دروس رياضيات - أولى ج م علوم

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "دروس رياضيات - أولى ج م علوم"

Transcript

1 الجمهور ية الجزائر ية الديمقراطية الشعبية وزارة التربية الوطنية مديرية التربية لولاية الوادي ثانوية غربي بشير - حاسي خليفة دروس رياضيات - أولى ج م علوم إعداد: الأستاذ حريز خالد كتب ب L A TEX yharizkhaled9@gmail.com q السنة الدراسية:

2 الترتيب - المجالات - القيمة المطلقة الأعداد والحساب الحساب الشعاعي والهندسة التحليلية عموميات على الدوال البرنامج الهندسة الفضائية الدوال المرجعية الهندسة المستو ية المعادلات والمتراجحات الإحصاء

3 الأعداد والحساب

4 المجموعات الأساسية للأعداد 2- مجموعة الأعداد الصحيحة النسبية : الأعداد الكفاءات المستهدفة : " التمييز بين مختلف أنواع الأعداد. سير الدرس : 1- مجموعة الأعداد الطبيعية : الأعداد تسمى أعداد طبيعية. نرمز إليها بالرمز أمثلة : 5 ينتمي إلى مجموعة الأعداد الطبيعية ونكتب 5. 2 لا ينتمي إلى مجموعة الأعداد الطبيعية ونكتب ! ملاحظة : أصغر عدد في المجموعة هوالعدد 0 المجموعة مجموعة غير منتهية. مجموعة الاعدد الأعداد الطبيعية غير معدومة نرمز لها ب تسمى أعداد صحيحة نسبية ) سالبة معدومة موجبة (. نرمز إليها بالرمز أمثلة : 5 ينتمي إلى مجموعة الأعداد الصحيحة النسبية ونكتب 5.. لا ينتمي إلى مجموعة الأعداد الصحيحة النسبية ونكتب عدد صحيح نسبي لأن p q حيث p عدد صحيح. 4 لأن = = 1! نتيجة : كل عدد طبيعي هو عدد صحيح نسبي ونكتب ونقرأ محتواة في - مجموعة الأعداد الناطقة : نسمي عددا ناطقا كل عدد يمكن كتابته على الشكل نسبي و q عدد صحيح نسبي غير معدوم. نرمز إلى مجموعة الأعداد الناطقة بالرمز الأستاذ: 4 حريز خالد

5 أمثلة : الانتقال من الكتابة العشرية إلى الكتابة الكسرية لعدد ناطق : لتعيين الكتابة الكسرية لعدد ناطق a انطلاقا من كتابته العشرية نتبع ما يلي: 1) نعين عدد ارقام الدور وليكن. n 2) نضرب العدد a في 10 n ثم نحصل على معادلة مجهولها. a ) نحل المعادلة فنحصل على العدد الناطق مكتوبا على شكل كسر. 7 9 و 9 7 عددان صحيحان أعداد ناطقة عدد ناطق لأن ه يمكن كتابته من الشكل 0.9 نسبيان. 2 عدد ناطق لأن يمكن كتابته من الشكل! نتيجة : a = عدد ارقام الدور هو 2 اذن نضرب العدد a في 10 2 أي = 100a كل عدد صحيح هو عدد ناطق لأن يمكن كتابته من الشكل ونكتب : p = p 1 نشاط : باستعمال الآلة الحاسبة أحسب الأعداد التالية: ما هي الخاصية المميزة لهذه الأعداد! خواص الأعداد الناطقة : ومنه a = a ومنه = 100a = a = 519 تمرين : عين الكتابة الكسرية للأعداد و مجموعة الأعداد العشر ية : تعريف : 1 1) يتميز كل عدد ناطق بكتابة عشرية ٺتضمن دورا. 2) كل عدد ناطق يقبل كتابة وحيدة على شكل كسر غير قابل للاختزال p q مع p و q عددين صحيحين نسبيين و 0 q العدد العشري هو العدد الذي يمكن كتابته على الشكل n صحيح نسبي و n عدد طبيعي. نرمز إلى مجموعة الأعداد العشرية بالرمز حيث p عدد p 10 تعريف : 2 نسمي عددا عشريا كل عدد ناطق جزءه العشري منته تختصر هذة الكتابة الى = = = 1 تختصر هذة الكتابة الى = 0. 2 = الأستاذ: 5 حريز خالد

6 أمثلة : 5- الأعداد الصماء/ مجموعة الأعداد الحقيقية : 1) 4.25 عدد عشري لأن : 425 = 4.25 او لأن جزءه العشري منته. 14 حيث 14 = p و = 1 n 102 2) 5 7 عددا عشريا لأنه يكتب على الشكل 10 ) = 1 عدد ناطق وليس عشري لأن جزءه العشري 7 ليس منته. = (4 1 2 عدد عشري لأن دوره معدوم.! الخاصية المميزة للعدد العشري : q عدد عشري معناه مقامه p q عدد ناطق غير قابل للاختزال. العدد p q يكتب من الشكل جداء قوى 2 أو. 5. 1) 10 عدد عشري لأنه يمكن كتابته على الشكل 5 2 2) 11 5 ليس عشري لأن مقامه لا يشمل قوى 2 أو عدد عشري لأنه يمكن كتابته على الشكل 2 8 ( 4) عدد عشري لأنه يمكن كتابته على الشكل. 2 5! نتيجة : كل عددعشري هو عدد ناطق ونكتب تعرفنا في الدرس السابق على مجموعة الأعداد الناطقة فالعدد الناطق هو الذي يمكن كتابته على الشكل p حيث p و q عددان صحيحان نسبيان و 0 q. q كما أن كل عدد ناطق يتميز بكتابة عشرية ٺتضمن دورا. استعمل الآلة الحاسبة وأعط الكتابة العشرية للعدد 2 و ماذا تستنتج العدد 2 يتميز بكتابة عشرية غير دورية ) أي جزؤه العشري لا يحتوي على دور ( ومنه ليس عددا ناطقا. العدد الأصم : نسمي عددا أصم ا كل عدد حقيقي غير ناطق.... π 7 كلها أعداد صماء مجموعة الأعداد الحقيقية : مجموعة الأعداد الحقيقية هي مجموعة فواصل نقط مستقيم مزو د بمعلم (I ;o) العدد الحقيقي 0 هو فاصلة المبدأ O والعدد الحقيقي 1 هو فاصلة A B C D 0 I E 2 F G π 14 النقطة I. + الأستاذ: 6 حريز خالد

7 تطبيق : 2! ملاحظات : هي مجموعة الأعداد الحقيقة ماعدا الصفر. + هي مجموعة الأعداد الحقيقة السالبة. هي مجموعة الأعداد الحقيقة الموجبة. المقارنة بين مجموعات الأعداد : انقل الجدول التالي واكمل بوضع علامة عندما يكون العددينتمي الى المجموعة π لدينا ما يلي: 12 تطبيق : أكمل الفراغ بإحدى الرمزين أو : π π تطبيقات من الكتاب المدرسي : π تطبيق : ص 18 و 19 ص 19 اكتب كل من الأعداد التالية على شكل كسر: الأستاذ: 7 حريز خالد

8 ! خواص : a و b عددان حقيقيان غير معدومين و n و m عددان صحيحان نسبيان. (a n ) m = a n m (2 (a b) n = a n b n (1 a n a n = b b (4 n an a m = a n+m ( 1 a n = a n (6 a n a m = an m (5 أمثلة : الكفاءات المستهدفة : القوى الصحيحة " التحكم في الحساب على القوى الصحيحة. (0.5) 2 = 4 10 = 1 10 = = = 2 52 = = 6 2 = 2 6 = = = 5 6 = = 22 2 = = 42 5 = 4 = 1 4 = 1 64 (2 5) 2 = (2 5) 2 = ! ملاحظة : من أجل كل عدد طبيعي n فانه (1 1 = n ( 1) اذا كان n زوجيا (2 1 = n ( 1) اذا كان n فرديا ( 2) = 8 ( ) 4 = 4 = 81 ( 1) 2 2 سير الدرس : نشاط : أحسب كلا من الأعداد التالية : 5 ( ) 4 ( 5) ( 5) ( 1) 2016 ( 1) 2015 ( 1) 7 ( 1) 4 ( 1) تعريف : a عدد حقيقي كيفي و n عدد طبيعي غير معدوم. نسمي القوة ذات الرتبة n للعدد الحقيقي a العدد a n حيث: a n = a a a }{{} nعاملا أجل كل عدد حقيقي a غير معدوم = 1 0 a 1 6 = = 1 4 = = 81 الأستاذ: 8 حريز خالد

9 تطبيق : 5 تطبيقات : أحسب ما يلي: تطبيق : A = 5 2 B = C = D = ( 4 11 ) A = B = C = أختصر العبارات التالية: تطبيق : 2 أحسب ما يلي: 2 2 (1 تطبيقات من الكتاب المدرسي : ص ( تطبيق : c = (10 2 ) b = a = 24 أكتب على الشكل : m 2n 5 كلا مما يلي : 5 10 B = ( 2)5 ( 6) ( ) 8 ( 15) 2 ( 12) A = تطبيق : 4 بسط العددان B و A: a b a b b 6 b a 4 (a 2 b) (a b) 2 الأستاذ: 9 حريز خالد

10 ! خواص : (1 من أجل a موجب: 0 a و. 2 a = a a b = a b موجبان b من أجل و a (2 الجذور التربيعية a b ( من اجل 0 a و > 0 b : a b = a b a + b = a b (4 أمثلة : = = = 4 = 2 ( 2 )( 2 + ) = 5 تطبيقات : تطبيق : 1 الكفاءات المستهدفة : " التحكم في الحساب على الجذور التربيعية. سير الدرس : تعريف : a عدد حقيقي موجب. نسمي الجذر التربيعي للعدد الحقيقي العدد الحقيقي الموجب الذي مربعه يساوي a ونرمزه إليه. a تحويل مقام الى عدد ناطق : أكتب الأعداد التالية بمقامات ناطقة: تطبيق : 2 أكتب على الشكل : a b B = A = الجذر التربيعي للعدد 4 هو 2 لأن = الجذر التربيعي ل 1 هو 1 لأن = = الأستاذ: 10 حريز خالد

11 تطبيق : نعتبر العددين الحقيقيين: الأعداد الأولية b = a = و b و a ثم بس ط 5 2 A = B = C = و أحسب تطبيق : 4 بس ط الأعداد التالية: تطبيقات من الكتاب المدرسي : الكفاءات المستهدفة : " التعرف على أولية عدد طبيعي. " تحليل عدد طبيعي إلى جداء عوامل أولية واستعماله. سير الدرس : نشاط ص : 6 تعريف : نسم ي عددا أوليا كل عدد طبيعي يقبل بالضبط قاسمين مختلفين هما: 1 والعدد نفسه ص 21 العدد 12 ليس اوليا لانه يقبل اكثر من قاسمان يختلفان عن 1 و. 12 العدد 7 اوليا لانه يقبل قاسمان هما 1 و. 7 العدد 1 ليس أوليا لأن ه يقبل قاسما واحدا فقط. العدد 0 ليس اوليا لانه يقبل ما لانهاية من القواسم. الأستاذ: 11 حريز خالد

12 الأعداد الأولية الأصغر من : 100 حساب القاسم المشترك الأكبر لعددين (b : PGCD(a; اختبار أولية عدد طبيعي : لتحديد هل العدد a او لي نقسم هذا العدد على كل من الأعداد الأولية حسب ترتيبها التصاعدي. نتوقف عن عمليات القسمة عند أو ل باق معدوم أو عندما نصادف أو ل حاصل قسمة أصغر من المقسوم عليه. نستخلص : إذا صادفنا الباقي المعدوم يكون العدد ليس أولي وإلا فهو أولي. تحليل عدد طبيعي إلى جداء عوامل أولية : مبرهنة : كل عدد طبيعي غير أولي وأكبر من 2 يكتب على شكل جداء أعداد أولية. القاسم المشترك الأكبر لعددين هو جداء العوامل المشتركة بين التحليلين مرفوعة الى اصغر أس. حساب المضاعف المشترك الأصغر لعددين (b : PPCM(a; المضاعف المشترك الأصغر لعددين هو جداء العوامل المشتركة وغير المشتركة بين التحليلين مرفوعة الى اكبر أس. تطبيق : 1) حل ل العدادن إلى جداء عوامل أولية (2 أحسب 150) PGCD(15; و 150) PPCM(15; ) إختزل الكسر 4) احسب الفرق معرفة إن كان عدد ناطق عددا عشريا ام لا : لمعرفة إن كان عدد ناطق عددا عشريا. نكتب العدد الناطق على شكله غير القابل للاختزال p ثم نحلل مقامه إلى جداء عوامل أولية. q إذا كان هذا التحليل لا يشمل إلا قوى 2 أو 5 فالعدد عشري. حلل الأعداد إلى جداء عوامل أولية. عين الأعداد العشرية من بين الأعداد الناطقة التالية : 18. عشرية أم لا الأستاذ: 12 حريز خالد

13 تطبيقات : تطبيق : 1 القيمة المضبوطة القيم المقربة (1 حدد الأعداد الطبيعية k n m بحيث يكون = k 2 n m 5 2) عي ن أصغر عدد طبيعي p بحيث يكون p مربع تام. ) عي ن أصغر عدد طبيعي s بحيث يكون s مكعب تام. تطبيق 72) 2 صفحة (22 : 1) أحسب القاسم المشترك الأكبر للعددين 45 و ) اختزل الكسر 45 وعي ن كتابة مختصرة للعدد ) إستنتج تحليلا إلى جداء عوامل أولية لكل من: تطبيقات من الكتاب المدرسي : ص 21 تطبيقات للممارسة المنزلية : الكفاءات المستهدفة : " التحو يل من و إلى الكتابة العشر ية الكتابة العلمية الكتابة باستعمال القوى الصحيحة للعدد 10 " تدوير عدد عشري إلى n 10 n سير الدرس : نشاط : بالاستعانة بالحاسبة أعط الكتابة العشر ية للعدد أحسب المدور إلى ثم إلى الوحدة. حلل الأعداد التالية إلى جداء عوامل أولية: الأستاذ: 1 حريز خالد

14 1- مدو ر عدد حقيقي : تعريف : A عدد حقيقي مكتوب في شكله العشري وليكن d رقمه العشري ذو الرتبة 1) +.(p نسمي مدور A الى p 10 العدد الذي نحصل عليه كما يلي : 1) إذا كان 5 d نأخذ العدد بأرقامه العشرية إلى الرقم العشري الذي رتبته p ونضيف 1 إلى هذا الرقم. 2) إذا كان < 5 d نأخذ العدد بأرقامه العشرية إلى الرقم العشري الذي رتبته p. ازاحة الفاصلة الكتابة العلمية العدد 8 مرات نحو اليسار مرات نحو اليمين رتبة مقدار عدد : لإيجاد رتبة مقدار عدد: 1) نكتب العدد على الشكل العلمي 2) ندور العدد العشري في كتابته العلمية إلى الوحدة ونحتفظ بالقوة 10 (1 رتبة مقدار العدد هي (2 رتبة مقدار العدد هي 10 2 العدد المدور الى الوحدة المدور الى 2 10 المدور الى الكتابة العلمية : كتابة عدد عشري على الشكل العلمي تعني التعبير عنه على الشكل a 10 n او a 10 n حيث a عدد عشري يحقق < 10 a 1 و n عدد صحيح نسبي. 4- حساب رتبة مقدار جداء أو حاصل قسمة : لإيجاد رتبة مقدار جداء أو حاصل قسمة عددين نحسب جداء أو حاصل قسمة رتبتي مقداريهما ثم نحسب رتبة مقدار الناتج. أوجد رتبة مقدار العددين: ( ) ( ) تطبيقات : ص 21 الأستاذ: 14 حريز خالد

15 الكفاءات المستهدفة : الأعداد والحاسبة " استعمال الالة الحاسبة وتوضيح مزايا وحدود الحاسبة. سير الدرس : 1- تمثيل الأعداد في الحاسبة :! ملاحظة : تسمح طاقة الإظهار المألوفة للحاسبة بإعطاء القيمة المضبوطة لعدد له عشرة أرقام على الأكثر أما إذا كان للعدد أكثر من 10 أرقام فإنها تعطي قيمة مقربة له على شكل الكتابة العلمية. 2- تنظيم حساب باليد أو بالحاسبة : عند إجراء حساب ما نتبع عادة الخطوات التالية احتراما لأولو يات العمليات حيث ننجز على التوالي: 1) الحسابات داخل الأقواس. 2) الحسابات المتعلقة بالقوى والجذور التربيعية. ) عمليات الضرب والقسمة حسب ترتيب كتابتها. 4) عمليات الجمع والطرح حسب ترتيب كتابتها. عند استعمال الحاسبة, نتعامل مع العدد بثلاثة أشكال هي: القيمة المضبوطة القيمة الظاهرة القيمة المخزنة كتابة برنامج حساب بالحاسبة : أكتب برنامج حساب العدد على الالة الحاسبة عند استعمال الحاسبة العلمية بالنسبة إلى جذر 2 نجد: 2 هي القيمة المضبوطة و هي القيمة الظاهرة. و 10.71E = هي القيمة المخزنة!!! وبالتالي الحاسبة لا تستعمل القيم الظاهرة في الحساب بل القيم المضبوطة. 2 إستعمل نفس الطريقة بالنسبة للعدد π الأستاذ: 15 حريز خالد

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3 ) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين

Διαβάστε περισσότερα

التاسعة أساسي رياضيات

التاسعة أساسي رياضيات الرياضيات Mehdi boulifa الدرس الثاني www.monmaths.com التاسعة أساسي رياضيات جذاذة التلميذ محتوى الدرس 1. أستحضر المكتسبات السابقة. الكتابات العشرية لعدد كسري نسبي 3. األعداد الحقيقية 4. تدريج مستقيم بواسطة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع

Διαβάστε περισσότερα

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن

Διαβάστε περισσότερα

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5 تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )

Διαβάστε περισσότερα

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي

Διαβάστε περισσότερα

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6 1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا

Διαβάστε περισσότερα

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي

Διαβάστε περισσότερα

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) ( الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )

Διαβάστε περισσότερα

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز

Διαβάστε περισσότερα

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح . المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل

Διαβάστε περισσότερα

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف. الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة

Διαβάστε περισσότερα

بحيث ان فانه عندما x x 0 < δ لدينا فان

بحيث ان فانه عندما x x 0 < δ لدينا فان أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x

Διαβάστε περισσότερα

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C

Διαβάστε περισσότερα

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM

Διαβάστε περισσότερα

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI ( المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط

Διαβάστε περισσότερα

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من. عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في

Διαβάστε περισσότερα

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن

Διαβάστε περισσότερα

)الجزء األول( محتوى الدرس الددراتالمنتظرة

)الجزء األول( محتوى الدرس الددراتالمنتظرة األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية

Διαβάστε περισσότερα

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { } الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة

Διαβάστε περισσότερα

1/ الزوايا: المتت امة المتكاملة المتجاورة

1/ الزوايا: المتت امة المتكاملة المتجاورة الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:

Διαβάστε περισσότερα

تايضاير و مولع يئاهن Version 1.1 اي ل

تايضاير و مولع يئاهن Version 1.1 اي ل ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )

Διαβάστε περισσότερα

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة

Διαβάστε περισσότερα

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:

Διαβάστε περισσότερα

الا شتقاق و تطبيقاته

الا شتقاق و تطبيقاته الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................

Διαβάστε περισσότερα

ق ارءة ارفدة في نظرية القياس ( أ )

ق ارءة ارفدة في نظرية القياس ( أ ) ق ارءة ارفدة في نظرية القياس ( أ ) الفصل األول: مفاهيم أساسية في نظرية القياس.τ, A, m P(Ω) P(Ω) فيما يلي X أو Ω مجموعة غير خالية مجموعة أج ازئها و أولا:.τ τ φ τ الحلقة: τ حلقة واتحاد أي عنصرين من وكذا

Διαβάστε περισσότερα

Le travail et l'énergie potentielle.

Le travail et l'énergie potentielle. الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة

Διαβάστε περισσότερα

تمارين توازن جسم خاضع لقوتين الحل

تمارين توازن جسم خاضع لقوتين الحل تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية

Διαβάστε περισσότερα

التاسعة أساسي رياضيات

التاسعة أساسي رياضيات الرياضيات المهدي بوليفة الدرس الت اسع www.monmaths.com التاسعة أساسي رياضيات التعيين في المستوي جذاذة التلميذ محتوى الدرس 1 1. أنشطة إستحضاري ة... 4 8 مسقط نقطة على مستقيم وفقا لمنحى معطى... تعيين نقطة

Διαβάστε περισσότερα

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع

Διαβάστε περισσότερα

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل

Διαβάστε περισσότερα

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة. التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين

Διαβάστε περισσότερα

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:

Διαβάστε περισσότερα

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.

Διαβάστε περισσότερα

إسالم بوزنية ISLEM BOUZENIA الفهرس

إسالم بوزنية ISLEM BOUZENIA الفهرس ISLEM إسالم بوزنية إسالم بوزنية ISLEM BOUZENIA ISLEM إسالم بوزنية الفهرس مقدمة... الدوال العددية... ص 1 كثيرات الحدود... ص 11 االشتقاقية...ص 11 تطبيقات االشتقاقية...ص 12 فرض أول للفصل األول...ص 33 فرض

Διαβάστε περισσότερα

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5 الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:

Διαβάστε περισσότερα

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة. GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف

Διαβάστε περισσότερα

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية

Διαβάστε περισσότερα

Ay wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns

Ay wm w d T d` T`ylq - tf Tyly t T w A An A : ÐAtF± : TyF Cd Tns - : 05 06 : عموميات حول الدوال العددية من إنجاز : الأستاذ عادل بناجي تقديم تمتد البدايات الأولى لفكرة الدالة إلى العهد البابلي حيث ظهرت في الجداول العددية التي كانوا ينجزونها لمقابلة العدد بمربعه أو بمقلوبه

Διαβάστε περισσότερα

رباعيات األضالع سابعة أساسي. [www.monmaths.com]

رباعيات األضالع سابعة أساسي. [www.monmaths.com] سابعة أساسي [www.monmaths.com] الحص ة األولى رباعيات األضالع القدرات المستوجبة:.. المكتسبات السابقة:... المعي ن- المستطيل ) I المرب ع الرباعي هو مضل ع له... 4 للرباعي... 4 و... 4 و... نشاط 1 صفحة 180 الحظ

Διαβάστε περισσότερα

1-1. تعاريف: نسم ي 2-1. أمثلة: بحيث r على النحو التالي: لنأخذ X = Z ولنعرف عليها الدالة 2. عدد طبيعي فردي و α عدد صحيح موجب. وسنضع: =

1-1. تعاريف: نسم ي 2-1. أمثلة: بحيث r على النحو التالي: لنأخذ X = Z ولنعرف عليها الدالة 2. عدد طبيعي فردي و α عدد صحيح موجب. وسنضع: = أوال : الفضاءات المتري ة ) Spaces ( Metric 1-1. تعاريف: لتكن X مجموعة غير خالية ولتكن: + R d X X دالة حقيقي ة بمتغيرين. (x, y) d(x, y) نسمي d نصف مسافة )شبه مسافة ( على X إذا حق قت الشروط التالية أيا كانت,x,y

Διαβάστε περισσότερα

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية

Διαβάστε περισσότερα

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن

Διαβάστε περισσότερα

لجھة... نيابة... دفتر النصوص األستاذ : ...

لجھة... نيابة... دفتر النصوص األستاذ : ... المملكة المغربية وزارة التربية الوطنية و التعليم العالي و البحث العلمي لجھة... نيابة... الثانوية التأھيلية... الا كاديمية الجهوية للتربية و التكوين دفتر النصوص مادة الرياضيات بالجذع المشترك العلمي رقم

Διαβάστε περισσότερα

********************************************************************************** A B

**********************************************************************************   A B 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1

Διαβάστε περισσότερα

ﻉﻭﻨ ﻥﻤ ﺔﺠﻤﺩﻤﻟﺍ ﺎﻴﺠﻭﻟﻭﺒﻭﺘﻟﺍ

ﻉﻭﻨ ﻥﻤ ﺔﺠﻤﺩﻤﻟﺍ ﺎﻴﺠﻭﻟﻭﺒﻭﺘﻟﺍ The Islamic iversity Joural (Series of Natural Studies ad Egieerig) Vol.4, No., P.-9, 006, ISSN 76-6807, http//www.iugaza.edu.ps/ara/research/ التوبولوجيا المدمجة من نوع * ا.د. جاسر صرصور قسم الرياضيات

Διαβάστε περισσότερα

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6 ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة

Διαβάστε περισσότερα

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ...

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ... مبادئ في الحسابيات ( c c 5--9-5-4-- ( ( α r α α α α {,,,,4,5,,7,8,9 } αrαr α α α ( : α α α α {,,4,,8} / α + α + α + + αr 4 /αα { } r r 4 α,5 5 9 / α + α + α + + αr 9 / (α + α + α + ( α + α + α + αα {,

Διαβάστε περισσότερα

المحاضرة السابعة والثامنة

المحاضرة السابعة والثامنة المحاضرة السابعة والثامنة تمثيل المعطيات والب ارمج في نظام الحاسوب DATA AND PROGRAM REPRESENTATION IN THE COMPUTER SYSTEM 7. تمهيد Introduction كمبا سبببببببق وأشببببببرنبا فبإن نظبام الحباسببببببوب هو

Διαβάστε περισσότερα

متارين حتضري للبكالوريا

متارين حتضري للبكالوريا متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا

Διαβάστε περισσότερα

البرنامج هو سلسلة متتالية من التعليمات يمكننا تشبيهها بوصفة إعداد وجبة غذائية, نوتة موسيقية أو

البرنامج هو سلسلة متتالية من التعليمات يمكننا تشبيهها بوصفة إعداد وجبة غذائية, نوتة موسيقية أو الفصل األول باسكال البرمجة بلغة البرمجة إلى مدخل 1.1 المقدمة البرنامج هو سلسلة متتالية من التعليمات يمكننا تشبيهها بوصفة إعداد وجبة غذائية, نوتة موسيقية أو نموذج حياكة, وتتميز عنها ب ارمج الحاسوب بشكل

Διαβάστε περισσότερα

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن : اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب

Διαβάστε περισσότερα

تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. وأسفرت أعمال جملة من الر ياضيين و الفيز يائيين فيمابعد خاصة نيوتن (Newton)

تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. وأسفرت أعمال جملة من الر ياضيين و الفيز يائيين فيمابعد خاصة نيوتن (Newton) DERIVATION الاشتقاق من إنجاز : الأستاذ عادل بناجي 2 تقديم حاول العلماء منذ العصور القديمة تحديد مماسات لبعض المنحنيات. Archimède) 22 ;278 مقترحا في هذا الصدد. وقد قدم أرخميدس وأسفرت أعمال جملة من الر ياضيين

Διαβάστε περισσότερα

التفسير الهندسي للمشتقة

التفسير الهندسي للمشتقة 8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى

Διαβάστε περισσότερα

التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S

Διαβάστε περισσότερα

دئارلا óï M. R D T V M + Ä i e ö f R Ä g

دئارلا óï M. R D T V M + Ä i e ö f R Ä g الائد óï D T V M i ö لا R Ä f Ä + e g بلا بلا لا ب اإلحتمال إحتمال عدم وقوع ا ل ا = ١ ل ا ١ ن ) ا @ @ * فضاء العينة : ھو مجموعة جميع النواتج إحتمال وقوع ا فقط وقوع ب وقوع ا و عدم @ ل ا ب إحتمال ل ا ب =

Διαβάστε περισσότερα

بحيث = x k إذن : a إذن : أي : أي :

بحيث = x k إذن : a إذن : أي : أي : I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها

Διαβάστε περισσότερα

**********************************************************************************

********************************************************************************** 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ

Διαβάστε περισσότερα

تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH

تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A

Διαβάστε περισσότερα

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر

Διαβάστε περισσότερα

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph 8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol

Διαβάστε περισσότερα

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت

Διαβάστε περισσότερα

فرض محروس رقم 1 الدورة 2

فرض محروس رقم 1 الدورة 2 ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في

Διαβάστε περισσότερα

نصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول "اضغط هنا" ملاحظة هامة

نصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول اضغط هنا ملاحظة هامة 1 نصيحة لك أخي الطالب ننصحك وبشدة قبل الإطلاع على الحلول أن تقوم بالمحاولة بحل كل سؤال بنفسك أنت! ولاتعتمد على أي حل آخر, فجميع الحلول لنا أو لغيرنا تحتمل الخطأ والصواب وذاك لتحقق أكبر فائدة بإذن هللا,

Διαβάστε περισσότερα

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع - هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.

Διαβάστε περισσότερα

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol. : - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/

Διαβάστε περισσότερα

أساسيات لغة QBASIC A B A + B A B A ^ B A = B A B المعامالت الحسابية: + - * / \ ^ المعامالت المنطقية: AND OR NOT

أساسيات لغة QBASIC A B A + B A B A ^ B A = B A B المعامالت الحسابية: + - * / \ ^ المعامالت المنطقية: AND OR NOT أساسيات لغة QBASIC التعبير في لغة بيسك التعبير في الجبر ( حسابي ) A + B A - B A B A + B A - B A * B A B A B A B أو A + B A ^ B التعبير في لغة بيسك التعبير في الجبر ( منطقي ) A > B A < B A B A B A = B A

Διαβάστε περισσότερα

المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. (كالصواريخ و الطائرات و السفن و غيرها) يحافظ على إستقرار

المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. (كالصواريخ و الطائرات و السفن و غيرها) يحافظ على إستقرار بسم اللهجلال الحاج الرحمن عبدالرحيم يشرح المقال هذا بعض أهم المفاهيم و المواضيع النظرية للتحكم هذه المفاهيم و المواضيع ذات أهمية بالغة في بعض فروع الهندسة كالهندسة الكهربائية و الميكانيكية. تظهر أهمية

Διαβάστε περισσότερα

با نها خماسية حيث: Q q الدخل. (Finite Automaton)

با نها خماسية حيث: Q q الدخل. (Finite Automaton) الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها

Διαβάστε περισσότερα

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = = -i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب

Διαβάστε περισσότερα

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل

Διαβάστε περισσότερα

الفصل الثالث عناصر تخزين الطاقة الكهربائية

الفصل الثالث عناصر تخزين الطاقة الكهربائية قانون كولون الفصل الثالث عناصر تخزين الطاقة الكهربائية - - مقدمة : من المعروف أن ذرة أي عنصر تتكون من البروتونات واإللكترونات والنيترونات وتتعلق الشحنة الكهربائية ببنية الذرة فالشحنة الموجبة أو السالبة

Διαβάστε περισσότερα

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3 بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H

Διαβάστε περισσότερα

منتديات علوم الحياة و الأرض بأصيلة

منتديات علوم الحياة و الأرض بأصيلة www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة

Διαβάστε περισσότερα

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V 8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على

Διαβάστε περισσότερα

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة

Διαβάστε περισσότερα

تصميم الدرس الدرس الخلاصة.

تصميم الدرس الدرس الخلاصة. مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال

Διαβάστε περισσότερα

الدورة العادية 2O16 - الموضوع -

الدورة العادية 2O16 - الموضوع - ا 1 لصفحة المركز الوطني ل ت وي واامتحانا والتوجيه اامتحا الوطني ال وحد للبكالوريا NS 6 الدورة العادية O16 - الموضوع - المادة ع و الحياة واأرض مدة اإنجاز الشعبة أو المس شعبة الع و الرياضية " أ " المعامل

Διαβάστε περισσότερα

Dipôle RL. u L (V) Allal mahdade Page 1

Dipôle RL. u L (V) Allal mahdade   Page 1 ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة

Διαβάστε περισσότερα

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي

Διαβάστε περισσότερα

ظاهرة دوبلر لحركة المصدر مقتربا أو مبتعدا عن المستمع (.

ظاهرة دوبلر لحركة المصدر مقتربا أو مبتعدا عن المستمع (. ظاهرة دوبلر وهي من الظواهر المألوفة إذا وجدت سرعة نسبية بين مصدر الصوت والسامع تغيرت درجة الصوت التي تستقبلها أذن السامع وتسمى هذه الظاهرة بظاهرة دوبلر )هو التغير في التردد او بالطول الموجي نتيجة لحركة

Διαβάστε περισσότερα

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH 8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Εισαγωγή

Ακαδημαϊκός Λόγος Εισαγωγή - سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا

Διαβάστε περισσότερα

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور

Διαβάστε περισσότερα

ضرب وقسمة أعداد عشرية

ضرب وقسمة أعداد عشرية ضرب وقسمة أعداد عشرية المحتويات مدخل إلى فصل "ضرب وقسمة أعداد عشرية"........ 40 أ. ضرب األعداد العشرية في 10 في 100 وفي. 1,000... 41 جداول مالءمة في األعداد الصحيحة الضرب في 10 الضرب في 100 الضرب في 1,000

Διαβάστε περισσότερα

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7. الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :

Διαβάστε περισσότερα

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms ) التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي

Διαβάστε περισσότερα

1- عرض وتحليل النتائج الفرضية األولى: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T(

1- عرض وتحليل النتائج الفرضية األولى: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T( 1- الفرضية األولى: جدول رقم )06(: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T( - المحسوبة والمجدولة بين العينتين التجريبية والضابطة لالختبار القبلي. اختبار التوافق الداللة df T t

Διαβάστε περισσότερα

2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI

2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI اكتب الناتج العضوي في كل من التفاعلات الا تية : 5 مساعد (400-300) س C + 2H عامل 2. ضوء CH 4 + Cl 2 CH 3 NH 2 + HCl أكتب صيغة المركب العضوي الناتج في كل من التفاعل الا تية : 2) CH 3 CH 2 Cl + CH 3 3) +

Διαβάστε περισσότερα

) الصيغة التي تستخدم رموز العناصر والروابط لعرض األماكن النسبية للذرات.

) الصيغة التي تستخدم رموز العناصر والروابط لعرض األماكن النسبية للذرات. 7 1 اكتب في الفراغ المحدد االسم أو المصطلح العلمي الدال على كل عبارة من العبارات التالية : ) القوة التي تربط الذرات معا. ( ) يتكون من ارتباط ذرتين أو أكثر تساهميا. ( ) نوع من الرابطة التساهمية تتكون من

Διαβάστε περισσότερα

ارسم م ثل ث ا قائم الزاوية.

ارسم م ثل ث ا قائم الزاوية. أ ب - 1 - مثلث قائم - الزاوية تذكير: في الوحدة األولى في الفصل التاسع تعل منا عن المستطيل الذي فيه أربع زوايا قائمة ھو مستطيل. وعر فنا أن الشكل الرباعي زاوية قائمة ھي زاوية مقدارھا 90 الھندسة كما في الرسم

Διαβάστε περισσότερα

حركة دوران جسم صلب حول محور ثابت

حركة دوران جسم صلب حول محور ثابت حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين

Διαβάστε περισσότερα

جمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف

جمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف جمهورية العراق وزارة الرتبية املديرية العامة للمناهج الرياVضيات لل صف ال ساد س الأدبي ت أليف الدكتور مهدي صادق عباس الدكتور طارق شعبان رجب احلديثي حسام علي حيدر محمد عبد الغفور اجلواهري سعد محمد حسني البغدادي

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Παραγγελία

Εμπορική αλληλογραφία Παραγγελία - Κάντε μια παραγγελία ا ننا بصدد التفكير في اشتراء... Επίσημη, με προσοχή ا ننا بصدد التفكير في اشتراء... يس ر نا ا ن نضع طلبي ة مع شركتك... يس ر نا ا ن نضع طلبي ة مع شركتك... Επίσημη, με πολλή ευγενεία

Διαβάστε περισσότερα

PDF created with pdffactory Pro trial version

PDF created with pdffactory Pro trial version الا ساليب الا حصاي ية المستخدمة الوصفية لمتغير واحد: نوع المتغير ا ساليب القياس المناسبة نزعه مركزية تشتت المقاييس النسبية ا خرى ------ : المنوال التكرار النسبي للقيمة التكرار الن سبي ) المنوالية النسب

Διαβάστε περισσότερα

**********************************************************

********************************************************** اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8

Διαβάστε περισσότερα

مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fundamental principles in the atomic physics, and the nuclear physics

مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fundamental principles in the atomic physics, and the nuclear physics مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fudametal priciples i the atomic physics, ad the uclear physics البحث 3 3 مدخل. 33.3 :Itroductio تتكون المادة مهما كانت حالتها»صلبة سائلة أو غازية«من ناتج

Διαβάστε περισσότερα

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل

Διαβάστε περισσότερα