ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ ПОЧИЊЕМО
|
|
- Αργυρός Μακρή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ТАЧКЕ КОЈЕ ЕКСПЛОДИРАЈУ ПОГЛАВЉЕ 5 ДЕЉЕЊЕ Сабирање, одузимање, множење. Сад је ред на дељење. Ево једног задатка с дељењем: израчунајте колико је. Наравно да постоји застрашујући начин да то урадите: Нацртајте на папиру тачака и затим заокружујте групе од по дванаест. Видећете, после једно сат времена, да постоје групе од по дванаест на слици која представља број. Ево феноменалног начина да решите задатак: Нацртајте слику која приказује тачака у машини и једноставно одмах уочите да на слици постоје постоје групе од по дванаест! Наставите да читате и да се играте како бисте открили начин на који ово можемо да урадимо! Страва чињеница: Да ли сте знали да се симбол који означава дељење ( ) назива обелус 1? ПОЧИЊЕМО Хајде да почнемо са задатком у коме треба поделити два броја чији се количник може одмах видети. Колико је? Резултат је. Ако број посматрате као збир, онда се лако може уочити да се дељењем с три добија збир. То можемо и да видимо, ако нацртамо слику броја у машини. Видимо групе од по три тачке: једну групу на нивоу хиљада, 3 групе на нивоу стотина и две групе на нивоу јединица. 1 Од грчке речи ὀβελός (obelós) која, поред тога што означава зашиљени четвртасти стуб, познатији као обелиск, има и значење хоризонтална линија. Према Стритеру, у употребу ју је увео Аристарх из Самотраке како би у Хомеровим делима означио делове текста за које је сумњао да су накнадно убацивани. Међутим, хоризонтална линија са тачком изнад и испод (ὀβελὸς περιστιγμένος, obelòs peristigménos) коришћена је нарочито у филозофским текстовима да означи делове који су се сматрали вишком. У математичкој нотацији, обелус се најпре користио као ознака за одузимање, а први га је као ознаку за дељење употребио Швајцарац Јохан Ран у својој књизи Teutsche Algebra.
2 2 И то је то! Делимо бројеве и одмах из авиона видимо резултат дељења! Покушајте да израчунате колико је тако што ћете користити само слику кутија и тачака. Да ли видите да користећи одексплозије можете одблокирати задатак и показати да је резултат? Ако желите боље да размислите о томе шта се заправо дешава на овим сликама (зар је то заиста толико једноставно?) пређите на одељак Детаљније објашњење у овом поглављу. Али, ако сте ипак спремни да одмах наставимо... хајде да наставимо! ПИСМЕНО ДЕЉЕЊЕ Дељење једноцифреним бројем смо сада схватили. Али, шта ћемо с дељењем бројевима који имају више од једне цифре? Такво дељење обично се назива писменим дељењем. Погледајмо следећи задатак:. Ево слике броја у машини : На овој слици броја броја дванаест: треба открити групе од по дванаест тачака. Прво, ево како изгледа слика Уствари, то баш и није тачно, пошто ће се десити једна експлозија у нашој машини, дванаест ће имати облик једне тачке која се налази поред две тачке. (Али, увек треба да будемо свесни да је то заправо слика дванаест тачака које се налазе у крајњој десној кутији.) У реду. Дакле, тражимо групе од по на нашој слици броја. Да ли можемо да уочимо, било где на дијаграму, једну тачку која се налази одмах поред две тачке? Да! Ево једног примера.
3 3 За сваку заокружену област, у којој се налази 12 тачака које смо нашли, важи да се тих 12 тачака заправо налазе у десном делу нацртане области. Тако смо нашли једну групу од тачака на нивоу десетица. И има још група с дванаест тачака. Видимо укупно две групе од по дванаест на нивоу десетица и три групе од по дванаест на нивоу јединица. Према томе, резултат дељења са је. Ево неких задатака за вежбу, које ћете можда покушати да урадите, а можда и нећете. Моји одговори на сва постављена питања могу се наћи на крају поглавља. 1. Израчунајте писмено користећи приступ помоћу кутија и тачака. 2. Израчунајте. Хајде да урадимо још један пример. Израчунајмо колико је. Ево одговарајуће слике. Сада тражимо групе састављене од једне тачке, ниједне тачке, две тачке на нашој слици која представља број. (И, не заборавите, све те тачке физички се налазе у крајњој десној кутији сваког скупа који уочимо.) Можемо да приметимо више таквих група. (У овом тренутку чини ми се да заокруживање тачака компликује цртеж, па уместо тога користим иксиће и цртам око тачака кругове и квадрате. Да ли је то у реду? Да ли сте приметили како сам на самом крају једним потезом означио две групе?)
4 4 Сада је очигледно да је резултат дељења са управо. Ево још задатака, ако желите да пробате да их решите. 3. Израчунајте. 4. Покажите да је једнако уз остатак. ДЕЉЕЊЕ С ДЕСЕТ Икористите кутије и тачке да израчунате. Можете ли да објасните зашто ће, уз примену одекслподирања, резултат бити? Потражите групе од по десет тачака на слици коју сте нацртали. Већина људи каже да је при дељењу броја који се завршава нулом са 10 довољно прецртати последњу нулу дељеника. Можете ли сада да објасните зашто ће такав потез сигурно дати тачан резултат?
5 5 ОСТАЦИ У претходном одељку видели смо да је једнако. Претпоставимо да смо, уместо тога, покушали да израчунамо том случају? Како би требало да је тумачимо?. Како би изгледала слика у Па, слика ће бити врло слична претходној, осим што ће се на њој појавити једна додатна тачка, коју нећемо успети да обухватимо ниједном од група сачињених од дванаест тачака. Ова слика показује да је једнако уз остатак. То би могло да се запише на следећи начин: или уз помоћ неке друге еквивалентне нотације. (У различитим земљама људи користе различите ознаке за остатке.) Такође, можете да будете математички мало прецизнији и можете да кажете да је једнако и да преостаје једна тачка вишка коју треба поделити с дванаест: Ако сте расположени, ево још задатака за вежбу. 5. Израчунајте. 6. Израчунајте. 7. Израчунајте. Док се будете играли с дељењем помоћу тачака и кутија, можда ћете закључити да је уствари добро увек радити с леве стране на десну, за случај да има остатака: свиђа нам се да се све додатне тачке које видимо појаве у тежински нижим кутијама, онима које одговарају јединицама и десетицама, уместо у кутијама које одговарају хиљадама, на пример. (Али, чак и да одлучите другачије, нећете погрешити! Увек ћете моћи да позовете у помоћ одексплозије.)
6 6 ДЕТАЉНИЈЕ ОБЈАШЊЕЊЕ Мозгајући о процесу писменог дељења, схватићете да се ту дешавају неке суптилне ствари. Хајде да одвојимо мало времена и размотримо дељење мало детаљније. И хајде да почнемо с примером чији резултат можемо одмах да запишемо. Колико је? Резултат:. На основу чега можемо тако брзо да видимо да је то резултат? Делује потпуно природно да број посматрамо као збир. Сада је лако поделити сваки од тих сабирака с три. Делећи с три, добијамо Страва! А то природно растављање можемо да видимо и на слици броја тачкака и кутија. Заиста видимо хиљаде, стотина и јединица.. приказаног помоћу Делећи с три, добијамо следећу слику: Али, хајде да још дубље истражимо како функционише овај последњи корак дељења. Шта се овде заиста догодило? Дељење можемо да посматрамо као груписање, тако да нас задатак Колико група од по три можете наћи у скупу који има елемената? уствари пита Знамо да тачака имају хиљаду група од по три тачке, тачака имају триста група од по три тачке, а тачака садрже две групе од по три тачке. Заправо, наша слика броја управо то и показује. Да смо извршили све одексплозије, зелена група би одексплодирала и послала хиљаду зелених група на место јединица. Свака плава група би након одексплозије послала стотину плавих група на место јединица, а пошто постоје три плаве групе, добили бисмо укупно триста плавих група на
7 7 месту јединица. Примећујемо да наша слика приказује хиљаду зелени група, триста плавих група и две наранџасте групе. На њој је приказано групе од по три. Можемо да употребимо рецке да бисмо показали да ћемо добити групу од три на месту хиљада, на месту стотина, на месту десетица и на месту јединица, што је поново групе од по три. А те рецке нам показују шта ће се десити уколико бисмо стварно делили с три: свака група од по три тачке постаје једна тачка. Добили бисмо овакву слику: Та последња слика показује колико група од по три је било на полазној слици броја. Али, ова последња слика нам уствари уопште није потребна: рецке на претходној слици показују управо исто то. Зато можемо да престанемо да цртамо чим дођемо до свих рецки. Ево још једног задатка за вежбу који ћете можда желети да урадите, а можда и нећете. 8. Користећи тачке и кутије, нацртајте број и искористите ту слику да објасните зашто је једнако. Хајде да урадимо још један пример. Пробајмо да израчунамо. Ево слике броја. Тражимо на њој групе од по три тачке. Једну уочавамо на нивоу стотина. (Ова заокружена група заиста представља сто група од по три. То је директна последица одексплозија.) Сад смо се, изгледа, заглавили. Али, једна одексплозија ће нам помоћи да наставимо даље!
8 8 Па још једна одексплозија. Сада видимо да постоји једна стотина, тридесет и још четири групе од по три у броју је.. Због тога 9. Управо смо показали да је. Шта мислите да ће, с обзиром на то, бити резултат дељења? Шта бисте видели на слици која одговара овом дељењу када бисте је нацртали? 10. Израчунајте колико је, користећи тачке и кутије. (Да ли постаје заморно да се цртају толике тачке? Да ли заиста морате да их све нацртате?) У потпуности исти начин размишљања може се применити на дељење вишецифреним бројевима. Раније смо разматрали пример. Ево слике броја. Ево како изгледа дванаест тачака: Али, у машини видели бисмо их као једну тачку поред две тачке, након што би се одиграла једна експлозија. (Свих дванаест тачака и даље живе у крајњој десној кутији.)
9 9 И када сад кренемо у лов на групе од по дванаест у броју, добићемо следећу слику: Видимо две групе од по дванаест на нивоу десетица и три дванаестице на нивоу јединица. Резултат дељења је заиста.
10 10 ТРАДИЦИОНАЛНИ АЛГОРИТАМ Ево како помоћу тачака и кутија показујемо да је једнако. То нимало не личи на приступ који се обично учи у школама када треба решити задатке са дељењем. На пример, у многим школама ће се од ђака очекивати да израчунају колико је употребом алгоритма који изгледа некако овако: На први поглед ово се чини веома тајанственим, али се уствари уопште не разликује од поступка који користи тачке и кутије. Да бисмо увидели зашто, хајде да прво истражимо један поступак процене који се такође често предаје у школама. Он гласи овако: Да бисмо израчунали колико је можемо да нађемо у броју., морамо да утврдимо колико група од по три Прво ћемо да покушамо са неком грубом проценом, рецимо, сто група од по три. Колико нам остане након што одузмемо сто група од по три? Одговор:. Колико група од по три има у том остатку? Претпоставимо да их је.
11 11 Сада је остатак дванаест. А у дванаест постоје четири групе од по три. Тако смо исцрпели цео број. Видимо да постоје групе од по три у том броју. Метод који користи тачке и кутије ради апсолутно исто, само што то ради у потпуности визуелно. Табелица коју смо прву приказали такође је идентична овом поступку процене. Измишљена је само да бисмо користили мање мастила пошто се у том случају не пише овако пуно. (Прескаче се поновно записивање неких цифара.)
12 12 ФАНТАСТИЧНА ИСТРАЖИВАЊА Ево једног истраживања које се односи на важно питање на које ћете можда покушати да одговорите или макар да размислите о њему. Уживајте! ИСТРАЖИВАЊЕ: С ЛЕВА НА ДЕСНО? С ДЕСНА НА ЛЕВО? ПОСТОЈИ ЛИ РЕДОСЛЕД? Пошто је добио задатак да израчуна колико је, Коста је нацртао следећу слику, коју је добио тако што је уочио групе од по дванаест, гледајући с десна на лево. Одговорио је да резултат дељења износи, уз остатак. С друге стране, Mилица је уочила групе од по дванаест посматрајући своју слику истог задатка с лева на десно. Закључила је да је једнако, уз остатак. И Коста и Милица су у праву с математичке тачке гледишта, али је њихов наставник указао на то да би већина људи очекивала одговор са мањим остатком: и и би вероватно звучали чудно као остатак при дељењу са дванест. Такође им је показао резултат дељења наведен у уџбенику. Како би Коста и Милица могли да наставе да раде на својим дијаграмима, па да добију резултат из уџбеника?
13 13 РЕШЕЊА Као што сам и обећао, следе моји одговори на постављена питања Успут морамо да извршимо неке одексплозије. (И примећујете ли како постајем све ефикаснији када је у питању заокруживање тачака?) 3..
14 Биће, уз остатак. Другим речима,
15 15 8. Видимо две групе од по два на нивоу стотина (све тачке у плавим групама могле би да одексплодирају и да пошаљу двеста скупова од по две тачке на ниво јединица), једну групу од два на нивоу десетица (све тачке у зеленој групи могле би да одексплодирају и да пошаљу десет зелених група од по два на ниво јединица), и три наранџасте групе од по два на месту јединица. Укупно, оне чине група од по два. 9. На слици која приказује видимо две тачке вишка које нису убројане у резултат. Зато је једнако, уз остатак. Напомена: Могли бисмо да посматрамо тај остатак као две тачке које треба поделити на три дела, и према томе, могли бисмо писати 10. Сасвим сигурно једну групу можемо одмах да уочимо.. Хајде да извршимо неке одексплозије. (И пишимо бројеве уместо да цртамо гомиле тачака. Цртање тачака постаје напорно!)
16 Видмо да је. 16
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
Διαβάστε περισσότερα1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Διαβάστε περισσότερα6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότερα2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Διαβάστε περισσότερα7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Διαβάστε περισσότεραКРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
Διαβάστε περισσότεραРЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Διαβάστε περισσότερα2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Διαβάστε περισσότεραг) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραСИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Διαβάστε περισσότεραУпутство за избор домаћих задатака
Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета
Διαβάστε περισσότεραАксиоме припадања. Никола Томовић 152/2011
Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Διαβάστε περισσότεραпредмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Διαβάστε περισσότεραТеорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
Διαβάστε περισσότεραРешења задатака са првог колоквиjума из Математике 1Б II група задатака
Решења задатака са првог колоквиjума из Математике Б II група задатака Пре самих решења, само да напоменем да су решења детаљно исписана у нади да ће помоћи студентима у даљоj припреми испита, као и да
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότερα6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Διαβάστε περισσότερα2.3. Решавање линеарних једначина с једном непознатом
. Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραАнализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Διαβάστε περισσότεραTестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
Διαβάστε περισσότερα3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Διαβάστε περισσότεραПоложај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Διαβάστε περισσότεραКоличина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Διαβάστε περισσότεραОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Διαβάστε περισσότεραЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
Διαβάστε περισσότερα1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно
Διαβάστε περισσότεραТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Διαβάστε περισσότερα4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима
50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?
Διαβάστε περισσότερα6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c
6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно
Διαβάστε περισσότεραВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА
ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег
Διαβάστε περισσότεραЗАШТИТА ПОДАТАКА. Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2 Diffie-Hellman размена кључева први алгоритам са јавним кључем
Διαβάστε περισσότεραМатематика Тест 3 Кључ за оцењивање
Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације
Διαβάστε περισσότεραTAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
Διαβάστε περισσότεραПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
Διαβάστε περισσότερα5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
Διαβάστε περισσότεραВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Διαβάστε περισσότεραВектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
Διαβάστε περισσότεραЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД
ОЛИВЕРА ТОДОРОВИЋ СРЂАН ОГЊАНОВИЋ MATEMATИKA УЏБЕНИК за први разред основне школе1 ЗАВОД ЗА УЏБЕНИКЕ БЕОГРАД 1 ПРЕДМЕТИ У ПРОСТОРУ И ОДНОСИ МЕЂУ ЊИМА... 7 1. Горе, доле, изнад, испод... 8 2. Лево, десно...
Διαβάστε περισσότεραb) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Διαβάστε περισσότεραМАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4
МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :
Διαβάστε περισσότερα8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2
8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или
Διαβάστε περισσότερα4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
Διαβάστε περισσότεραПредмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Διαβάστε περισσότεραТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Διαβάστε περισσότεραШтампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика
Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике
Διαβάστε περισσότεραТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ
ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР - 12. ДЕЦЕМБАР 2010. ГОДИНЕ http://puzzleserbia.com/ ДРУГА НЕДЕЉА (6.12. - 12.12.) 7. СУДОКУ АЈНЦ 8. ПЕНТОМИНО УКРШТЕНИЦА 9. ШАХОВСКЕ
Διαβάστε περισσότερα2.1. Права, дуж, полуправа, раван, полураван
2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.
Διαβάστε περισσότεραСАДРЖАЈ ЗАДАТАК 1...
Лист/листова: 1/1 САДРЖАЈ ЗАДАТАК 1... 1.1.1. Математички доказ закона кретања мобилног робота 1.1.2. Кретање робота по трајекторији... Транслаторно кретање... Кретање по трајекторији ромбоидног облика...
Διαβάστε περισσότεραХомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
Διαβάστε περισσότεραПрви корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Διαβάστε περισσότεραТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).
СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која
Διαβάστε περισσότερα7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Διαβάστε περισσότεραДинамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
Διαβάστε περισσότεραОд површине троугла до одређеног интеграла
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање
Διαβάστε περισσότεραСеминарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
Διαβάστε περισσότερα6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23
6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо
Διαβάστε περισσότερα6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Διαβάστε περισσότεραI Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ
Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате
Διαβάστε περισσότεραСлика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
Διαβάστε περισσότεραМАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
Διαβάστε περισσότεραСваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.
IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита
Διαβάστε περισσότεραСкупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић
Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових
Διαβάστε περισσότεραУниверзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
Διαβάστε περισσότεραЈедна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије
Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те
Διαβάστε περισσότεραТеорија друштвеног избора
Теорија друштвеног избора Процедура гласања је средство избора између више опција, базирано на подацима које дају индивидуе (агенти). Теорија друштвеног избора је студија процеса и процедура доношења колективних
Διαβάστε περισσότεραТЕЗИ ОПШТА В Ш Т 1 - Е М Ј Е Д Н А Ч И Н «Л Р В О Г А Р Ш ФИЛ030ФСК0Г ФАКУЛТЕТА УНИВЕРЗИТЕТА У A Ù y'..' Х СИМЕ М. МАРКОВИЋА ПРИМЉЕНА ЗА
ОПШТА В Ш Т 1 - Е М Ј Е Д Н А Ч И Н «Л Р В О Г А Р Ш ТЕЗИ СИМЕ М. МАРКОВИЋА ПРИМЉЕНА ЗА Д О КТО РСКИ и с п и т НА СЕДНИЦИ ФИЛ030ФСК0Г ФАКУЛТЕТА УНИВЕРЗИТЕТА У БЕОГРАДУ ОД 5. ЈУНА 1913. ГОД. ПРЕМА РЕфЕРАТУ
Διαβάστε περισσότεραМихаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ
Мајци Душанки Михаило М. Бошковић, професор НОВO У МАТЕМАТИЦИ подела угла на три једнака дела подела угла на n једнаких делова конструкција сваког правилног многоугла уз помоћ једног шестара и једног лењира
Διαβάστε περισσότεραМастер рад. Гребнерове базе. Аутор: Јелена Јовичић Број индекса: 1033/2008. Ментор: Доцент др Зоран Петровић. Математички факултет Београд 2010.
Мастер рад Гребнерове базе Аутор: Јелена Јовичић Број индекса: /8 Ментор: Доцент др Зоран Петровић Математички факултет Београд. Резиме Рад пред вама је мастер рад судента Математичког факултета у Београду,
Διαβάστε περισσότεραИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -
ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ЦЕНЕ ПРОИЗВОДЊЕ И ДИСТРИБУЦИЈЕ ВОДЕ И ЦЕНЕ САКУПЉАЊА, ОДВОђЕЊА И ПРЕЧИШЋАВАЊА ОТПАДНИХ ВОДА НА НИВОУ ГРУПАЦИЈЕ ВОДОВОДА
Διαβάστε περισσότεραУОПШТЕНИ КАЛЕИДОСКОП
ПОГЛАВЉЕ XI УОПШТЕНИ КАЛЕИДОСКОП ОВО може бити појам којим смо скренули од наслова ове књиге. Али како је симетријска група сваког правилног политопа или ханикомба изведена рефлексијама, то онда изгледа
Διαβάστε περισσότεραИспитвање тока функције
Милош Станић Техничка школа Ужицe 7/8 Испитвање тока функције Испитивање тока функције y f подразумева да се аналитичким путем дође до сазнања о понашању функције, као и њеним значајним тачкама у координантном
Διαβάστε περισσότερα6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1
6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,
Διαβάστε περισσότεραТангента Нека је дата крива C са једначином y = f (x)
Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.
Διαβάστε περισσότεραСкрипта ријешених задатака са квалификационих испита 2010/11 г.
Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна
Διαβάστε περισσότεραРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
Διαβάστε περισσότεραМатематички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља
Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/
Διαβάστε περισσότεραF( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ
НЕОДРЕЂЕНИ ИНТЕГРАЛ Штa треба знати пре почетка решавања задатака? Дефиниција: Интеграл једне функције је функција чији је извод функција којој тражимо интеграл (подинтегрална функција). Значи: f d F F
Διαβάστε περισσότεραПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА
ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања
Διαβάστε περισσότεραВежба 4. Графика. Наредба има облик plot(x,y) Аргументи x и y су вектори, који морају имати исти број елемената.
Вежба Графика У МATLAB-у постоји много команди за цртање графика. Изглед графика може се подешавати произвољним избором боје, дебљине и врсте линија, уношењем мреже, наслова, коментара и слично. У овој
Διαβάστε περισσότεραТеорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
Διαβάστε περισσότεραПримена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Διαβάστε περισσότεραПовршине неких равних фигура
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com
Διαβάστε περισσότερα10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
Διαβάστε περισσότερα< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5
05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)
Διαβάστε περισσότεραМЕРЕЊЕ УЧЕНИЧКОГ НАПРЕТКА ПРИ КОРИШЋЕЊУ РАЧУНАРА У НАСТАВИ МАТЕМАТИКЕ
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Соња Вученов МЕРЕЊЕ УЧЕНИЧКОГ НАПРЕТКА ПРИ КОРИШЋЕЊУ РАЧУНАРА У НАСТАВИ МАТЕМАТИКЕ -мастер рад- Нови Сад, 2012.
Διαβάστε περισσότερα