6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c"

Transcript

1 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно је да се свака линеарна једначина са две променљиве и целобројним коефицијентима може свести на једначину облика ах + bу = с. Већ је речено је да су основна питања везана за сваку Диофантову једначину: 1. Доказати или оповргнути егзистенцију решења; 2. Пребројати колико укупно решења има дата једначина (коначно или бесконачно много); 3. Ако једначина има коначно много решења, одредити сва њена решења; 4. Ако једначина има бесконачно много решења, одредити формуле које дају сва решења; 5. Од свих могућих решења издвојити она која задовољавају посебне услове (ако се то тражи). Одговоре на ова питања, када је реч о линеарној Диофантовој једначини са две променљиве, дају следећи примери и теореме, при чему ће нека питања и проблеми бити третирани на више начина, као на пример, сам алгоритам за решавање линеарне Диофантове једначине ДА ЛИ ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА УВЕК ИМА РЕШЕЊЕ? ПРИМЕР 1. Имају ли једначине х + у = 2006 и 2х + 10у = 2005 решења у скупу целих бројева? РЕШЕЊЕ: Прва једначина очигледно има бесконачно много решења, јер је уређени пар (х 0, х 0 ), где је х 0 било који цео број, опште целобројно решење дате једначине. Друга једначина нема решења јер је за ма који пар целих бројева (х, у) на десној страна једначине непаран број, а на левој паран број. 82

2 Прецизан алгоритам за одређивање да ли једначина ах + bу = с има или нема решења је директна последица следеће теореме. ТЕОРЕМА 1. Потребан и довољан услов да линеарна Диофантова једначина ах + bу = с (а, b и с су цели бројеви и аb 0) има решење је да је број с дељив са NZD (а, b). ДОКАЗ: Нека је NZD (a,b) = d (d 1). Aкo je (x 0, y 0 ) једно целобројно решење линеарне Диофантове једначине ах + bу = с, тада је ах 0 + bу 0 = с. Taда постоје узајамно прости цели бројеви k и l такви да је а = kd и b = ld. Значи да је kdx 0 + ldy 0 = c, тј. d(kx 0 + ly 0 ) = c. Лева страна једнакости је дељива са d, па мора бити и десна, тј. d с. Обрнуто, нека је d с. Тада постоји цео број m такав да је с = md. Како се број d може представити као хомогена линеарна функција од a и b 21, то је d = αa + βb (α Ζ, β Ζ). Тада је c = md = m (αa + βb) = a (mα) + b (mβ), па је x = mα, у = mβ, једно решење дате једначине. Наведимо, без доказа, и две непосредне последице доказане теореме. ТЕОРЕМА 2. Линеарна Диофантова једначина ах + bу = с (а, b и с су цели бројеви и аb 0) има увек решење ако је NZD (а, b) = 1, тј. уколико су а и b yзајамно прости цели бројеви. ТЕОРЕМА 3. Линеарна Диофантова једначина ах + bу = с (а, b и с су цели бројеви и аb 0) нема решења ако се NZD (а, b) не садржи у с. ПРИМЕР 2. Доказати да једначина 2х + 5у = 111 има бесконачно много целобројних решења, а једначина 3х + 6у = 1000 нема целобројних решења. РЕШЕЊЕ: Како су 2 и 5 узајамно прости прва једначина на основу теореме 2. увек има решења. Друга једначина се дељењем са 3 може трансформисати у облик х + 2у = целобројних решења из кога је очигледно да нема 3 21 Та чињеница је позната у теорији бројева. Видети: Владимир Мићић, Зоран Каделбург, Душан Ђукић: Увод у теорију бројева Друштво математичара Србије, Београд, стр

3 Јасно је да ако једначини ax + by = с, има решења, тј. уколико је NZD (а, b) = d (d 1) делилац броја с, тада постоје цели бројеви k, l и m, такви да је а = kd, b = ld и с = md. Једначина тада постаје kdх + ldу = md или кх + lу = m. При том су k и l узајамно прости. Зато у суштини једначину ax + by = с треба и посматрати или трансформисати до облика у коме су а и b yзајамно прости, јер се из тако трансформисане једначине одмах види егзистенција решења. * Како је проблем егзистенице решења једначине ax + by = с претходним разматрањима разрешен, следи покушај да се пронађе и алгоритам за решавање свих линеарних Диофантових једначина ОЈЛЕРОВ МЕТОД РЕШАВАЊА ЛИНЕАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ ПРИМЕР 3. Одредити сва решења једначине 3х + 7у = 89, ако су х и у цели бројеви. РЕШЕЊЕ: Како су 3 и 7 узајамно прости бројеви то једначина увек има решење. Решавањем једначине по х и трансформацијом њене десне стране у 89 7y y 2 количник, добија се х = = 29 2y, па је х цео број само 3 3 ако је број у - 2 дељиво са 3, тј. ако је у - 2 = 3к, где је к неки цео број. Тада је у = 3к + 2, а х = 25 7к. Добијено решење је опште решење дате једначине и показује да дата једначина има бесконачно много решења, јер се за свако целобројно к добије уређени пар (х, у) = (25-7к, 3к+2) који је решење дате једначине. Овај поступак који је у теорији познат као Ојлеров i често није функционалан, јер се до коначног решења долази преко неколико итерација. ПРИМЕР 4. Одредити сва решења једначине 40у 63х = 521 ако су х и у цели бројеви. РЕШЕЊЕ: Како су 40 и 63 узајамно прости бројеви једначина има решење. 84

4 80х х Из дате једначине је 40у = 63х + 521, па је у = х 1 17х 1 Следи да је у = 2х Да би у био цео број мора бити = а, где је а неки цео број. Како је 17х 1 = 40а, то следи да је 40 а + 1 6а + 1 6а + 1 х = = 2а +. Сада ће х бити цео број ако је = b b 1 b + 1 Одавде је 6а + 1 = 17b. Дакле, а = = 3b. Да би а био цео 6 6 број мора бити b + 1 = 6к, одакле је b = 6к 1. Тада је а = 3(6к -1) к = 17к 3, а одавде је х = 2(17к 3) + 6к - 1 = 34к 6 + 6к 1 = 40к 7. Коначно, у = 2 (40к 7) + 13 а = 80к к + 3 = 63к + 2. Дакле, опште решење дате једначине је х = 40к 7, у = 63к + 2. Међутим, иако је изложени поступак једноставан, он није лак за техничку реализацију. Зато се поставља питање налажења сигурнијег метода МЕТОД ПОЧЕТНОГ РЕШЕЊА Нека је (х 0, у 0 ) једно целобројно решење једначине ax + by = с, где су a и b узајамно прости цели бројеви. Како је ах 0 + by 0 = c, то је и ax + by = ax 0 + by 0. Тада је a(x - x 0 ) + b(у - y 0 ) = 0. Ако се цела једначина подели са b a (јер b није нула) добија се да је (x x ) + y y 0. Како је десна 0 0 = b страна једнакости цео број то мора бити и лева. Бројеви а и b су узајамно прости цели бројеви, што значи да x - x 0 мора бити дељиво са b. Дакле, x - x 0 = кb, где је к било који цео број. Тада је х = x 0 + bк, а у = у 0 ак. Тиме је добијен један рационалан поступак за решавање једначине ax + by = с који је прецизиран следећом теоремом. ТЕОРЕМА 4. Ако је уређени пар (x 0, y 0 ) једно решење линеарне Диофантове једначине ах + bу = с (аb 0 и а и b су узајмно прости цели бројеви), тада и само тада је релацијама х = х 0 + bk и у = у 0 ак (к је цео број) дефинисано опште решење дате једначине. ДОКАЗ: Доказ да акo je (x 0, y 0 ) једно решење линеарне Диофантове једначине ax + by = с, да су тада сва решења дефинисана релацијама х = х 0 + bк и у = у 0 ак (к је цео број) дат је у претходном разматрању. 85

5 Остаје да се докаже чињеница да ако је (х 0, у 0 ) једно решење и ако је х = х 0 + bк и у = у 0 ак (к је цео број), да х и у задовољавају једначину ах + bу = с. Заиста ах + bу = а(х 0 + bк) + b(у 0 ак) = аx 0 + аbк + bу 0 bак = ax 0 + by 0 = c, jeр је (x 0, y 0 ) једно решење линеарне Диофантове једначине ax + by = с. Докажимо и да других решења нема. Претпоставимо да је (α, β) једно од решења дате једначине које се не може приказати у облику (х 0 + bк, у 0 ак). Ако је (α, β) једно решење дате једначине, онда је аα + bβ = с. Како је за свако целобројно к и а(х 0 + bk) + b(у 0 ак) = с, то је а(х 0 + bk) + b(у 0 ак) = аα + bβ. Тада је а(х 0 + bk - α) + b(у 0 ак - β) = 0. b( y aк ) Како су а и b различити од 0, то је х 0 + bk - α o β =. а Због тога што су а и b узајамно прости бројеви следи да је у 0 ак - β дељиво са а, па у 0 ак - β = a (m Ζ). Следи да је β = у 0 ак аm = у 0 а(к + m). Ако је к + m = n (n Ζ), тада је β = у 0 аn. У том случају је х 0 + bk - α = - bm, па је α = х 0 + bk + bm = х 0 + b(k + m) = х 0 + bn. Коначно се добијаα = х 0 + bn, β = у 0 аn, што је противуречност са претпоставком. ПРИМЕР 5. Одредити сва решења једначине 4х + 5у = 100, ако су х и у цели бројеви. РЕШЕЊЕ: Очигледно је х 0 = 0, у 0 = 20 једно решење дате једначине. Тада су сва решења дате једначине дефинисана релацијама х = 5к, у = 20 4к (к Ζ) ДИОФАНТОВ МЕТОД Претпоставимо да је за линеарну Диофантову једначину ах + by = c (а и b су узајамно прости), познато једно решење једначине (х о, у о ), тј нека је ах о + bу о = с. Ако се на решавање линеране једначине примени Диофантов двопараметарски метод, онда се добије трансформација х = х о + mt, у = у о + nt (m и n су цели бројеви). Тада из једнакости ах + bу = с, следи да је а(х о + mt) + b(у о + nt) = ах о + аmt + bу о + bnt = с = ах о + bу о. Из добијене једнакости следи да је аmt + bnt = 0, тј. аm + bn = 0. Решавањем добијене bn једначине по m добија се m =. a 86

6 Како m мора бити цео број и како су а и b узајамно прости то је n = ак (к је неки цео број), па се добија да је m = - bк. Дакле, формуле х = х о - bкt, у = у о + акt генеришу решења једначине ах + bу = с. За к = 1, односно к = - 1 добијају се формуле ( х = х о - bt, у = у о + аt), односно ( х = х о + bt, у = у о аt ) идентичне формулама у теореми ПРИМЕНА ЕУКЛИДОВОГ АЛГОРИТМА У ОДРЕЂИВАЊУ ПОЧЕТНОГ РЕШЕЊА У примени алгоритма датог у теореми 4. једини проблем може бити одређивање тог једног (партикуларног) решења (х 0, у 0 ). Један од могућих начина за коректно решавање тог проблема је примена Еуклидовог алгоритма и теореме 2, 22 којим се ефикасно одређује једно од бесконачно много могућих решења. ПРИМЕР 6. Одредити почетно решење, а потом решити Диофантову једначину 155х 95у = 100. РЕШЕЊЕ: Дата једначина има решење, јер је d (155, 95) = 5, a Према томе једначина се дељењем са 5 може упростити, тако да се добије 31х 19у = 20. Како је d (31, 19) = 1, то постоје цели бројеви α и β такви да је 31α - 19β = 1. Бројеви α и β се одређују Еуклидовим алгоритмом: 31 = ; 19 = ; 12 = ; 7 = ; 5 = = = 5 2(7-1 5) = = 3(12-1 7) = = ( ) = = 8( ) = Дакле, α = 8 и β = 13. Како је 31α - 19β = 1, то је 20 (31α - 19β) = 20, па је 31 20α β = 20, па је х о = 20α = 20 8 = 160 и у о = 20β = = 260. Према томе опште решење дате линеарне Диофантове једначине дато је формулама: х = к; у = к (к је цео број). Иначе постоје ''мања'' почетна решења (х о, у о ) = (8, 12), али се тешко другачије могу одредити сем интуицијом или погађањем. 22 Видети: Ратко Тошић, Вања Вукославчевић: Елементи теорије бројева Алеф, Нови Сад, стр. 61. (пример 2) 87

7 6.6. ПРИМЕНА ЛИНЕАРНИХ ДИОФАНТОВИХ ЈЕДНАЧИНА Линеарне Диофантове једначине нису саме себи циљ и познавање алгоритма за њихово решавање не значи ништа уколико се он не примени у подесним ситуацијама. Следећи примери ће показати колико су линеарне Диофантове једначине моћно средство за решавање разних Диофантових проблема теоријске, али и практичне природе. ПРИМЕР 7. Колико има парова природних бројева (х, у) таквих да је 4х + 7у = РЕШЕЊЕ: Како је = 2005, то је почетно решење дате једначине (х о, у о ) = (496, 3). Опште решење је тада х = 496 7к; у = 3 + 4к (к је цео број). Оно што се тражи је да х и у истовремено буду природни, па мора бити: х = 496 7к > 0 и у = 4к + 3 > 0. Из прве неједнакости је 7к < 496, па је к 70. Због друге неједнакости је 4к > - 3, што значи да је к 0. Према томе 0 к 70, па се добија тачно 71 решење код кога су х и у позитивни бројеви. ПРИМЕР 8. У једној књижари оловка кошта 0,5 (пола), свеска 1, а књига 5. На колико се начина за тачно 100 може купити тачно 100 предмета? Колико од 100 купљених предмета су оловке, свеске и књиге? РЕШЕЊЕ: Нека је број купљених оловки х, број свески у и број књига z. Тада је х + у + z = 100, јер их укупно има 100. Цена купљених предмета је 2 1 2х + у + 5z = 100. Две добијене једначине представљају систем Диофантових једначина са три непознате. Ако се од прве једначине одузме друга добија се 2 1 х - 4z = 0. Следи да је х = 8z. Тада је 8z + у + z = 100, па је у = 100-8z. Према томе опште решење добијеног система једначина је: х = 8к; у = 100 9к; z = к. С обзиром да је 0 х = 8к 100, то је 0 к 12. Сва ''реална'' решења проблема дата су у следећој табели, јер теоријски проблем има бесконачно решења, али реално, у животној ситуацији свега 12: 88

8 к х у z У наредним примерима нема експлицитно линеарних Диофантових једначина, али је линеарна једначина инструмент за решавање проблема. ПРИМЕР 9. Одредити све уређене парове (х, у) целих бројева х и у тако да је 7х 2-3у 2 = 17. РЕШЕЊЕ: Нека је х 2 = а и у 2 = b. Дата једначина је тада еквивалентна са једначином 7а - 3b = 17 (а 0, b. 0). Једно решење дате једначине је а 0 = 2, b 0 = -1, па је опште решење једначине 7а - 3b = 17, дато формулама а = 3к + 2, b = 7к 1. Дакле, х 2 = 3к +2 и у 2 = 7к 1. Како је х 2 = 3к + 2, то једначина нема решења, је није могуће да иједан квадрат природног броја при дељењу са 3 даје остатак 2. ПРИМЕР 10. Постоје ли цели бројеви х и у такви да важи једнакост: 3х 2-5ху + 2у 2 4х + 5у = 7? 23 РЕШЕЊЕ: Ако је 3х 2-5ху + 2у 2 4х + 5у = 7, онда је 3х 2-3ху + 3х - 2ху + 2у 2 2у - 7х + 7у 7 = 0. То значи да је 3х(х у +1) 2у(х у + 1) 7(х у + 1) = 0, па је (х у + 1)(3х 2у 7) = 0. Јасно је да мора бити х у + 1 = 0 или 3х 2у 7 = 0. Према томе дата једначина има бесконачно много решења која су описана формулама општих решења: 1) х = к и у = к + 1; 2) х = 2к + 1 и у = 3к - 2 (к је цео број). ПРИМЕР 11. Нека су x, x 1 2,... x 2005 природни бројеви такви да је x x x = Одредити x, x 1 2,... x Овај проблем се може успешно решити и Диофантовим методом. 89

9 РЕШЕЊЕ: Очигледно је већина бројева х i једнака 1, a само неки од њих већи од 1. Нека су х 1, х 2,..., х к 2, а сви остали х к+1 =... = х 2005 = 1. Тада је х х х к 2 4к, па је због тога 2035 = (х х х к 2 ) + (х к х х ) 4к + (2005 к) = 3к Из неједнакости к 2005 следи да је 3к 30, па је к 10. Дакле х 11 =... = х 2005 = 1, па је х х х = = Према томе х х 10 2 = = 40. Ако у скупу {х 1, х 2,..., х 10 } има а јединица, b двојки, с тројки, d четворки, е петица и f шестица, онда је: а + b + с + d + е + f = 10 и а + 4b + 9с + 16d + 25е + 36f = 40. Ако се од друге одузме прва једначина добије се линеарна Диофантова једначина b + 8с + 15d + 24е + 35f = 30. Одмах је јасно да је f = 0. Ако је е = 1, онда је 3b + 8с + 15d = 7. У том случају би било b = 2, а сви остали би били 0, па би било а + b + с + d + е + f = 3, што је немогуће, јер тај збир износи 10. Дакле е = 0, па је 3b + 8с + 15d = 30. Како су 3b, 15d и 30 дељиви са 3, то мора бити и 8с, па се разлику два случаја с = 3 или с = 0. 1) Ако је с = 3, онда је 3b d = 30, па је b + 5d = 2 и има једно решење: b = 2 и d = 0, с = 3, е = f = 0, а = 5, па је = = 2035 (3 тројке, 2 двојке и 2000 јединица); 2) Ако је с = 0, онда је 3b + 15d = 30, па је b + 5d = 10 и има три решења: b = 10, а = с = d = е = f = 0, па је = = 2035 (10 двојки и 1995 јединица); b = 5 и d = 1, с = е = f = 0, а = 4, па је = = 2035 (1 четворка, 5 двојки и 1999 јединица); b = 0 и d = 2, с = е = f = 0, а = 8, па је = = 2035 (2 четворке и 2003 јединица); ПРОБЛЕМИ ЗА УВЕЖБАВАЊЕ 445. Влада је купио свеске по цени од 7 динара и оловке по цени од 4 динара и за то потрошио 60 динара. Колико је Влада купио оловки, а колико свески? 446. Износ од 2007 динара плађен је новчаницама од 2 динара и 5 динара. Колико је којих новчаница било? 447. Одредити све целе бројеве x и y такве да је 4x + 9y =

10 448. У једном разреду било је 15 девојчица и 18 дечака. Како ће они међусобно поделити 1234 кликера тако да сви дечаци добију једнак број кликера и све девојчице, такође, добију једнак број кликера? 449. Доказати да следеће једначине немају целобројних решења: a) 3x + 15y = 2006; b) 21x - 35y = 88 ; c) 6x 2-33y 2 = Одредити једно решење, а затим написати опште решење следећих линеарних Диофантских једначина: a) 3x - 5y = 77 ; b) 4x + 11y = 121 ; c) 7x - 100y = Колико има парова природних бројева (х, у) таквих да важи једнакост: 3x + 7y = 555? 452. Одредити све природне бројеве који задовољавају једначине: a) x + 2y + 3z = 25 ; b) 2x + 3y + 4z = Одредити природне бројеве x и y тако да је x 2 + 4y 2 = У скупу природних бројева решити једначину: 5x 2 + 3y 2 = Располаже се судовима од 2 и 7 литара. На колико начина се помоћу датих судова може напунити буре чија је запремина 1234 литра. Који је најбржи, а који је најспорији начин да се то уради? 456. Доказати да се коцка са ивицом дужине 13 може исећи на 1995 мањих коцки са ивицама дужине 1, 2 или 3. Колико се при том добија коцки чија ивица има дужину 3? ЗАДАЦИ СА МАТЕМАТИЧКИХ ТАКМИЧЕЊА 457. Доказати да за сваки цео број а и сваки цео број b систем једначина х + у + 2z + 2t = а и 2х 2у + z t = b има решење у скупу целих бројева. (Мађарска 1926.) Разломак представити као збир три разломка чији су и бројиоци 140 и имениоци једноцифрени бројеви. (Србија 1969.) Ово је први проблем који се своди на Диофантову једначину који се појавио на математичким такмичењима у нашој земљи. 91

11 459. Одредити троцифрени број чије су све цифре различите од нуле, а збир свих различитих двоцифрених бројева састављених од цифара овог броја једнак је том броју. (Србија 1979.) 460. Нека су n и к природни бројеви. Ако се са р к означи број ненегативних целих решења једначине кх + (к + 1)у = n к + 1, израчунати суму р 1 + р р n+1. (СФРЈ 1978.) 461. На колико начина се број 1984 може представити као збир узастопних природних бројева и који су то бројеви. (Србија 1984.) 462. Oдредити шестоцифрен број чији производи са 2, са 3, са 4, са 5 и са 6 представљју такође шестоцифрене бројеве који се пишу у истим цифрама као и тражени број. (Србија ) 463. Коцка ивице 13 cm исечена је на 1994 мање коцке са целобројном дужином ивица. Колике су димензије добијених коцки и колико којих коцки има? (СРЈ ) 464. Одредити све троцифрене бројеве који су 15 пута већи од збира својих цифара (Србија ) 465. У соби се налазе столице са 3 и са 4 ноге. Када на све столице седну људи, у соби је укупно 69 ногу. Колико у соби има столица са 3, а колико са 4 ноге? (Србија ) 466. Ученик треба да реши 20 задатака. За свако тачно решење добија 8 поена, за нетачно решење му се одузима 5 поена, а задатак који није решавао се не бодује. Ученик је сакупио 13 поена. Колико задатака је тачно решио? (СРЈ 1995.) 467. Одреди колико парова природних бројева (x,y) задовољава једначину 3x + 8y = (Србија 1996.) 468. У координатној xоy равни дата је тача М са координатама (5, 3). Кроз тачку М конструисана је права р која координатне осе сече у тачкама А (а, 0) и В (0, b). Одредити све вредности а и b тако да су и а и b природни бројеви. (Србија 1997.) 469. Ако се између цифара двоцифреног природног броја напише нула добија се број који је 9 пута већи од датог. Одредити о којим бројевима је реч? (Србија ) 470. У xоy координатној равни дата је права 4x + 7y = Колико тачака на датој правој имају обе координате целобројне и припадају првом квадранту координатне равни? (Србија 1998.) 92

12 ПРОБЛЕМИ ЗА ИСТРАЖИВАЊЕ 471. На складишту се налазе ексери упаковани у сандуке од 16, 17 или 40 килограма. Како, не отварајући сандуке купцу испоручити тачно 100 кg екесера? 472. Према источњачкој бајки "Шехерезада" (из збирке "Приче из хиљаду и једне ноћи"), девојка Шехерезада је из ноћи у ноћ причала моћном султану по 3 или по 5 бајки. За колико је највише ноћи могла да исприча 1001 причу? За колико је ноћи најбрже то могла да учини? Колико разних комбинација за исказивање свих прича постоји? 473. Колико решења у скупу природних бројева има једначина ax + by = с, где су a и b узајамно прости цели бројеви? 93

13 94

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4 МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4 МАТЕМАТИЧКИ ЛИСТ 0/5. бр. XLIX- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 70 5 = 50; б) 0 = 80; в) 0 = 9; г) 5 = 850; д) 60 : = 0; ђ) 0 : 8 = 0; е) 86 : = ;

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

ПРИЈЕМНИ ИСПИТ. Јун 2003.

ПРИЈЕМНИ ИСПИТ. Јун 2003. Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

Математика Тест 3 Кључ за оцењивање

Математика Тест 3 Кључ за оцењивање Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

2.1. Права, дуж, полуправа, раван, полураван

2.1. Права, дуж, полуправа, раван, полураван 2.1. Права, дуж, полуправа, раван, полураван Човек је за своје потребе градио куће, школе, путеве и др. Слика 1. Слика 2. Основа тих зграда је често правоугаоник или сложенија фигура (слика 3). Слика 3.

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ

МАСТЕР РАД УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ. Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ МАСТЕР РАД Тема: ГОРЊА И ДОЊА ГРАНИЧНА ВРЕДНОСТ НИЗА И НИЗА СКУПОВА И ЊИХОВЕ ПРИМЕНЕ У РЕЛНОЈ АНАЛИЗИ МЕНТОР: КАНДИДАТ: Проф. др Драгољуб Кечкић Милинко Миловић

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Метода мреже за Дирихлеове проблеме Метода мреже се приближно решавају диференцијалне једначине тако што се диференцијална

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

М лади. атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012.

М лади. атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012. М лади атематичар БРОЈ 25. ГОДИНА XXV ЈУН 2012. БРОЈ 25. ГОДИНА XXV ЈУН 2012. Пјер де Ферма Пјер де Ферма француски математичар баскијског порекла.рођен је 17. августа 1601. у Бомон-де-Ломању, југозапад

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља

Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља Универзитет у Машински факултет Београду Математички модел осциловања система кугли око равнотежног положаја под утицајем гравитационог поља -семинарски рад- ментор: Александар Томић Милош Живановић 65/

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА. Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА. Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2 Diffie-Hellman размена кључева први алгоритам са јавним кључем

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ДРЖАВНИ СЕМИНАР О НАСТАВИ МАТЕМАТИКЕ И РАЧУНАРСТВА У ОСНОВНИМ И СРЕДЊИМ ШКОЛАМА Број: 250 Компетенцијa: K1 Приоритети: 1 ТЕМА: МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ

Διαβάστε περισσότερα

В е р и ж н и р а з л о м ц и. -примери и примене-

В е р и ж н и р а з л о м ц и. -примери и примене- УНИВЕРЗИТЕТ У БЕОГРАДУ Математички факултет Мастер рад: В е р и ж н и р а з л о м ц и -примери и примене- Ментор: професор др Зоран Петровић Кандидат: Јелена Видић индекс 04/00 САДРЖАЈ I Увод...3 II Еуклидов

Διαβάστε περισσότερα

Тангента Нека је дата крива C са једначином y = f (x)

Тангента Нека је дата крива C са једначином y = f (x) Dbić N Извод као појам се први пут појављује крајем XVII вијека у вези са израчунавањем неравномјерних кретања. Прецизније, помоћу извода је било могуће увести појам тренутне брзине праволинијског кретања.

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА

МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ МЕТОДЕ ЊИХОВОГ РЕШАВАЊА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ДРЖАВНИ СЕМИНАР О НАСТАВИ МАТЕМАТИКЕ И РАЧУНАРСТВА У ОСНОВНИМ И СРЕДЊИМ ШКОЛАМА Број: 242 Компетенцијa: K1 Приоритети: 1 ТЕМА: МАТЕМАТИЧКИ ЗАДАЦИ, ЊИХОВА КЛАСИФИКАЦИЈА И НЕКЕ

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је

Διαβάστε περισσότερα

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12 Cook-Levin: SAT је NP-комплетан Теодор Најдан Трифунов 305M/12 1 Основни појмови Недетерминистичка Тјурингова машина (НТМ) је уређена седморка M = (Q, Σ, Γ, δ, q 0,, ) Q коначан скуп стања контролног механизма

Διαβάστε περισσότερα

Конструкција правилних конвексних 4-политопа и њихових дводимензиналних пројекција

Конструкција правилних конвексних 4-политопа и њихових дводимензиналних пројекција MAT-KOL (Banja Luka) XXIII ()(7) 89- http://wwwimviblorg/dmbl/dmblhtm DOI: 7/МК789D ISSN -6969 (o) ISSN 986-88 (o) Конструкција правилних конвексних -политопа и њихових дводимензиналних пројекција Ратко

Διαβάστε περισσότερα

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z.

(1) Дефиниција функције више променљивих. Околина тачке (x 0, y 0 ) R 2. График и линије нивоа функције f: (x, y) z. Дефиниција функције више променљивих Околина тачке R График и линије нивоа функције : Дефиниција Величина се назива функцијом променљивих величина и на скупу D ако сваком уређеном пару D по неком закону

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР - 12. ДЕЦЕМБАР 2010. ГОДИНЕ http://puzzleserbia.com/ ДРУГА НЕДЕЉА (6.12. - 12.12.) 7. СУДОКУ АЈНЦ 8. ПЕНТОМИНО УКРШТЕНИЦА 9. ШАХОВСКЕ

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα