµµή και οι συντεταγµένες του ως προς ένα ορθοκανονικό σύστηµα µε αρχή των αξόνων τον θάλαµο επιχειρήσεων του Υπουργείου Ναυτιλίας, είναι : (6t,8t+3), όπου t ο χρόνος σε ώρες από τη στιγµή της αναχώρησης του από το λιµάνι Λ. α) να βρείτε τη θέση του λιµανιού Λ β) να βρείτε την απόσταση του πλοίου από το λιµάνι µία ώρα µετά την αναχώρηση του ( η µονάδα µέτρησης στο σύστηµα είναι το µίλι) γ) να βρείτε την εξίσωση της ευθείας της πορείας του πλοίου 4 ε) αν η πορεία ενός άλλου πλοίου δίνεται από την εξίσωση ψ 14 3 x +, υπάρχει περίπτωση να συγκρουστούν τα πλοία; 5. Έστω η συνάρτηση f x α) να βρείτε το Π.Ο. της f(x) β) να βρείτε το ρ ώστε : ε//χ χ ( ) x 9 f (5) f ( 5) και η ευθεία (ε): ψ... x+ 7 ρ 1 γ) αν g(x) (λ-)χ + (µ-λ-f(3))χ + [f(4)] -κ, να βρείτε τους κ,λ, µ ώστε η g(x) να είναι i) σταθερή ii) ταυτοτική 6. ίνεται η εξίσωση (1): χ -(λ+)χ+λ-10,λεr. α) ν.δ.ο. έχει δύο άνισες ρίζες για κάθε λεr β) αν χ 1,χ ρίζες της (1),να βρεθεί το λ ώστε να ισχύει: (χ 1 + χ ) 3χ 1 χ +9

8 γ) αν λ να βρείτε εξίσωση µε ρίζες : ρ 1 1/ χ 1 και ρ 1/ χ 8 7. ίνεται το τριώνυµο φ(χ)(κ-λ-1)χ +(3λ-)χ+κ-3 Αν το φ(χ) έχει µοναδική ρίζα το 1 να αποδείξετε ότι κ και λ1 8. Έστω f(x)x -4x+3 Α) Να βρείτε το πρόσηµο της f(x) για τις διάφορες τιµές του χ Β) Αν χε[,3) και A Γ) Να λύσετε την ανίσωση Α< -1 ) Να αποδείξετε ότι x x x x 9 να αποδείξετε ότι [ f ( )] 19 f ( f (3)) 40 x A x Έστω 3 3 A ( 6 ) και Α) Να αποδείξετε ότι A 3 και B 1 3 Β) Να λύσετε την εξίσωση B( x 1) 4 3 Γ) Να σχεδιάσετε την ευθεία ψ ( B+ 3) x 3 B 11 A **. ίνονται οι ευθείες (ε): ψ(λ -λ)x+λ και (δ): ψ λ λ ( + + ) x Α) Να βρείτε το λ ώστε : ε // χ χ Β) Να εξετάστε αν υπάρχει λ<0 έτσι ώστε ε // δ Γ) Για λ- να βρείτε τα σηµεία τοµής (δ) µε τους άξονες και στη συνέχεια την απόσταση των παραπάνω σηµείων ) Να βρείτε τις τιµές του λ ώστε τα σηµεία Μ της ευθείας (δ) που έχουν τετµηµένη χ1 να βρίσκονται στο 1 ο τεταρτηµόριο των αξόνων 31. ίνεται η συνάρτηση f(x)x -x-1. Να βρείτε τα: f ( ) f (3), f ( x+ ), f ( α 1),, f ( f ()) f ( 3) 3. Έστω f(x)x 3 +kx. α) Να βρείτε το κ αν : f()4 β) Να λύσετε την εξίσωση : f(χ)0 γ) Να λύσετε την εξίσωση : f(χ-1) f(χ)0 δ) Να λύσετε την ανίσωση : f(χ)-8f(χ)<χ, στο (0, + ) 33. Έστω f(χ)(α -1)χ +(α-1)χ+3α Να βρείτε το α ώστε η f(χ) να είναι σταθερή και στη συνέχεια να βρείτε το f(8) και f(1956)

9 34. Έστω α x 1, x 1 4 α x β, x> 1 ι) Να βρείτε το πεδίο ορισµού της f ιι) Να βρείτε τα α,β ώστε f(0)+ f(1)0 και f()64 ιιι) Αν α4 και β0 να λύσετε την εξίσωση: f ( 1) x f (3/ ) 9 α x 4, x< Έστω x β 1 + α x, x 0 Αν η γραφική της παράσταση τέµνει τον χχ στο - και τον ψψ στο 3,να βρείτε ι) τα α και β ιι) τον τύπο της ιιι) το λ ώστε το σηµείο Α(λ, -)εc f 36. Ποιές από τις παρακάτω γραφικές παραστάσεις δεν είναι συναρτήσεις και γιατί; (µον 16) Α ψ Β ψ ψ Γ χ 0 χ χ 0 χ χ 0 χ ψ 0 x ψ Ε 0 χ Από αυτές που είναι συναρτήσεις να αντιστοιχίσετε τα γραφήµατά τους µε τους σωστούς τύπους α) x+ β) f(x) -x +x γ) f(x) x 3 -x

10 37. Στο παρακάτω σχήµα δίνονται οι γραφικές παραστάσεις έξι ευθειών. Να αντιστοιχίσετε την κάθε ευθεία στο σωστό της τύπο ΤΥΠΟΣ ΕΥΘΕΙΑΣ ε 1 ε ψ ε 3 ε 4 α : ψχ β : ψ - ε 5 γ : ψ χ-3 χ 0 χ δ : ψ ε : ψ-χ-5 στ : χ ε 6 ψ Ευθεία ε 1 ε ε 3 ε 4 ε 5 ε 6 Τύπος ευθείας 38. Στο παρακάτω σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης φ. Να συµπληρώσετε τη σωστή απάντηση στα παρακάτω 5 ψ χ χ ψ α) το πεδίο ορισµού της φ είναι το β) το σύνολο τιµών είναι το γ) οι ρίζες της συνάρτησης είναι οι. δ) φ(3). φ(0) φ(7).. ε) αν φ(α) τότε α.. στ) η εξίσωση φ(χ)4 έχει : µία - δύο - τρείς - ή τέσσερις λύσεις ; ζ) η λύση της ανίσωσης φ(χ)>0 είναι :. η) η λύση της ανίσωσης φ(χ) είναι :. θ) η φ είναι γν. αύξουσα στα διαστήµατα και γν φθίνουσα στα ι) η φ παρουσιάζει ελάχιστο στο χ. το.. και µέγιστο στο χ.. το.

11 39. ΓΕΝΙΚΗ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 η ίνονται οι συναρτήσεις f(x)x -4x+3, g(x)(x-1) +(x-)(x+), h(x)x +x-8 1. N.d.o. g(x)x -x-5. Να βρείτε τα σηµεία τοµής της f(x) µε τους άξονες 3. Να βρείτε το πρόσηµο της f(x) για τις διάφορες τιµές του x 4. Να βρείτε τα διαστήµατα του χ χ που η f(x) είναι πάνω από αυτόν. 5. Να βρείτε τα κοινά σηµεία των g kai h 6. Να βρείτε τα διαστήµατα του χ χ που η g είναι πάνω από την h. 7. Να βρείτε το κ ώστε η f(x) να περνά από το σηµείο Α(, 3κ-4). 8. Ν.δ.ο. η συνάρτηση t( x) x+ 5 είναι σταθερή για κάθε χ 1 x 1 9. Να λύσετε την εξίσωση 7+ 4x όταν 1<x< Ν.δ.ο. (1 + h( )) (4 g( )) 17 η. ψ f(x) (ε) χ χ -1 ψ Στο παραπάνω δίνεται η γραφική παράσταση µιας συνάρτησης f(x) και µιας ευθείας (ε) Αφού το µελετήσετε προσεκτικά, να απαντήσετε στα παρακάτω µε δικαιολόγηση. 1. να αποδείξετε ότι η εξίσωση της ευθείας (ε) είναι η : ψ x+. να υπολογίσετε το f(1) 3. να βρείτε τις ρίζες της f(x) 4. να λύσετε την ανίσωση : f(x)<0 5. να λύσετε την ανίσωση : f(x)<x+ 6. να βρείτε το σύνολο των λύσεων της εξίσωσης : f(x)4 7. να γράψετε τη µονοτονία της f(x) 8. να γράψετε το ακρότατο της f(x) 9. να γράψετε αν η f(x) είναι άρτια ή περιττή ή τίποτα από τα δύο.

12 40. ίνεται το τριώνυµο φ(χ)λχ (λ-1)χ + λ-1, λ 0 Α. Να βρείτε τη διακρίνουσα και να τη γράψετε σαν γινόµενο παραγόντων Β. Να βρείτε το πρόσηµο της για τις διάφορες τιµές του λ. Γ. Να βρείτε τις τιµές του λ έτσι ώστε: το τριώνυµο φ(χ) : 1. να έχει δύο ρίζες άνισες. να έχει µία διπλή ρίζα η οποία και να υπολογιστεί 3. να µην έχει πραγµατικές ρίζες 4. να αναλύεται σε γινόµενο δύο πρωτοβάθµιων παραγόντων 5. να είναι τέλειο τετράγωνο και να γράψετε τη µορφή του 6. να είναι πάντα θετικό 7. να είναι πάντα αρνητικό 8. να είναι µη αρνητικό 9. να έχει ετερόσηµες ρίζες 10. να έχει αντίθετες ρίζες 11. να έχει ρίζα το χ 1. να έχει µοναδική ρίζα η οποία και να υπολογιστεί. Να βρείτε τις τιµές του λ έτσι ώστε: η παραβολή ψφ(χ) 1.να τέµνει τον χ χ σε δύο σηµεία.να µην τέµνει τον χ χ 3.να είναι πάνω από τον χ χ 4.να είναι κάτω από τον χ χ 5.να µην είναι πάνω από τον χ χ 6.να µην είναι κάτω από τον χ χ 7.να είναι γνησίως αύξουσα στο (-οο, 5] 8.να είναι γνησίως αύξουσα στο [5,+οο) 9.να έχει άξονα συµµετρίας την ευθεία χ7 10. να έχει ελάχιστο στο χ10 11.να έχει µέγιστο στο χ10 1.να έχει µέγιστο το ψ0 13.να έχει ελάχιστο το ψ0 14.να περνά από το σηµείο Α(1,) 15.να εφάπτεται στον χ χ και να βρεθεί το σηµείο επαφής 16.να έχει σύνολο τιµών το (-οο, 1/4λ] 17.να έχει σύνολο τιµών το [0, +οο) 18.να έχει κορυφή το σηµείο Κ(,0) 1

13 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 13 ΘΕΜΑ 1 ίνεται το σύστηµα λχ+4ψ8 και χ+λψ4 α) Για ποιες τιµές του λ το σύστηµα έχει µοναδική λύση β) >> >> >> η µοναδική λύση (χ ο,ψ ο ) ικανοποιεί την εξίσωση χ+ψλ+1 ΘΕΜΑ ίνεται το φ(χ)-χ +3χ-3 α) Ν.δ.ο. φ(χ)<0 για κάθε χεr b) Να λυθεί η ανίσωση x + 3x 3 x 3 ΘΕΜΑ 3 ίνεται η συνάρτηση x x 3 1 x α) Να βρεθεί το πεδίο ορισµού της β) Να λυθεί η εξίσωση f(x)0 γ) Να λυθεί η εξίσωση 4 x 6x+ 1 1 x ΘΕΜΑ 4 ίνεται η συνάρτηση φ(χ)λχ +κ α) ΝΑ βρεθούν τα κ,λ ώστε η γραφ. παρ. της φ να περνά από σηµεία Α(-1,-3) και Β(-1/,-) β) Για λ και κ-1 να βρείτε τα σηµεία στα οποία τέµνει η φ τους άξονες γ) Να βρεθεί η εξίσωση ου βαθµού µε ρίζες τους αριθµούς κ,λ του ερωτήµατος α) ΘΕΜΑ 5 ίνεται η εξίσωση x x λ (1) α) Να βρείτε τις τιµές του λ ώστε η (1) να έχει πραγµατικές ρίζες β)αν χ 1,χ οι ρίζες της (1) και ισχύει χ 1 χ,να βρείτε τις ρίζες ΘΕΜΑ 6 ίνεται η συνάρτηση f x ( ) ( x+ ) 1 α) Να βρείτε το πεδίο ορισµού της β) Να γράψετε την f(x) σε πιο απλή µορφή γ) Να λύσετε την εξίσωση f(x)0 ΘΕΜΑ 7 Α) Να υπολογίσετε την τιµή της παράστασης x x x x αν x x 3 x+ 4 3 Β) Να λυθεί η ανίσωση ( x) 7 ΘΕΜΑ 8 Έστω το φ(χ)-3χ +9χ-6 α) Να λυθεί εξίσωση φ(χ)0

14 β) Να βάλετε το κατάλληλο σύµβολο <, >, στα παρακάτω µε αιτιολόγηση σε κάθε περίπτωση φ(004).0 φ ( )...0 γ) Να λυθεί η ανίσωση φ(χ).(χ+3) 0 ΘΕΜΑ 9 ίνονται οι συναρτήσεις x 4x+ 3 και g( x) x φ ( )...0 φ(1) α) να βρεθεί το πεδίο ορισµού της ΘΕΜΑ 10 ίνεται η ευθεία (ε) : ψ λχ +µ h( x) β) αν x 1να απλοποιηθεί η h(x) g( x) α) να βρεθούν τα λ,µ αν η ευθεία περνά από τα σηµεία Α(1,5) και Β(-,-1) β) να βρεθεί το κ ώστε η ευθεία µε εξίσωση : ψ(κ -5κ+)χ+κ+3 να είναι // µε την (ε) ΘΕΜΑ 11 ίνεται η συνάρτηση 10 x + x α) να βρείτε το πεδίο ορισµού της β) ν.δ.ο. f (0) γ) να λυθεί η εξίσωση ( x 5)[ ] 1 ΘΕΜΑ 1 ίνονται οι συναρτήσεις f x x g x x ( ), ( ) 9 Να βρείτε το πεδίο ορισµού τους και να λύσετε την εξίσωση [ ] [ g( x)] 13 ΘΕΜΑ 13 x 4 ίνεται το σύστηµα + ψ λ x + λψ και η ανίσωση x < λ+ 5 Α) Για ποιες τιµές του λ το σύστηµα έχει µοναδική λύση η οποία και να βρεθεί Β) Για την τιµή του λ που το σύστηµα δεν έχει µοναδική λύση να λύσετε την παραπάνω ανίσωση ΘΕΜΑ 14 Έστω Α(χ) χ +6χ+9 και Β(χ) -χ -7χ-1 Α) Να γίνουν γινόµενα τα Α(χ) και Β(χ) Β) Αν Α( x) να βρεθεί το π.ο. και να απλοποιηθεί ο τύπος της Β ( x) Γ) Να λυθεί η ανίσωση Α ( x) < 008 ) Να λυθεί η ανίσωση 0

15 ΘΕΜΑ 15 Έστω οι ευθείες (ε): ψ(λ -5λ -)χ + µ 3 (δ): ψ(λ +4)χ-00 και (η): χ+ψ λ,µεr 15 Α) Να βρείτε το λ ώστε ε // δ Β) Να βρείτε το µ ώστε η ε να περνά από το σηµείο Μ(0,5) Γ) Υπάρχει τιµή του λ ώστε η δ // χ χ ; ) Σε ποια σηµεία τέµνει η ευθεία (η) τους άξονες και ποιος είναι ο συντελεστής διεύθυνσής της ; ΘΕΜΑ 16 α) Να λυθεί η εξίσωση : χ -5χ+40 β) Αν ρ 1 η µικρότερη και ρ η µεγαλύτερη ρίζα της παραπάνω εξίσωσης και το ζεύγος (χ,ψ)(ρ 1, ρ ) είναι λύση του συστήµατος : ΘΕΜΑ 17 α x+ βψ 3α, να βρείτε τα α, β. α x βψ 5β+ 4 Α) Να λυθεί η ανίσωση ( x 1) < Β) Γι α -1<χ<3 να απλοποιηθεί η παράσταση : A x + x+ x x+ 1 + ( x 4) ΘΕΜΑ 18 Έστω + x x 7x 6 και το σηµείο Α(3, -1) Α) να βρεθεί το Π.Ο. και να απλοποιηθεί ο τύπος της f(x) Β) να βρείτε την εξίσωση της ευθείας που περνά από το Α και είναι // στην ευθεία ψ -χ+3 Γ) να βρείτε το µ ώστε η συνάρτηση ΘΕΜΑ 19 f (0) µ g( x) x+ 007 να είναι σταθερή f (3) 4 Έστω η εξίσωση χ -(λ -3λ)χ-λ+10 (1). Να βρείτε το λ ώστε: Α) η (1) να έχει δύο ρίζες ετερόσηµες Β) µία ρίζα της (1) να είναι 0 αριθµός - Γ) αν χ 1,χ οι ρίζες της (1) να ισχύει: > 1 x x 1

16 Θέµα 0 Έστω f η συνάρτηση της ο οίας η γραφική αράσταση φαίνεται στο σχήµα. 16 Να βρείτε: α) το πεδίο ορισµού της f β) το σύνολο τιµών της f γ) τους αριθµούς f (0), f (8), f (4) δ) το µήκος του τµήµατος ΑΒ ε) την τιµή του λ για την ο οία το σηµείο Κ(16, λ -1) ανήκει στη γραφική αράσταση της f. Θέµα 1 ίνεται το τριώνυµο x + x 15, x R. α) Να βρεθεί το πρόσηµο του τριωνύµου. x β) Να λυθεί η ανίσωση: 0 x + x 15 γ) Να λυθεί η εξίσωση: (x 1) x Θέµα ίνεται η συνάρτηση 3x 5x+. α) Να βρείτε το πεδίο ορισµού της f. β) Να αποδείξετε ότι : ( f (5) f ( ))( 13 6) [ f (3)] +. γ) Να βρείτε την εξίσωση η οποία έχει ρίζες τους αριθµούς : ρ 1 1 f (0) 1 και ρ 1 f (0).

17 Θέµα 3 17 Έστω η συνάρτηση x 9 1 x 3 Να βρείτε το πεδίο ορισµού της, να την απλοποιήσετε καi να λυθεί η f(x)>5 Θέµα 4 ίνεται η εξίσωση χ +χ-κ 0 (1),κεR Ν.δ.ο.η (1) έχει δύο πραγµατικές ρίζες για κάθε τιµή του κ Αν ρ 1, ρ οι ρίζες της (1) τότε: Ν.δ.ο. ρ 1 + ρ -1 και ρ 1.ρ -κ και να βρείτε το αν ρ 1 (κ+ρ )+κρ >-6 Θέµα 5 ίνεται το τριώνυµο f(x)x +5x-3 1. Να λυθεί η ανίσωση f(x)<0. Aν χε(-3,1/) να λυθεί η εξίσωση x (x 6) 3. Αν χ<-3 να απλοποιήσετε το κλάσµα ( x 9)(1 x) Θέµα 6 ίνονται τα σηµεία Κ(0,) και Λ(-1,3) Α) Να βρείτε την εξίσωση της ευθείας ΚΛ Β) Αν η ΚΛ έχει εξίσωση ψ -χ+ και τα Κ,Λ, Μ είναι συνευθειακά και Μ(1-λ, 4λ-3), α) ν.δ.ο. λ β) υπολογίσετε τη γωνία που σχηµατίζει η ευθεία ε: ψ+8χλ 3 χ-5 µε τον χ χ. Θέµα 7 Έστω η συνάρτηση x 4 x + x 6 Α. Να βρείτε το π.ο. της f(x). Β. Ν.δ.ο. x+ x+ 3 Γ. Να λυθεί η εξίσωση ( x + 3) 3. Να λυθεί η ανίσωση 10 x + 6 Θέµα 8 ίνονται οι συναρτήσεις f(x)x +5x-3, g(x)x -9, h(x)4x+1 1. Να γίνει το f(x) γινόµενο παραγόντων. Να βρείτε το π.ο. της 3. Να απλοποιήσετε την Κ(χ) K ( x) 4. Να λύσετε την εξίσωση K( x ) 3/ 4 5. Να λύσετε την ανίσωση 4 K( x) 5 g( x) h( x)

18 18 Θέµα 9 Έστω οι ευθείες ε: ψ(λ +4)χ+4 και δ: ψ0χ+λ,λεr 1. Να βρεθεί το λ αν ε//δ 6. Για λ -4 ν.δ.ο λ Θέµα 30 ίνεται η συνάρτηση f x x x ( ) Να βρεθεί το π.ο. της. Αν x < 1να απλοποιήστε την παράσταση Θέµα 31 και να λυθεί η εξίσωση Α(χ)7-4χ A x f x x x ( ) [ ( )] Για την τιµή του λ που η εξίσωση (λ -4)λλ -3λ+ είναι αόριστη, να λυθεί η ανίσωση d(x,λ)<5. Αν α η µεγαλύτερη ρίζα της εξίσωσης χ 5-81χ0, ν.δ.ο. Θέµα 3 Έστω το σηµείο Μ(λ -7λ+6, λ 1-3) 1. Να βρεθεί το λ ώστε το Μ να ανήκει στον θετικό ηµιάξονα Οψ α + 1 α 1. Να βρεθεί το λ ώστε το Μ να βρίσκεται στο ο τεταρτηµόριο των αξόνων 3. Αν λ να βρείτε: Θέµα 33 Α) Το συµµετρικό του Μ ως προς τον ψ ψ Β) Το συµµετρικό του Μ ως προς τη διχοτόµο ψχ Γ) Την απόσταση του Μ από το σηµείο Α(8, -7) ίνεται η συνάρτηση f(x)(λ+)χ -5λχ - µε λ Α) Αν λ1 : να λυθεί η ανισότητα 0 και να βρείτε τα πρόσηµα των f(-),f(-/3), f(5/), f (1/ ) Β) Αν χ 1, χ οι ρίζες της f(x)0 και S, P το άθροισµα και το γινόµενό τους τότε: 1. Ν.δ.ο. (S- χ 1 )(S- χ )P. Να βρεθούν οι τιµές του λ ώστε να ισχύει : (S- χ 1 )(S- χ ) S α

19 ΘΕΜΑ 34 f x λ+ 1 x λ+ 1 x+ λ µε λ 1. ίνεται το τριώνυµο ( ) ( ) ( ) 1. Να βρείτε το πλήθος των ριζών της εξίσωσης f(x) 0 για τις διάφορες τιµές του λ R..Αν η εξίσωση ( ) 0 ( x x x x) 1 1 f x έχει δυο ρίζες x1, x, να απλοποιηθεί η παράσταση 19 Μονάδες 9 + λ 1 λ 5λ+ 6. Μονάδες 8 3. Για 0 λ, να λυθεί η ανίσωση f ( x) x Μονάδες 8 ΘΕΜΑ 35 Β1. Να λύσετε την ανίσωση Β. Αν 3 x 9 x 3< < < να δείξετε ότι η συνάρτηση x 3 x 9 x 10 1 Β3. Να βρείτε την αριθµητική τιµή της παράστασης f ( x ) 15. ΘΕΜΑ 36 Μονάδες είναι σταθερή. 3 f Β 0 f x ( ) (,010) 5 όπου Μονάδες 9 Μονάδες 8 ίνεται η συνάρτηση f( x) λ x ( λ 1) x +λ 1, λ R. 010 f( x) Α. Αν λ0, να βρείτε για ποιες τιµές του x ορίζεται το κλάσµα : Κ(x), και στη συνέχεια να x + 9x 5 το απλοποιήσετε. Β. Έστω λ 0. Να δείξετε ότι αν η εξίσωση f( x) 0 έχει δύο ρίζες πραγµατικές και άνισες,τότε λ< 1. Γ. α)αν λ R { 0} και λ< 1,να υπολογίσετε το άθροισµα και το γινόµενο των ριζών της f( x) 0 ως συνάρτηση του λ. β) Αν x1, x µε x1 xείναι οι ρίζες της εξίσωσης f( x) 0, να βρείτε για ποιες τιµές του λ R { 0}, ισχύει : x1 + x x1x > 0. ΘΕΜΑ 36. ίνεται η συνάρτηση f µε x f ( ) f ( 3) Λ +. f ( 3) f ( ) f ( 3) + f ( ) Α. Να βρείτε το πεδίο ορισµού της συνάρτησης f. Β. Να αποδείξετε ότι Κ και Λ 5. Γ. Να προσδιορίσετε το R y Κ x+λ. Μονάδες και οι παραστάσεις f ( ) f ( ) f ( ) µ ώστε το σηµείο Μ( 1, ) Κ + και µ µ να ανήκει στην ευθεία ε :

20 . Να προσδιορίσετε το R 010 λ ώστε η ευθεία η µε εξίσωση y ( λ ) + 1 x+ 009 να είναι παράλληλη µε την ευθεία ε. Μονάδες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x

1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ) ( ) = ) ( ) = 2 3, ) ( ) = 4, i f x x x x ii f x x iii f x x. x 4x. iv f x x v f x x vi f x vii f x 1 O ΛΥΚΕΙΟ ΡΟ ΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΕ ΙΟ ΟΡΙΣΜΟΥ - ΟΡΙΣΜΟΣ, ΤΙΜΕΣ ΣΥΝΑΡΤΗΣΗΣ 1. ίνονται τα σύνολα A= (,5], B= [2,7], Γ= (6, + ) µε σύνολο αναφοράς το R Να βρείτε τα σύνολα : A, B, A B, A Β,( B

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

Μελέτη της συνάρτησης ψ = α χ 2

Μελέτη της συνάρτησης ψ = α χ 2 Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ ΚΕΦ. 1 ο (ΠΙΘΑΝΟΤΗΤΕΣ) Ο ρ ι σ µ ο ί Πείραµα τύχης (π.τ.) είναι το πείραµα για το οποίο δεν µπορούµε εκ των προτέρων να προβλέψουµε το αποτέλεσµά του αν και επαναλαµβάνεται

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ http://1lyk-ag-dimitr.att.sch.gr/ AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΙΑΤΑΞΗ: 1. Έστω ότι α < β και γ < δ. Να αποδείξετε ότι: αγ αδ βγ + βδ > 0 2. Αν α -1, δείξτε ότι α 3 + 1 α 2 + α 3. Αν x>1 δείξτε ότι: 2x 3

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ Δίνεται η εξίσωση fx x 4x Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η εξίσωση f x 0 έχει: α) ρίζα το β) δύο ρίζες πραγματικές και άνισες γ) ρίζες ετερόσημες δ) Αν 3,

Διαβάστε περισσότερα

Συναρτήσεις. Αν λοιπόν έχουμε μια συνάρτηση f από ένα σύνολο Α σε ένα σύνολο Β γράφουμε f Α Β και χ f (χ)

Συναρτήσεις. Αν λοιπόν έχουμε μια συνάρτηση f από ένα σύνολο Α σε ένα σύνολο Β γράφουμε f Α Β και χ f (χ) Συναρτήσεις Ορισμός Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία με την οποία σε κάθε στοιχείο χ του συνόλου Α αντιστοιχίζεται ένα και μόνο στοιχείο ψ του συνόλου Β. Η μεταβλητή χ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1 ,, Β,,λ. Δίνονται τα σημεία Β.Αν τα Α,Β είναι συμμετρικά ως προς τον άξονα y y να βρείτε το λ. Β. Βρείτε τις τιμές του λ, ώστε το σημείο Β να βρίσκεται στο ο τεταρτημόριο του ορθοκανονικού συστήματος.

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛ. ΧΡΟΝΙΑ - ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΛΕΡΑ. Να λύσετε τα πιο κάτω συστήματα: α) χ+ψ=7 β)3κ+λ=4 γ) +y= δ)χ+ψ= χ-ψ=- 5κ=+3λ -y-y =7 4χψ=3.Να γίνουν οι πράξεις: α)

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις

Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις Δημήτρης Πατσιμάς Στέλιος Μιχαήλογλου ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {,,, 4, 5, 6,7,8,9, 0} και τα υποσύνολα του Ω, Α = {,,4,6},

Διαβάστε περισσότερα

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10 ΓΕ.Λ. ΛΙΒΑΔΕΙΑΣ ΖΗΤΗΜΑ A ΑΊ. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 05 ΛΙΒΑΔΕΙΑ 4 ΜΑΪΟΥ 05 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) κάθε μία

Διαβάστε περισσότερα

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α

Διαβάστε περισσότερα

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β. Γραμμικές Εξισώσεις. Η γραφική παράσταση της συνάρτησης = + β διέρχεται από το σημείο Α(, ). Να βρείτε τον αριθμό. ίνεται η ευθεία = + (α ). Να βρείτε την τιμή του α, ώστε η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1

Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1 Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( )

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( ) Συναρτήςεισ Όριο Συνέχεια Πεδίο οριςμού ςυνάρτηςησ 1) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 2) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 3) Να βρείτε τα πεδία οριςμού των

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii) Πιθανότητες.3096. α) Αν Α,Β,Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης που αποτελείται από απλά ισοπίθανα ενδεχόμενα, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ Η ΕΞΙΣΩΣΗ αχ +βχ+γ=0, α ¹ 0 ΠΑΡΑΤΗΡΗΣΕΙΣ v Εξίσωση δευτέρου βαθμού καλείται η εξίσωση της μορφής : αχ + βχ + γ = 0, α ¹ 0 () v Για την επίλυση της εξίσωσης

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

(2 x) ( x 5) 2(2x 11) 1 x 5

(2 x) ( x 5) 2(2x 11) 1 x 5 ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 Ο ΑΝΑΛΥΣΗΣ 1. ίνεται η συνάρτηση ƒ µε τύπο, + 5 6 < + + 7 5 f( ) = < < 5 ( ) ( 5) 006 ( 11) 1 5 Υπολογίστε τα παρακάτω όρια της συνάρτησης, Α) Β) f ( ) f ( ) 1 Γ) f ( ) + και f ( )

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα