Nanoindentation de couches minces déposées sur substrat de verre de silice

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nanoindentation de couches minces déposées sur substrat de verre de silice"

Transcript

1 Nanoindentation de couches minces déposées sur substrat de verre de silice Antoine Perriot To cite this version: Antoine Perriot. Nanoindentation de couches minces déposées sur substrat de verre de silice. Mechanics. Université Pierre et Marie Curie - Paris VI, French. <tel > HAL Id: tel Submitted on 6 Nov 2006 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2 o! " # $ %& '()*& *& +,-./ :8/; 30 <=28: + <FG:8H10 30: I=/;28=1J K LMENDM& OPQQRST U$ VK WX YZZ [Z\[] ^[ _Z \ \` [ a " " V bc de f# b g hk VK e ff$$ ikf jk jk l m nopoa q $ jk v $e awk rstu wvpdvr d$ e " rk " WX jk jk x K yvypv rk " jk v $e x K pv nyojqol xstryza s vikf$k " vikf$k "

3

4 $ jkvm $ K " K " e V $m$ " K VK " VV K " " $ $h f $ K$ K VK e K KhKe WK f e h ekv K f e h K" a" Ke awk rstu K #$ h "V" f Kee K" $ " VK# K $ " z Ke ff VK K#$V$ f WX k q " e VK e ff " V $ e " V"$ i $f fk m K$" k p KhK$V e" K" e " e $ K K" K$ K $#V K V ek f e $ v$ xoruyvp dkf$ o dvjxrstnk zv V " K#$V$K $e f $ hv hkw$kk V f e$ k K$ " " $ $#V K KfK$ # K"e " K $ V " e Ke e$ e k K "V f n WX e" K V ek " e K nzwrvk f f e$ ak$l #K$ r ew ew " "$ fk $ Vk f e$ $ K $e"v$ e r l KhK"i l KV $ V " "mm $ dtzazu e $V awk$ "h qvppvuzvr " $e$ "ik " V " "$h$ m"v$ f v $e wvpdvr x K yvypv f K$ V W " Kee K f fk"e $ ikf$k " k l m V nopoa K$ " x K m nyojqol s v $e pv xstryza e V"$ V " fk " $ "$ f f$ f $ " V X KfV$ e f f $ k f e$ K $e"v$ x K nyoj qol s " Kh $ " e " e " e " e ffk$ V $$ $ " "f " K " fk p $KfKkkk $ KhK"i $e$ V K V ek fk WX k zv f " e e $ K f $ rkfk V "VK e VVK# K$ e" "e" " k pk "K$ KV$ f " K" pk# K $ qw$e nw$f$ jk $K"i p"f$ e n ratnxp zk qv" e " " f Kh $ K$ #e$ V " Kh $ K$ V " fk $ V $ f e$ f h V f e$ " V " Kee" $Vk j K $e"v$ pk" lrsa opv U " K fk $ " $e K" " $V KV $ joruz v #" K" o K" nvrvs " f Kh $ VK$ "K V " nyojqzs "V$ xs wzpa j$ew V$ xstdvtppvkv $Knopzwo sw Ke $ o# X vpyoaast z nw $$ joruz vu K Xm sppzvr qo nvr d f$$ " stol vr " V " e $#"$ e$h K"i l K "h $ $ "#V$K#V " K$ mk f " alr p k f e$ K"$ " V m "$ K V " $ e KhK"i VK V"K i $ e fek$ " K" K$ K " KV$ K V e " nk a $ Uq v $e r$ $ xsdzsu a m KhK oppodvot pk" p V nordz op d$ $ pv nstzstr V i $ e " VK V"f$ e e " nw f zzz $h ff l$vv tvrvp a$f dz qzvrrs a W$ qoqz K$$ " V "$ j$ KV

5 $$ m$ k f e$ mkv f ov ao jzltvp a Vh$ pv wpsn y " pk# K $ qw$ " jk $K"i n K "e" n ratnxp zk p Kh $ K$ " f$ f K h$ VKe VK f " $KfK K#V VK e f K KeeX VK x V " VK# K $ V "V $ $$ i $f KV " KeW K"$ " KK $V f"e"vk$ k f e$ j W $ wzrdostaa " K e $ #"$ $ VV VK m KffK$ " f XV V $ e f f VK VK$ " VK $V$e Kf W $h "VK K e ff $ k K$ " #K e fk K$ " "h $ K f " $V K " Km$K$ ie $ Vk y f X " " f " $ Km$K$ " $V V K K e K$K f $VV"$ " VK $#$V$ " ff ekv$# k ek t WX e ff " e " V$K$ " K$ j V"$ " ff fk h e f e fkm $ " k f e$ K# pk" e V avrrvot fk "$ K K Km f #" K" K e $ K V $VV " KV " fkke K$ Kh e K$ fk h $i e e VV V $ $e nkh k j e$ K"$ K"i "i x "$ f f VK $ sv$h$ vro V h K$ r K" xrzord V K"ik zv K" K$ # K"e " Ke $e$ W$ $ Kff $e"$ e$ $ " K" " " #KVV #KVV Kf $ek$k j e$ K"i WK "$ "$h$ K $ # $Xh f j W $ Uopojopz " K K$ e V mk f VK$K $ " VK "h VV w Ke o $K dz vant " $f #K#V fk$ V$e$ "i V"m K"i ff $e VK nyvjz " KW $f $m p K " q$ d m k VK " VV K KhK$VV k V " V K$ W " " f KeWXh " WX #e$ K"$ VK m f V Kf#$Ke " h$ f X ewkv " "ik K f e$ w K" d j" $ V xvotoza dkh dop joa nk V$ yvzu porlv o pv qz tzvr qkekv p K ovp vv$ a dvrlrd fkvm V " $ dk$ V oxrzst j$ewk VK psuk f e$ K"$ " V Km$K$ "$ K V " e e $#" VK h$ " VK# K $ K e $ K $ " ov$e o $ o UW fk ov ik K p " ak$ KqK"V x p K UK akf#k f$ f$ V wk# $e k j e$ K"$ x # " #KVV "$ K" K " " K" WK e " VK fk ew f e$ $ K$ K"i $e$v o $ k K"$ K" ff $ V m alr "$ " e $ K Km K#V k K $e"v$ K"i f f# " h$e Uq " m " qw$ " VK w"$ fk$ e V $ iwk"$k v $X " WK "$ " h$ V i $ e "$ K W $ "$ " VK fkw$ " "#V$eK$ " K $h K e $ " K$ "#V$ $V K " Kf$VV Kf$ " " " " Vk f e$ o nvk$ K $e"v$ pvanswwzu "$ K " e " f " K"$ f " $ " V " " K" V m K" e Kh " k q K $ K VV e K "eex e f f W "$Kf h k K$ K " K $ # "

6 $$$!" #$"%&' % %(%" ')* +, -. / 0 1 / 23 / / ckc rk V fek$ " f$v$ "i e $" k k k k k k k k k k k k k k k k k k g ckb p $ K$ W $ " VK$ " " fk $K" fk$ p e Ke y k k k k k k k k k k k k k k ckbkc d$$ " #VXf k k k k k k k k k k k k ckbkb p $e$k"i "VK " e Ke y k k k k k k k k k k k k k 9 ck: z K$ $ "f fk $K"i fk$ VK VK$ " pk f W sv$h qwk k k k k k k k k k k c ck:kc d$ $$ e V i $f KV k k k k k k c ck:kb y WX VK fw sv$h qwk c: ck:k: p $ "K$ sv$h qwk k k k k k k k k k k k k k k k k k c; ck:k; e e$ p$f$k$ k k VK k k fw k k k k k sv$h k k qwk $ e f c< ck; z K$ " Xf h" c9 ck;kc r"vk f$ $ " k k k k k k k k c9 ck;kb j V$K$ " f "V "$hkv k k k k k k k k k k k k k k k k k k b = 7// / >/ > 4 0 =? bkc w e$ l " "# K h" b: bkb jw ewkf K i k k k k bg bkbkc d$$ ewkf K i bg bkbkb z VK fw k k k k k k k k k k k k k k k k k k k k k k k k k k b<

7 $h bk: ov$ek$ K" ek V $ K$ VK$ " e $ " " " "# K h" b bk:kc q $$ " #VXf K V ek m KV k k k k k k k k k k k b bk:kb qk $e"vk $K$ K" ek " ewk m f e $ " a b9 bk:k: zfvf K$ "f $ " " f XV k k k k k k k : bk:k; o" f K KfX mvkm "f $ " :c bk; KV$ K$ i $f KV V KVm $Wf :; bk;kc d$ $$ i $f KV k k k k k k k k k k k k k k :; bk;kb nk Ke $K$ Xf h" e $ :g bk;k: r"vk VK $f"vk$ k k k k k k k k k k k k k k k k k k bkg n fk K$ Kh e V "VK " f V$K$ Vf $ : bk< n ev"$ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k :? / / 1, :kc z" e " Kee f "V Vf"# K " V f "V "$hkv " Xf h" k k k k k k k k k ;c :kckc q K$ "VK ;c :kckb z K$ k k k k k ;; :kck: j XV lk " k k k k k k k k k k k k k k k k k k k k k k k k k ;< :kb z" e " Kee e e$ q $ Vf"# K " V f "V "$hkv " Xf h" k k k k k k k ; :kbkc z" e " e e$ q $ ; :kbkb z K$ ; :k: x$vk ekve"v k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k g: / / / / 88 ;kc a"# K h" VK$ K$ K e Ke gg ;kckc d$$ " Xf W f mx "$hkv k k k k k k k gg ;kckb p #VXf " K e Ke "$hkv W f mx k k k k k k k g< ;kb V d f$k$ VK mkff hkv$ $ VK fw sv$h qwk V $ K$ " "# K h" k g ;kbkc d$$ VK K$ "$ k k k k k k k k k k k k k k g ;kbkb vh V"$ VK K$ "$ K" e " V $ K$ k g9 ;kbk: n " e " V "$V$K$ VK fw sv$h qwk k k k <: ;k: h" l KV$K$ k k k k k k VK k VK$ k k k k k K$ K k k k k k k k k k k k e Ke K" ek "# K <g ;k:kc o i$fk$ " VK K$ " "$hkv k k k k k k k k k k k k k k k <g ;k:kb jw ak z f $K$ v "$hkv y f mx azvy o V$eK$ m f $ e $ " k k k k << ;k:k: p$f$k$ $ "$ K VK VK$e$ << ;k; o ew "f $ " K" e W < ;kg n ev"$ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k < 8 > 4 / 5 23,

8 $"%# '% )''% %$"#%!""#%" ' #$%" + / 4/ <kc n f f VK VK$ " h $V$eK " #VXf ew VV g <kb r"vk i $f K"i " V e f f VK VK$ " h <kbkc p h $V$eK fk $K"i K fk"i <kbkb fk"i h K fk"i k k k k k k k k k k k k k k k k k k 9 <kbk: nk Ke $K$ f$ $ " "f $ " VK $ek$ " h $V$e k k k k k k k k k k 9c <k: o ew fek$ " " #VXf k k k k k k k k k k k k k k k k k k k k k k k 9b <k:kc rk V " VK f V$K$ " e f f VK$ " fk $K"i 9b <k:kb o VK ew ew " e $X VK$e$ " V h $V$eK 9g <k; j$e e e $ rkfk $V$e Kf W $ <k;kc rk V " VK e e $ rkfk k k k k k k k k k <k;kb rk V " VK "e" h i $fv k b <k;k: z K$ " e rkfk VK $V$e Kf W k k k k k k k : <k;k; n ff K# $ " " K K"m VKe f Kh e " VK k < / / 4/ 45 / 4> 4 /4 //4 kc nk m KW$ ewkf $ $ " VV K " ewk$vv $V$e Kf W $ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k kckc q e V i $f KV kckb r"vk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k c b kck: n fk K$ Kh e V $e$ " f XV pkf# "V k k k c g kb rkfk nk Ke $K$ k k k k k k V e "$Km k k k k k k k k k VK k $V$e k k k Kf W k k k k k K k k f$e e e $ c kbkc w e$ f " e VV"V ev"f $KfK c 9 kbkb q $e$ VK f " k cc kbk: q e V i $f KV cc kbk; r "VK k k ccb k: x$vk i $ e k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k cc: 7// 4 / 4/ /45 / 4>,,8 9kc j V$K$ " e f f VK$ " VK $V$e Kf W ccg 9kckc d$$ " f XV Kh e e "$Km ccg 9kckb q $ e f V e "$Km k k k k k k k k k k k k k k k k cc 9kck: o KK$ " f XV " VK $f"vk$ K Vf $ cc9 9kb d e $$ V KVm $Wf k k cc 9kbkc q K$ tjou k cb 9kbkb a "e" V KVm $Wf k k cbc 9kbk: $ek$ V KVm $Wf cbc 9k: a$f"vk$ vw " $ K$ k k k k k k k k k k k k k k k k k k k k k k k cb; h

9 h$ 9k:kc d e $$ " fk$vvkm k cbg 9k:kb r"vk e ff K$ cb< 9k; n ev"$ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k cb / / 5,= kc q $ VK$ " VK $V$e Kf W $ek$ k k k k cb kb vh V"$ " f "V "$ VK $V$e Kf W Kh e K $ k k k k k k c:c kbkc wk# $ek$ ewk$vv $ WK" $ WK" f K" k k k k k k k k k k k k k k k k k k c:b kbkb vhkv"k$ VK $ ewk$vv k k k k k k k k k k k c:: kbk: nk Ke $K$ K $ K$ ewk$vv $ c:g k: n ev"$ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k c:, / / 4/ 45 2 ///5,? c kc nk Ke $K$ K f$e e e $ rkfk h $V$e ekve$ " k k k k k k k k k k k k k k k k VK k k $ek$ k k k k k " c; c kckc $V$e ekve$ " $ e e $ rkfk c; c kckb $V$e ekve$ " f$e K"m rkfk k k k k k k k k c;c c kb $V$e ekve$ " $ V"f$ e e V $ nw f zzz c;: c kbkc rk V " V W fx V"f$ e e k k k k k k k k k k k k k k c;: c kbkb p"f$ e e V $ nw f zzz V"$ K " h e fv i c;g c k: ewk$vv nk m KW$ Kh e V $ nw f zzz VK $ek$ $ " VV h # " $VV $ K c; c k:kc q e V i $f KV c; c k:kb r"vk c;9 c k; z K$ k k k k k k k k k k k k k k k k k k k k k c;9 c k;kc n $ K$ " V e " # $ $ $ek " k k k k c;9 c k;kb n h $ ek $ e $X ek $ cgc c kg n ev"$ k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k cgb,, >,88!$% ##"$' ' '% ')'% // / 5 23,, okc e$ q $ e f VK e fvk$ke V $ " K V ekve"v VK l " Xf k k k k k k k k k k k k k k k k k k k k k k k k k c<c okb vi $ K $f $ " K" f "" VV $ " Ki$ f $ " k k k k k k k k k c<b okbkc z K$ W $ " c<b okbkb p $ VK k k k k c<; ok: q $ e f V K W$ k k k k c<g ok:kc q $e$ VK $ e f k c<< ok:kb n fk K$ Kh e VK V$ K" k k k k k k k k k k k k k k k k k k k k c<9

10 / / > 4 0,, 5 /. / > 7,8 nkc q f$x VK$eK$ KVm $Wf K V cg nkb d f$k$ " f"v$v$ek " VK$ " k c< nk: nkve"v VK fk $e Ke #$ " Xf k k k k k k k k k k k k k k k k k c9 h$$

11 h$$$

12 c p $ " $ h $X K ff h V" "$ V " VK $hkv$ w K $ z e$k e "$ o" " W"$ nwk V V "$ h K$ K"$ " VK K$VV V " ek K"i V" " " " KK hkv " VK h K$ K " "$ h $ h K V" V" e "ew f$e K V " " Ke k n $X K K" h e$ KV$ "Vf K$ K U$s K $fv KK e h K" K m e K" " e "ew 2 h #Kf$$ K V K " " f$v f e "ew K m kkk pk hkv " K " "$ "hk K e h f " fek$ " V hkv"k$ V " V" VK m f V " $ fek$ " hxv e "e$kv k zv KV e K$ $ K$ fek$ " K $ " ek Ke $ Xf V K$ " hk $ $ " f " V " f$e " V " K fx k pk fw VK V" fv " e K$ VK K $ K$ $K$ $ " f k vvv e $ V KV$eK$ m $h " e f " " " " Ke V #$K$ K " $ " WX Kf$ KX kkk k v f " K $f"vkf VK K$ e $ K VK " Ke " # $ " $ fk$ " V $ VK$ " VK$ " " ewk$vv k jkvw " " f $ V $e$ #K VK f " $fv $e$ KV$ " " e Kh e " $ f " VK K$ V iv $K$ "VK i $f K"i f fek$ " K KfX e fv i kw$ " dk ek $ $X " hxv K " e $ f XV VK K $ K$ " "# K h h" " Vf V VK$ " VK$ " "i "Xf e $#" fek$ " mv #KV VK "VK " Xf k q " # $ " iv $K$ K$K$K " VV i $ e $V e K$ Ke " $ " f $VV " e f W $ ewke" e $#"$ e ff f $ k n K e $ " " " mk$ K" " "i Ki $e$k"i dk " f$x K $ " Vf "# K " V " $ K" #VXf " e "VKm fek$ " " $ K$ VK$ " k o X Kh $ K V ewk$ c V f XV Ke" VV f "$V$ " KKV V $" i $ e K $ K$ " "# K " h" " $ "$ " K ew f$kkv$ " " #VXf K" ewk$ bk t$v$k V "K$ K$$ K#V$ K eke V " e Ke e "$ VK$ " " KVm $Wf " $ " ekve"v f K $f"v Ki$f $ " " Ve " " ewk$ "# K : V h" "VK Kh e # " " K W$ " V h V"$ Vf"# K K K$ k " e ff K" VK K$ " "$hkv " Xf

13 b e$ " K " e Kek v "$V$K V "VK # " " VK VK$ VK K$ V K e Ke " f K" ewk$ ; " V fw $ "$ evk$ " " " KKV fk$ " " V $ K i $ e K $ K$ " e Kek " K ew " K e $m e " k " " WX "i "VK e K $ K" ewk$ gk dk " e K $ " " $ K" e f f h $V$eKk v VK$ " VV$e$ V h iw$# " e f f VK$ " V " $V V ew VV " f$e k " K V K" ewk$ < V "VK $e$ K"i "ewk V # hk$ f$ $ " K"i e KhK"i f V$K$ $V$e VK$ K" e f f VK VK$ " h k " " e e " VK Kf W ew $$ e ff Xf f XV " e ff "$ V V$ ewk$ VK f$e e e $ rkfk e ff " f$e K"m fk$ k dk " # " ek m KW$ VK$ " # " V K $ VV " ewkf V $ K$ " ewk$vv $V$e Kf W k fk$ v "$V$ K VK f$e K"m rkfk " f K"$ h$ e " ek Ke $ " W fx e "$Km K VK $V$e Kf W k w e "i "VK f " " e W fx " " V $f K hk $ e f V VK f V$K$ " e f f VK VK$ " VK $V$e Kf W k o" ewk $ 9 " f e ff "VK i $f K"i "h "$V$ " K#V$ " f V$K$ K Vf $ " e f f VK VK$ " VK $V$e Kf W k o" ewk$ " " V " "VK " V h V" $ " f "V VK$ " VK $V$e Kf W e$ K $ko" ewk$ c " f e ff V "$V$K$ VK V"f$ e e " f$e "e" KV $e$ V $ n 3+ f h V" e fv i V fw ek m KW$ f " V e "$Km " VK $V$e Kf W k " W$ "VK K" h V ewk$ cck e f

14 :

15

16 g dk e ewk$ " $ "$ V $ K$ fk $K"i fk$ " h"k " V KhK"i K " y K V fk$ " e Ke " $ "$ V $e$ V e V VK fw sv$h qwk f $ek$ "mm K" e " K$$ " " V " VK $X e $ k " "$ V V K " " Vf " V $ fek$ " f " K $ K$ Kh e VK fw sv$h qwk k V h V"$ " $ "$ V f XV V V" e " " f V$ VK VK$ " Xf h" " " $ " k ^[\ ^\ [Z\ a$ V e $ X " fk $K" $ W f mx "f$ " VV$e$K$ fek$ " f " Ke$ $fv e f f e K " $V $#V $ "i K $ nk m" ckc 6 dk " f$ f VK fk$ " fk $K" h $#V $ VV VK e K$ "#$ K V e f f VK$ " V$K$ k pk VK$ VK e K$ KV$ " σ iev"$h f VK fk$ ε "#$ K V fk $K" KV "i K KfX $ $X " K" fk $K" V f "V "m E V e e$ q $ ν e f $ c kg K V #$K$ VK V $ y ε = 1 + ν E σ ν E Tr ( σ ) I ckc I VK fk $e "$ Tr(σ) VK Ke " " e K$ k 6 dk " e f K" V " e K$ "$V σ Y 0 $ V$f$ VK$e$ " fk$ $ h $#V $ VK$ " ε p K " VK fk$ VK$ " h $#V ε elk d V" e K "h " VK V$f$ VK$e$ " fk $K"

17 < h V" e$ VK fk$ VK$ " "#$ K e $ σ Y = σ Y (ε n W fx K V e "$Km k )k P ckc n " # e K$ fk$ $" " K$ Ke$ $fv k UK " VK e K$ Ke$ KV$ " K" fk $K" $ $ " VK V$f$ VK$e$ σ Y 0 V fk $K" K " e f f VK$ " k o" V $V f VK$ " f k dk V #" ek Ke $ V e f f VK$ " fk $K"i V f$ KV m$ $ "$VK $ " $" fk $K"o K " fk $K"xKV o V" " " x!k jk$ e $$ K e VK m f e$ VK m f $ " e Ke V fkvv" m$ K#V$ K$ fkv$ $ K$ kzv Km$ KV$ " #$K$ K V " $ " $ fk#v m f $ e " " ewk m f fkv VK " Ke " fk $K" " $ k zv i$ f# " m f $ $#V k p fk $K" V" "$V$ e ff V e K m" ckbk s $ KV f VV f VK VK e " H " P KV$ " " V K$ A V f $ $ " VV # " K X ewk m f H = P ckb A pk " K$$ $ e W f mx " e K$ k n K e fw hxv K $ e$v "$V$ " ek Ke $ V e f f " fk $K" fk$k v VK f " e" f " VK$ " VK $ VK$ " f K Kee $ e f K"i K KfX $ $X " " fk $K"k q " K V K VK e fk K$ K$VV f $ $V e e K$ K#V$ " f $VV " f V$K$ " e Kek "#$%&$'()$*+*%,(&,-'.&)./0.('(1(//(-*/(2(+-'(3

18 ckb p $ $ $ K$ fkv$ k

19 9 Z _]\ \ \ ^\ ^ [Z[ v c99b y " V #VXf " e Ke VK$ " "i e K K# V $ K"i c k zv f Kff " K V ek V VK$e$ V$K$ $$$fkv e #VXf KfX e V"$ " e Ke WX $m$ VKk " " $ $e$ e e ff $ ekk # $Xh f k " K V VK $$ " #VXf V "VK $ V " " # ($ ' a $ " f$ Ke VK$ " E f "V VK$ " E e e$ q $ ν k a $ " $ " W $ " K R $m$ k s " " VK WX K" e Ke " VK " VV "f$ " e KV P $ $m h E fkv f " Ke k K zv K $ f $ K W$ VK WX V f$ Ke k p Ki$f $ " " #VXf e e $ K V VK (O, er, e z ) nk m" ck: n ff $V " Kh $ $ K$ "i e e ff VK WX mkv $m$ VK " Ke E ew$ K " V m$ VK$ " e K V fk $K" $ K" KhK$V fek$ " m K VK e P k fkv s $ "$ e u(r) V VK " Ke VKe f q(r) VK e K$ fkv "$ V"$ KV$ " k s $ "$ V" δ VK K$ VK WX K V f$ Ke E $ e ff u(0) a V K e Ke VK WX VK " Ke E k V$f$ s " e K " V e $$ K"i e #VXf f$i k v K r a, u(r) = δ r2 2R r a, q(r) = 0 Le déplacement est défini sous le contact La contrainte est définie hors du contact y ew ew KV $ u(r) q(r) " " V $ Ke $ V VK$ a P δ k '% " #%$"% " ' ' dk V ek V VK$e$ V$K$ $$$fkv " V W WX " V e K$ KV$ " " V fk $K" " V $ " $ " f fkv y K#V$ V i $ "$hk r a, u(r) = δ r2 2R r a, u(r) = a r2 a πr ) (r 22 πr a2 arcsin( a) r ck: ck;

20 ck: aewfk " e Ke WX $m$ VK " e Ke y r a, q(r) = 3 P ( r πa a) 2 r a, q(r) = 0 δ = a2 R c P = 4 E k 3 R a3 E = K V f "V "$ " fk $K"k E 1 ν s " f"v 2 " e VK$ V e ff K$ "$hk 6 pk V m" " ek Ke $$ " " e Ke V K e Ke a e ff V f ck< ck k 6 s V i $ e K " ck<k V K KfX n K$ f e $hk V $ fek$ " K# e " V " K$ e $ e e$ $m$ e f"v K "$ " VK$ K " $ V V$ " $k vvv # " " f m f $ " "$ K$ hkv$ K V #$K$ " V " e$ " e $$ m f $ " VK " Ke V $ " " e $$ " V $ VK$ " " f$ Ke E W f m$k 6 v "$V$K V "K$ ck< ck $V $#V f$ V f "V "$ " fk $K" K $ VK e " # ewk m VKe f VK$ " k n e $$ " e V"$e$ $ $ e $" " V$f$K$ e " V KV$eK$ i $f KV V$f$K$ VK$ K#V$ K y k n K V #" VKi e " sv$h qwk K#V$ V " fw k ckg ck<

21 c!z \^ ^\ ^ Z_\ ^]Z ] pk fw sv$h qwk b Ke" VV f VK fw VK V" "$V$ " KK V V "VK $ K$ k v "$V$K V KhK"i a ; $V e "V e $#"$ VK$ " e $#"$ VK$ " K "h $ VK e K e $$ K V " VV V K i$fk$ " e f f VK$ " $#V k p $ ev V " fw "h $ f$ V K a VK e Ke " K $ "V K KfX i $f KV f # hk#v k " K# V $ $$ i $f KV K $ K$ k " $ "$ "$ V W WX VK fw sv$h qwk V "K$ "$ VK e $" k " "$ " V " ek V$f$K$ e fw V f $ek$ "mm " e " V #VXf "$ K e$k + % % ' $' ' # '"$ 4/1 04 dx V " V ew ew KV$ " i $ e K $ K$ $V h$ $ e$v " K$ ew VV Kee $ e f K KfX $f K V K VK e Ke K i fv k s " K$ Kee $ e f " $ m K " i $f KV k d "i VV h$ $V Km$ VK e KV$ " P VK K$ δ kpk $$Xf VK K$ " " e Ke S $ e ff VK $h VK e P K K V $ " k n e $ # hk#v VK K$ δ V " ewk m $$$fkv h$ " V $ $$ K $ K$ $ "f f " k pk m" ck; f " K$ ewfk$ " " $ $$ K $ K $ a $e$ K $fv kpk e P KV$ " K $ "e$ e "$ f "$h K hkv " K V #$K$ " e " K e$ e"vk K VK # #$ k t ek " ekke$$ f Kee VK " VV $" VK f " " VKe f K# V" VK $ K$ K" # " VK $ $ K$ k s #$ K$$ # " e VKe f k q " # $ VK K$ K $ VKe f $V K" "h $ f$ VK $$ $$$KV VK " Ke V ewk$vv K # $ " e " # "h $ $ K$ iv $K#V h $ m" ckgk q " e K$ i " "$V K$ " e Ke "$ V " $V K " Ke $ $ " " VK $ K K $ VK V ewk$vv k s #$ K$$" e " # " e VV m" ckg K V h V"$ " Ke VK e KV$ " e$ VK K$ VK $ $ K$ K VK V ewk$vv k o VK ewk m VK e K"V " " hkv " K$ %-/ /(/*'*+, )()$,()( '&*$,$$).%*% $%)(%,(./ #.+ $%&-./)(&+*, /$*.2%(-/ &(%,*%,-*&.%/(,./.(, 3 '*&,$0.(,/ - *$'(3 *%&'( *& %,/*$/( *% %&,/.+(%,&!#"3

22 cc ck; r K$ ewfk$ " " $ $$ i $f KV K $ K$ k h f e f $ δ e VK " V $ VK$ K V ewk$vv k q " Kh $ KeeX VK K$ " " e Ke fw "i fw $$e "h "$V$ VK f " VK K$ " K$ " VK ewk m " VK fw f " e $" VK e Kek!"#$%& / '()(*$#*+,) ckg vi fv e " # $ K$ k 89%) :%$,*' /&'(/(,./ )('*- %,/*,$ %0.$(&, '*&,$0.().%+*, /$*.*../&)(& %$%)(%,*,$ % ++('*-/ - /,$ % '*&,$0.(& $,(δ h f )/δ3

23 cb 7 / > p $ VK f " VK K$ " e Ke VK ewk m $fv $V Km$ f " VK VK K $ ewk m VK e " # $ K$ q " e K$ sv$h qwk VK ewk m fki$fkv k b K" VK e " # ewk m K " V $ "$Ke " c P = B(δ h f ) k9 zv KV Ke$V hkv" K " $fv ekve"v m $hk$ VK K$ " " e Ke K" $ ewk m fki$fkv S = Bm(δ h f ) (m 1) s K K$$ KeeX K" $V {P; S; δ} k n K ew " $f K V$f$ K$ V$ K" K$ " V "$V$ KV f " " "V $ VK e " # k a$ V ew ew # $ f " $ " K$ "ee $k $V K" KV KV$ V"$ " 7>/ // 7 7 n e #VXf eke$ " h$ " V K ew K f " e $" VK K$ " k s KhK$ KeeX P δ " " VK e " # ewk m ewk m $V Km$ fk$ K Kee i $f K"ik p VK K$ " e Ke S " VK ff mkff $e$ $ VK fw e $ K " K" ewk m f Kf KV$ " " V ewk$vv " ewk m f $" KV X K$#V KfV$" g k h$ K$ n VK e" ewk " $ VK e " # ewk m f " $$$fkv k ewk m n $ V " ewk m f $" KV X K$#V KfV$" " V ewk $VV k n ff V VKe f VK $ e" iev"$h f VK h $ekv V #VXf $fv f f V$K#V K " e$vvk " WK f $ " Kf $ h $ m" c ck< m δ + (D ind + Déch ) δ + ( K rs + (K kc Kh e 1 bâti + S 1 ) 1) δ = F 0 e iωt m VK fk VK $ K$ Dind k Déch V Kf $ f V $ " k V ewk$vv Krs k Kbâti VK K$ " "$ k " # $ S VK K$ " " e Ke F0 k ω V KfV$" k VK "VK$ VV$e$K$ $" VK KV k qk " ekve"vk evk$ " ew ewk δ "VK f δ0 e iωt+φ δ0 V KfV$" VK " Xf φ WKKm K# "$ ( ) 1 S = F 0 δ 0 cos φ (K rs mω 2 ) 1 1 ckcc K bâti n ff F0 ω $f δ0 φ f " V KV Km KVK#V Krs m K bâti f Kee VK K$ " " e Ke " $kzv " K$ " V c k

24 c: ck< rk$ VKKf$ "" K$" eke Khe VeWK$VV "f$ " VV$e$K$ $" KV K$#V KfV$"k VK efk $" KV Xf K V V Ve" VK" #$K$" "e Ve$k Vm e s#$ K$$ VK hkv"{p; S; δ} " K" VK$ "$ f " "$h$ e$" VhV"$ $ fek$ " VK "Kek + %'% ' $" #' '$)' ' " p#e$vk qwk fwsv$h b e$$vvf V e$#"$ VK$ " VK$ " "h$k VK" Xfk o$$ $Vh$ K$ VK K$ $#V kkk VK$ "K$ KKV$ " "$ K y a sv$h qwk V"i WWX "$hk pkewkm " V ff "K$ $$$fkv" VKeWKm" $" Ki$f$ " $ VK "Ve "e$ ff K$ eke $ m" K ck k v $ e$x VKK$"" eke S #$ c kcb a p$ V VK" ekek dk ek" eke "f VK$ " e "K$ "" hkvk#vk $e$ e$ $ ff " $ VeWK$VV S = 2aE (,,(/('*,$ %(&,$%) -(%)*%,()('* +,/$(*2$&+,/$0.()('$%)(%,(./3 K "#$ "fk$ VK$ " VK$ "e V "K$ VKeWKm $$$fkv K" "f ckcb KV$ "k

25 c; p mk $ e f"v " #$ "K#V$ " $" $$$KVf " Ki$f$ " "$V$K$ " $" Kf$K"i V V $ $e" xh$ew < 9 $"$" $$" g % kdk K$ " K$f$V "h $" e Kf$KV VK "$hkv$ effk e$ "f$kmv ffev"$ VKe$ X VKff K$ " eke A "$Ke VK $k o$$" $ xh$ew "$hkv e " K" ff ω = 70, 3 $" ok pk" "$hkv" $" "Ke $" Ki$f$ " KV$ effa = VK eke k A/π A VK ck pkewkm $" f $$$fkv" "Ve " hs "$hk" VK pki$ "Ke Vi$" K" VK eke " "f VK$ " $ m" V ek" eke ck9k vh$ff hkv$vvk"$k "f e$ VK$ " e V WWXK ek" eke VKVK$ "K"K V" hk$ " e$x V " $ VK "Ke V$m VK VK$ "k dk ek evkh$ " " VKfK$ VK$ " fk$k" e " VeKek sv$h qwk VKeeK VeK" WfmX VKVK$ "V$K$ VWWX " Veff VK$ "" K"" n$ fk$k" $ m" $$ ckk ekke$ K$$ K" $V" K VK fk$ VK $K K$$ $hkv$ VWWX"i$ VK$ " #"V VK$ " W ewkm $$$fkv" $ VK ffk eke " eke h$ ck:k;k + + '% % #&"% $)' ' " "e$" pk qwk ef fwsv$h $ "K$k pk f$x K$ ckcb ee" V ckc: V$" k β " n V e e$ c "$ ef K$ "K$ "$ f"v"$" VK Ki$f$ VKK$" fk$k" E & % */'*&.$,(&*.-/ $&$ % %*&&$+$'(/*,../&.%$%)(%,(./ 2βa %$0.(% %*2$&+,/$0.( %( 0.$1*'(%,(%*.,*%,*. (& $%)(& ($(%,& //(,(./&3 %,/*$/( a(&,'(/* %)( %,*,). %( 0.$1*'(%, $'$%)(%,(./%(&,-*&*2$&+,/$0.( = S

26 cg! "#$% &'( &)( *+, /01 #/ S 2#4 02$2#3#1 -a % 5 # 6 26#-"#$ 3! # s c # #83# ### $# %9 7 #δ0$9! 1:#$; h h = 0<1 #-4 s# :2# $ 0>1 h :?ε 4 4 #!#0ε = c5/ -a;##h ε = 2 (π 2) π h s = δ h c h c = δ ε P S 0.75

27 2 # ;#2:## c $ 9:"#$%$# # H #2#7 # $4h 0 1 ## # " 7 ##:9# 9 ;7##7# 7 $# ##2 # 7 πa 2 7:# #7# #7# ;#7 "#$%# ### ;#! # #! -# H = P /$!."(!"#"'( $%& /$,,(/" '( )# $%&!*"$'( ' ) +(, (" -#,, (".,&( (% -4: 2#4## "$$ #"#$% 6 $#0 2 ##"#$%## $# # / #!! :;<=>?8;@=> C#CF-BGC#HBCGCB#CGC#BGCGD"#$CFC%FF:aC ABCB#D$ E:#CF4FC#GCB B F F 7 $# B #D-B4CGD BBFCCC./"F:#CB4CGC#C/ FCBFCB FCG#F C#BF C#DBDFCC;GCF 3F4B C "CC FC#BF 7 C#CF-BGCBCB /$# F0>10$BF9! I1ACCCFFC 0FBBFBC#;a1C FG C FCBB CCGC$#C FG BG #CFG FC FB GC#G 21J,K E FCH0FBBFBC##C;a LMNOPQ LMORSQTO FCCGC#C/ *+ICFCB U#BF CGC#DCFFC F F#CF-BGCBG CF# B4CGC./5CF-BGCBC#BF$# réel:#d #BGC0>1 BC C#CF-BGCBCa!#;aévalué

28 CCGBF C GC2C FGC C:G#CGCGCBB #BGC#DGCBFBGCGC#C9JIK C:#CFCB F# GC#C/ FC F; I B FCC!#!C2#C#CB?#CB4CGC#C/ B4CB/!#!C2#CGDFB!C#C DC!#!C2#C: :#CB4C CFCC #CB2#CGD$# FG CC# C##CGC#DGCF4GF!CJ,:K5CFB2#4CGCC##CFBCC#CC GC#C CF#DFCGCB;#F!C3#CC!C#DCFCC FCGC#FGC FGCBF#BGCGC#GF!C GDGCBC7B F D CBGCC FC$CFCCGCFCCFCB CB F2C C##CCC3#BFC$CB FB26C7GCB $BFCC CFGCC FCB #B! G F!CCJE: :<K :;<;8265:;;;?;<;8?<;;=5 5D B2C FC-B4C7CF"#$CFC%FFBFC #DGCC FBGFCBC#2#C;#GF!C9#CG F#GF!C9#CGC BBF=#CB# C F F FCC# CCB/B7BFC:#G7BFB# C5CFB2#4CC CCCFBC!#!C CGCC F 2CF#D##BCFG F#CFCGCCCB/B7BF5GF!CGCC #DGCC FDCGB# GFCF#CBGC#BC F GC/CC: F#CBGD GCC F F C F7CG6;G7BFC0$BF9! FC1 $!" # $ &'(%&'( &'( % &'( %!"# # ) *)+,-.)-/0)/,)12345) # # *+CFCB C0FCGCJ>K1GCBC #BBGC7BFCCC$CGC#DGCC F5BFGC#GF!C:#DGCC #B FDCG6;# FFBG FC CBB/B7BFC$C#D##BG 7GC#FCCGC#DGC5CB C FCFC#C# CFCCF; BB/B7BFC:$C #G$C#BF=CGGB GCC FGC7BFCGFCC GFC J<KG#CG BB C: #C C F J : :KBBF C#CBB7BFCCFC#DGCC FC 2F7G7BFB $FCCFFCCFCGCBCFC#C 2F

29 B/G7BFC 5BFFCB;BFCFBFC#BF GCC FGC7BFCCC$CGFCCGC#7BFCFC##CGC#DGCC F F#$#C F4FC!BF CεU:B 0 1 B?C#CCF4FC CC# FBG G#D6 #F #B C:#DCCGCCCBFFCBCCH72#C:G#C F$# CF#FGC FGCBF#BGCGC#GF!C0011 CCGC#B F2CGCGF!C CBFCCFCI <CI FCB?#$FBGCε 13 6@?< 28? <;82>6?;;6;?;<;46? 6 BFF!CF#C7 %F#DFBG BGD C#CBC-FG#C0 CF.B$: F4FCβG#D B0 1:"#$CFC%FFCFC; 3-F.CF:1CBG#CC C5C$#C F D#FBBCG# F#C9C JEKBFCGCF$ 3FGCJ,KB?C##CB$# 2#BGF$#C C B-CGC FBGC #B GCB2FC 3 C FCBFC;#D$# F4FCJEI:EK5C FF$ 3BBF CCFCGCGCGC#$#C BGCC $C#CBC CGC%BBG F GD GCC F B F C#DGCC GC5C$FBG F CF.B$C2#CCCGBFC F4FCβG#C FGCβ CFCIECIJ>KA#D!GBGCBFFCBGB#DBFGFCGC!FGC CGC$#CCF GCGCC FC FFCCCH ( ) m 2Γ ε = m 1 2(m 1) ( )(m 1) 1 πγ 2(m 1) 5DGCBF CC:B #C$C CBGCBFFCCGD#-CGCGBC F C3FC#C:CFC CFFB7CGCFBF CGD 7ACCBGCFB $CBCBFG#D GCGD##B FBCB <B:1 FB7F!#CB CFCF#5D#B## F CGCC# GFG0FB 3#C:8C3B FC#CFCCB#FFB CGCFC$CCCGC B FCGCCCBGCC3/ F7C FCB#CF "CC FCCCGFGCC # B2C CF FB2#4CGC#DC CC#BFGC#DGCB F9CG FC$CC0B FC$ GD 2F C#C FCFFB *&)"#"&(!. C###CFF, (& F4CCGC$#DC FG 9#:BC CG B0C#CF-BGC#HBCGCB1FCC BG#CF#C-4CBC F

30 , 9#7#F 9#C C:CDCCCG# B2#CG4#BF C#DBBG4FC U:BCFCFC03 JEEKBB2C :C# F -4CFC$ GD 9#C: C$B# BG #BGCGD"#$CFC%FF BG #CFG C F B F! G F!CC:C#BG #C $#CFG ACC$B# BC## FCF#9/ F!CC GC FCEG#CGD C# $CFFCBGB# CFC$ CCCGCB4FC"C G! GD CFFBCGCG#C 9#GC#CGD CC F U72#CFB:#CBG C# #CFG G 2FFC$ CB C!#; ##B7BB!4CB G 9#5C-4CCBBFCGBGC#C7 B CD#D!GD G F G UF47BFCFB:#CBG CC7B!#;C# #CFG G 2FFC$ CCBFCB G D#D!GD ##BGC 2F5C-4CCBBFCC3CCBC 2F CCB C!CCFGFCGCFB:#CBG C$C#FB:CC CFBCFC#HBC 9# #CFG G -4C!/ 7 C#HBC 2F <6=<>?@> ABCDEFBG KLEMFBKBOM NOMPQP HIJFKLEKMI!"#$ %&'!"#$ %&'!"#$ :7; ()*)+,-+./*0*12 C%FF *+E$B# B$CG BG #C $#CFG B2C B4FC F $CFFCBGB# CFC$ GD 9#GC#CGC F#BGCGD"#$CF C# B FGD CBGCB CF.B$%B FGCF472#CFB: CCCGC #CBG#CFG G -4CCC# G 9#UC FC C#FB #CG -4C!CCB FCGFC#CBG #CG 2F;7BFCFFB!CC:#C 5DCFFBGCCB4CCC7CH#C FCCFC:; 72#CFB:#CF-BaG BFCCCGC$#CGCBG 9#CGB k gytd^]`l`]dtjjz`dz`dyzuzkujzduz_ga_dytdlmg^dz`[z`dcyv[g^yzuty^w^[^dv\]jf]_^dz[g_n_dxjz kujo_ga_dytdp RSTUVWXYZ[V\Y]^ T`\Z]a_ZYbVZcdYX_e]YdZfV`VdYTd^]`fZgdhdYZTddY^agVZc[Z_fiV`]jX`Z_[Z

31 EI #BF2 #C-4CCBBFCBC#C9#7UC FC C#CF-BG BFB : #C BG 2F;#G7BFBGC$CGC# C# ;F47BFF-BGCB:#BF2 2FC# FGC C#C9#:#FGC FBBCGC#DCC2#CFB BFCABC 9: BG 2F;#FGC FG -4CGC$C F4!FGCGC$C##CG CCFC#C7 BBF:;C 9#:GB#D8 FC CCGC$C!#!C2#CACCCFFB 7 GC$CGC# C# C#DC FG 9#G C:#HBC 9# ; FG CA#FF$CCH7F CC:#BF GCF FC$CCF49: C#DBD-#CC4A#GC$C#BF C#DBCFC CFCGCB $BFC3FFC:;FFGC#HBCGCFB:#CFBF C G 9# $'*) &#" +#)(%" $%&'!$')(* =#BG#BG BBFCCG 2FFC$ G#CHBC 9#7 C 2F CBCGCFB2#4C:#GCFBGC#D$B# BGCBF2 B FC#$CG 9#CG 2F B FGC#DGCBCF$4#CCHB#C3C" CFC C!F#;BG#CF#CBG #C $#CFG G 2FFC$ B # 7BFCGD C#BGC#!CG -C 01 9#0FCG B?aC#CF-BGCB:t#DC 2F15C2 GCGFCBG4#CC#BFGCFBBCF FG C7BB G ΦFCGBCGC#DC3FCC"C 7##C#CBG4#CCF C:#CBG4#C#- #CF#CBG4#CFBBCFB!FGC 9#CE F CFBC#CBG4#CC/ GC FC C0B FCC# B #CFBCGB C C# CGCCC GC;GCB 123 6<98; ;:>?5? =; E eq = E sub + (E film E sub)φ(a/t) film0fce sub1#cbg #CFG C"C 7BB f(a/t)"cffc FC2#CFGCC!BFCB #C CFC GD6 CF #CBG4#CFBBGCFCGFCB!F CC # 7BFC GC # 3/#CBG4#CC3BCC#:B F#C C#B B F2C FΦ E C#CBG4#CGCBCFCFC03JEEK 0,1 eq = 0EI1 - #CGC CACBG4#CBGB7#C; 3:B GBCGD F4FC6 2#CαFC##C!9B 92# #CFJE KBC DCFFB!CF F#C F 1 E eq E eq = E sub + (E film E sub )e αa/t = 1 E film + ( 1 E sub 1 E film ) e αt/a

32 E 173 6<98; 228 ADCB FCCFB? =; 2>>56 #CB CGCF$ 3BCB FBG#CF#- CC CF F 2FFC$ 5C BCC6C CCGB#C3C: # B C FBCF;FB GFC#CFB2#4CGC7 BFBC5DFBC# # CG FB2#4CCC##CGC CFBCCF F2$C BCB##JE<K GCG7BFBB2C F#DCF!C# 3#BGC#!C $CG#CG -4CBB!4C: C:B BCB##2B CBCF$#C C 0E1 C )] 0EE1 ##CC B?ν eqcµ $#CG )BFCC$CC#CBC CGC%BBC#CBG 2FFC$ #CGC GC%BBC#CBG eq = E/2(1 #CGC##CCG + ν eq 9#0FCG 2F1:a#CF-BGCBC t#dc FG 9#9:GDF4#CG#GC# #JE<K:νC#CBC CGC%BB :ν CB##C G -4CBB!4C$CF F2BG C#FB$C#CGCG7BFB F C F#72#C8 CCGC#$#C FFCFν F0EE15D #B B # 0EE1GC$C CC7CF filmc C.CB##JE KFB subc#bfc:0e1d# G ;C##C#CFB2#4CGC7 B GCFBGDFCC #Cν B!#;ν ν eq = ν sub + (ν film ν sub ) µ eq = µ sub + (µ film µ sub ) [ 2 π arctan(t/a) + 1 2π(1 ν) [ 2 π arctan(t/a) + t πa ln ( 1 + (t/a) 2 (t/a) 2 ((1 2ν)(t/a) ln 1 + (t/a)2 (t/a) 2 )] t/a 1 (t/a) 2 filmcµ film0fcν subcµ sub1#cbc C Eeq = Esub C GC [ + (E film E sub ) 2 F 0E 1 π arctan(t/a) + 1 ((1 2ν sub )(t/a) ln 1 + )] (t/a)2 t/a B CF#C9JE<KCC3FC#CJE K$#GCCBG4#C 2π(1 ν sub ) (t/a) 2 1 (t/a) FGCBFCGCBG #C7FC 2 JE>K:B?CC7B#CCF CFBCCH#FCB #CG#F F;E00.5 CBGBGDGBF7C;#DCF7C9# F2BBFC F#CGCBFC9GD 21 CCC##CGC BC < Esub /E film < 9: 2F FCF CFB4CFBCCC##CG$C#BCF CCB##JKABGF GD CF C#C-4C9# 2FC FCBG#FGCFGC FCFC:# BCCFGC C πa/ta#f$c#bf FGBCFS sub = 2aEsubCS film 0E<1 = aefilm B?fCg:FCCFCB n:gb$c!ff C:#C9#CF4 B B4GC#CCFBF# Seq 1 = (f(a)s film C C#C ) 1 + (g(a)s 2F:BFCFB sub ) 1 #7BFC1 + ka $C2CS eq = S film

33 EE A#2B 0E>1 C#BF;1 = GC$C# ACCBG#BFCGD 2aE eq C 3 C#C9#B4GC BG #CFG C G 2F 13 "$CGC#C$BF:#CBG4#CFB7B 6<98; ;:?@=: 5? =; FCGC7BF #C#C; #CF: CB#C FC CC$#GC C BG #C CFBC#CF$CBC;B CF#C# FCFC!CGCBFCGC ##- C #B #- CB2#CC;FB CC GFC F CC#C B CB FFCFCFC 2BC3C#CGCC-CGDFBCC#BG#BFBBCF= JE K: F#2CGCF$ 3GC 2F.JE K # CFBCG -CBGC FHCF GC!C:#FBBC CF FCB#4CGCGCBFCCGCG#CC G#DCC2#CGD 2FFC$ FCF#CFBF FBC C #CB F #CF BF B #7BFCGCBCGCFC9CACC C F 2F FC$ C C GD2# 9# JEKACCGCCFBCC2#CB ADCCCGCF4FCBFCB F CG4#BF C#CFBFa/tGC$C FC F;JE,K FF # CFBC CB C2C ##BB F $FCG# CGCCC GC F#7BBGC FCCG 2FFC$ : B F ##BCFCF;BG#CF#CB# C F 2FFC$ GC7 BC/ C0$BFFC E1B GCC B #:B ##B GCF#CCC GC $FBGCBFCGCBG #CCGCBC CGC%BB G 2FFC$ 0$BFFC C<1 F#FBCBBC 1 1 (1 + 2t + πa )πa2 t E film 2a(1 + 2t πa )E sub

34 E -F CFC:B CB/F!GC FBG#CF#CB# CB/G7GD GCC F3/ F 2FFC$ :B F BB!4C:# FBG F! C: C FC#B FGFFC#CBG7 F 2F CJ IKB $B# CJ K5D #BGCC7BBC3CB #B#CC3CgCθ CFCGCB FFFC##CCGC#3GCBGB 3#CBC ;B FB2#4CGCB0$BF E1 F 0B CC$C FBGCFC#BB2C C #!BFCCFCGC# #CF / # CP:#FBδC#FGC C!FGCC #CB2CF$2#CC3FC#CG FSG B 7 1B B0#7BFC GBCG FBFCFC#CF-BGCBaC#DC FtG FC$CCJ EK%FB FB C$#C F GC#F:B B #B GC#DGCC FB C9GD## #C GBC:BC#BF C#CG#GCCF# BGC#D#!BFC5CGC!BFCF FCF#GFC CC GFCC9$#GC3FC#CCC #BFCCC3CU5D#!BFC F CC =B -4C CBBGD 2F GC/CCBFBC# BB!4C FC$ GD 9#BFBC# CBB!4CGDC Ft09! FCE1"C 2F0FCG ABGFBC 9#1" CC#CBC CGC%BBG BCE subcν sub0fce BC CGBF7CCFC#C 2FC#C9# CC-4CCB ; F!CC3-F 7FBGBGC#FGD GCC FGCBG #C# C CE filmcν film1#cbg #C# indcgcbc /

35 E< *+ECFCB CG -4C CBGF ind ##F7BFBGC.C#:5CAB J KB2#: G#CGD GCC FF!GC:#7BBGC FCCCG -4C0$BF9! FCEE1: B:$C CGC%BBν FFC#FBCG CFC#BCFC#BFCBF#Cq(r)# -4C; CB##BB C##C%FFBG CC GCB$B# / 0BCB$C#BF F7CGC#B C CCC3FCB;# -4C0BB7 G#CGF!$CF#DCFC FG -4C1F z)cb BG #F F7CG 01:BB2C DC##CCBFC$C1C#CG#CCu(r, 0E1 9#0z = B? u(r, 0) = u(r) = dk q(k)j 0 (kr)c(k, E, t) 0 C(k, E, t) = bkt e 2kt abe 4kt Efilm 1 (a + b + 4b(kt) 2 )e 2kt + abe 4kt a = αγ 3 γ 1, b = α 1, α = E film(1 + ν sub ) 1 + αγ 3 α + γ 1 E sub (1 + ν film ), γ 1 = 3 4ν filmcγ 3 = 3 4ν film#cbg.c#gcqgdbfgfci"cf74fcgc7 B- #CFG G C 3FF )Cq#F7BFC C# sub C E 9#:G9BCE dyt`_e]yjtd^]`[z"]gy^zyz`wv]jvdy^z\nu^`[y^mgzps^`bzy_^]`[g`zdyt`_e]yjvz[zt`zu_z#z\dgz GCGC STdYT`_e]YjTd^]`[ZT`ZU[]Y[YZnZ_dg`ZdYT`_e]YjTd^]`^`dVWYTUZ[]`dUTe]`\d^]``]nTgZ_d 3B /-4CF#C2GC E film /(1 νfilm 2 \]jjz_g^d$(r)z_dute]`\d^]`[z Z ZU[gfYZj^ZYdnfZ[]Y[YZnp!UUZ\]`_d^dgZUVmg^bTUZ`d[ZUT r J n (r)l]j n f n (k) = dr r J n (kr)f(r) f(r) = dk k J n (kr)f n (k) 0 0

36 E> *+EECFCB CGC#7BBGC FCCG 2FFC$ :G #CGD ACCFC#BFCCFC GCC FF!GC C!C#BF C#DBFC#3C#BFC F#F!G GC#DGCC #BF F0 BFC3CU1=C #C!C#DC3FCBGC#7BBC GC$C 0EE1 CFCGB#GCFBB#4C#G8C3Bu(r)GC# 5BCGC#BFC# C(k, CqCB BGC# 1 (a + b + 4b(kt) 2 F7CG -4C )e 2kt + abe #CFB2#4CGDGCBBFFFGCBGB F7C 3#C3C07 #C 4kt FC CC: E1#BFC# C##CC93CF#C7BFCGDCFBGC CqDCB C D;#DC3FC FGC#HBCGCB0B? C#G8C3BuU F7C1B #HBCGCB:BCB 0E1D$4FCB2#C:2C C#CB4FC5CAB DC##CB#- :#D #BGFCCGC#D B CCG # CB FBG B#CC3CgCθ CCC3CADCB FBB FCF #C2 *% GCBG#CF#CBG7GC4FC$B# " $% '(&/#!.&#%%((& J K:;# CGCF$ C: FC#C G9FCC$CCBC#CF7BFCGC B 3GC=CGGBJ <K:BFBG FCFCB #CC3CgCθ GCq(k)CGCk 0E 1 E, t) = 2 E ind + 2 E film g(s) = bkt e 2kt abe 4kt dk q(k) cos(ks) u(k)

37 E 0E<1 ##F7BFBGC θ(s) =.C#:BC #BFFFFC#D dk ku(k) cos(ks) B0E1BC 0 0E>1 F FC#CC3C # #F7BFBGC B FCFCB ;CC B:B7/ ku(k) = C(k, E, t)q(k) 1 θ(s) = 2 π 0 =BBG4FC#CGFC/#CGC-4CBB!4C0F %"*, " '()#!*"$'( 3C2#2#C B F#C9#C#C 0B + 1#C B0E>1C0E 1GC$CC 0E 1 2F:t = t ku(k) = 2 0E1 E q(k) θ(s) = 2 E g(s) syst = E sub filmc#b#cgc9! FC "FCFB $C#CC3FCBFBG CF! CC #C GD CFC#B#B#CCFCgCθACCG:BB oue F#DC FC#J IK"GBC #CCFF BGC5CAB J KFB GFC#CFB2#4CGC#3GCBGB 3#CACGCFCFFB2#4CCFB GCC3#G0E 1C0E<1#DF FCGC F7BFCGC.C# ##CFBFGC#7BBGC o:bb2c CC#J 0E,1 rq(r) g(s) = dr s r2 0EI1 s 2 θ(s) = d s ru(r) 5C2BFCGC#D!F#CB#BFC##C dr ds 0 s2 r Cg0FCθ1CGCGGCq(r)0FCu(r)1 CB 2 i]j]wx`zcu^`bzy_z[g`zu]`wgzgyp UZ_d[]`\YT gyt`d[zyzdy]gbzymgz\z_[zg WYT`[ZgY ]`d s1u:gcc4fccg9bfg BCθB #C YZU^VZ_U^`VT^YZjZ`dfTYg`ZWYT`[ZgY[Z[^jZ`_^]`^`bZY_Zc\ZUUZ[g`j][gUZVUT_d^mgZ b]^y p p B"FB qz_di]j]wx`zcg`z\]`dyt^`dzp gt`dcku(k)lzuuzz_di]j]wx`zcg`z[ve]yjtd^]`lkvdt`d G#CFB2#4CGC#3GCBGB 3#C Fr s0fcr B? 1 E = ind:$ce Esyst E 0E ( ) g(r) dk C(k, E, t) cos(kr) cos(ks) dr 0

38 E "$B#BFB #DFGCCCFBCG#CG F BB!4C BCGC$F2#CFC##CG F7C1 3C3CFGC#CF7BFB!F#C#- B0#BFCBF#CqC#G8C3BuGC# $CF2#CC#FC#BCFCgCθC#B#CC#FC00E11U:;FFGCq: B# CC #CgBFG BCBCGG θ:cgbu:gcchbccc:; FFGCu:BGCFCθB #CB:CBCGG g q FC0A7C3C 1:GCC3C FC CFB# B#- G FB2#4CG B F 2FFC$ C C CθACCG:#C F# #C3#CCF$4#CG #C0B BCGBBF #CFgCθACCFCCB 6B FGCBB FCF#3GCBGB $CFCG9GC7 BC2#2#C;g CCGDFC#B#C#F 3#CC#C FFC#BC2C$GCCB C:B!FGC#!FGC#2CFGC!CCFCgCqC 6B F#FC #C FC CCC##C θcu:#c!cgcg;θcf C G B F 2FFC$ FC$CGB#CC;#D$CFBGC0E B!F#CB GFC#CFB2#4C BGBC C7FC:B FCB C0E1 FFB; CFBC F C:B F# C##C0E 1C2CC 1%B 3F -$& " $% '.,$ )!('#%&)( /#& *%*,#) ABGFBC#D 2FFC$ B0E 1G#CGFCGD CGCB# C 0B C7BB F#D C-B4C #CFC F F:G6; BB$C3CC3-CF C0B BGFB #DGCC FC#C-4CC7FBCCGBACCG:CCGCF4FCC C#CBCFC FCFFBG 5CBGB C #FC 3#CGCCFB2#4CDC3FC#BFBC FCC0 BFC3CU1 0E1 { CCG;BCF $Ca#CF-B GC#HBCGCBCh#7BBGC7BFCGC#DGCC CC-CGCF!CC: r a, u(r) = CFCGCBC δ h(r) FA#C B BF#CG CJEK G#CCGC# C# F7CCFCGBCGC#DC3C7BFCGC#DGCC C#BBC CBG#BG#CG CBFFCBG BCBGBFGFCCFCGB;FCGFCCBCB F #D =BFCG B0E,1CBC#D-B4CGCBB/G7:BB2C:C # 5D B0E 1GC$C#BF 0EE1 r a, q(r) = 0 r > a, g(r) = 0

39 E 0E 1 θ(s) = 2 a ( ) GC0E 1: "C 7FCGC 3BB5FC4FCBCFC#DCFFB- g(r) dk C(k, E, t) cos(kr) cos(ks) dr π DBC FFFCBC C 0 0 Film seul { }} { 2 θ(s) = + Efilmg(s) 2 ( a ( ) ) g(r) dk C(k, E, t) 2 cos(kr) cos(ks) dr ABGFB#CCBGC2FCGCCC!#=#CCBGCFCC!#!C2#CGC$ 0E<1 π 0 0 Efilm } {{ } #CFCCF:BFCFB $C#D B0E1# Effet C du substrat FBC G 9#"FCFB $C#BF# CBGCFC: CFB#BF CGD -4C7BBC3# $CCG F CtGFB G 9#5C 0:FCGGBBCGC#DCCGC CCG$CF( ) 2 g(s)#bf 2F"FCFB $C#DGC C GD GC -4C; CB##B CCC##CG 9#C # C#D6B C#FBC 2 CC Esub Efilm t #CF 2FJEEK:GC;#2CGC#DFBCGC#BG#B7CF BCJE>KG #CFGC#DGCBF B B#GD 2FFC$ FB2#4CGDGCBCF4CC7;#FB# 5CBGCCFBFC;#7 BGCFB GFC F CCCC BGD C B!F#CGC FCG/ B0BFC B#GCGC 34C-C B?θCKBB CCgC#DB ( g(s) = E C;GCFCF57BBgB ) film θ(s) + E C; a film dr g(r)k(r, s) 2 π #DC3FC FGC#HBCGCB :#FCC;#G9FB #CB C7BgB 0 FB :#C7#CGDC GG FCqCB BGC# F7CCGB#CGCC FCCGC# G#CCGB F4;K: #CF CC4FCCGCFCF#CFBF!F C 3F$ 3GC5CAB J K=BD/!BF CC CG -4C G:C##CC FC7#CC# #CF#C2GD #/!BFCGC F7BFBGC B 1A# CCGFB BB CCGCFB GFCF C#C$CFB#D #BFGCGFCFCC BFC##C FCFGC0 CGC -#,"/)#,&#" $%#/#&'/#, (!(%"/$% ('( %(''$% D;FCB D$B7 C-B4C F#7BFCC3CGC#DGCC F 0B TY]`UT[ZeT^d_gff]_VZ`gUUZZ`\]`_^[VYT`dg`\]`dT\d`]` T[iV_^ep F #FB GC#DGCC FB CC:B #CB:#C

40 E, *+E A## FBG $B# C # CC7 #CB?#CF-BaG B CCGC$#DC BC FtG 9#01:#C$B# C # CC7 CC4FCC 9#:#C BFFC021:#C$B# G#C9#:GB#FBC!#B2#CG C # CC7 DC -4CCC##CG CFC##CCBC 9#C ##C CBF 2FBF2 C;#FBC CG -4C:CCGD # G#C tan(ω):b?ωc#cgc/!#c BC Ca/t ##G9BGCθ:BB2C#BF G#CCBF#CGBFu(r) = δ r/ UGCBBC#C$F2#CG B5#B! C FFF CG #CGD CGCBBB!4CC#CF-BaGC#HBCGCB: #BFCGC CFH#CG 2FFC$ :BFBG CB $C##C#B! C#CBFC a/tgb FF C#DC BCC:BBC FtG 9#A#F GBCH 3C FC#GDFBG FC#CFBF C F CCBG FBF G 0$BF9! $B# C # CC7 G#C9# $B# C # FCE 10B FBG BGB#C!FGC FGCBC CC7 B# $C Cta 2 /a 1 "GCBC#BF#C FC!FGC FFCCG#D $#C B FG#C#CB?#C-4CFC$ F#CF C#2#C; -4CBB!4C B0E 1F#C F G 9#"FBG 0E 1 0E1 0E>1 s a, θ(s) = δ πs 2 tan(ω) ρ r a ; ς s a ; τ t a ; η ka 0E 2δ tan(ω) UT`WTWZVdT`d[]``VmgZUZ_Z#Zd_[g`\iTYWZjZ`dVUT_d^mgZ`Z_T``gUZ`dmgcU^`k`^p ZfZ`[T`dl]` UZ_dVb^[Z`dmgZ\ZddZ`]d^]`[Zb]UgjZ VUT_d^mgZjZ`dT\d^e Z_dc_dY^\dZjZ`dfTYUZYg`Tag_[Z πa Z(η, E, τ) E film Z_d[]`\\Zb]UgjZ[T`_UZmgZUZ_d_d]\VZUTfUg_WYT`[ZfTYd^Z[ZUV`ZYW^Zp \]`_dtdza^z`z`]a_zybt`duz_vmgtd^]`_vdtau^z_ftyzyd fg^_ `Z[[]`mgZUV`ZYW^Z_d]\VZ[T`_UZ C(k, E, t) 1 2 3pSZb]UgjZ VUT_d^mgZjZ`dT\d^e jtdvy^tgu]y_[g`\]`dt\dvut_d^mgzz_dd]g]gy_fy]f]yd^]``zuuzca

41 I 5D B0E 1DF#BFG(ρ) 4 tan(ω)g(r) πaefilm 0E,1 Forme de l indenteur Effet de substrat ς 1, { }} { { }} { 1 ( ) 2 0EEI1 ς = G(ς) + G(ρ) dη Z(η, E, τ) cos(ηρ) cos(ης) dρ }{{} π F C# 0 0 :BC BFCFJ IK C#7BFCP# C Film seul 0EE1 F#C-4CCFC#C;g "CC CGB#DGCBCC $ P = 4 g(r)dr 0 0EEE1 Π = 4 tan(ω) 1 "C G9F BG #C $#CFBFC;#!BFCB CJ EKACC/ P = 4 dρ G(ρ) GC#CFCCGDFFC#:F#CBG #C $#CC πa 2 Efilm 0 F-BGCBaJ :K #FGC FG BCC# G C-4CGCF B B#GCC FF#C2GC UFBB#D!.)*!(%"#" $% %!*, (!$' )( ' 1]CNCF$##C! 30B / FBG B B2C#BFF#BGCGCF4HC B0EEI1CGF[0; B#BF#CBBGFCς i = i/n Cρ j = j/n=b FCF$C C!FG:BC FBCF#D!F#C FρF CBCGF4C" CN ς i = G(ς i )+ 1 Nπ G(0)K(ς i, 0, E, τ)+ 1 Nπ G(1)K(ς i, 1, E, τ)+ 2 G(ρ j 0EE 1 )K(ς i, ρ j, E, τ) Nπ j=1..n 1 $CK(ς, ρ, E, τ) = dη Z(η, E, τ) cos(ηρ) cos(ης) `]` fut`_l]`[]^dt gyzyut\]`d^`g^dv[zut\]`dyt^`dzz`dyzu^`dzy^zgyzduz dvy^zgy[g\]`dt\dp ZUT U_TW^d[g`Z[^#VYZ`\Z^jf]YdT`dZZ`dYZUZ_^`[Z`dZgY_fUT`_Zd`]` fut`_p T`_UZ\T_[Z_^`[Z`dZgY_ 5DGCC FBGFDC# :GB#C GCBFCCB C 0 UVWXYZjZ`d[^#VYZ`d[VdT^UUVZ`T``Z Z p0p T`_UZ\T_[gf]^` ]`futdl^untg`z[^_\]`d^`g^dv[zql 0lZd[]`\g`dYT^dZjZ`d`gjVY^mgZ ^jf]_zq(r ZdfTY\]`_VmgZ`d[ZglZ`r = a ) = 0lZd[]`\g(a ) = = ap ZUT^`[g^dmgZg(a ) g(a + ) =

42 a0b FBGBGC#D B0EE1 DC/;/GFCB 1)GB#CB F F-BGCBaGB #B 0B:B 7 F C$#C FGBC r = CB#CN$#C FB GFC -4C CG(1) = FFCCG GC# GCτ FBBF#C "C #BFFFFC0EE 1BC (N + 1) (N + 0EE<1 C DFFC##CC 5 FB# B F 0EE>1 C GCBFCFB2#4CF#GCFB GC C GC 5C# G F#C JIK:#CFB2#4CC CC F GB # #C;#D$CFB GD CFC GCGBBB5 J >K C7BGB2C 1 ;#D$CFB:C##CC F#C2GD #!BFCGC FCF#CC CC$C F7BFC GC B FCFGC #!BFC 0 $#CC# #G#B9! FB C:BC $#CCCB B#0A70UEE11: GG FCΠGC0EEE15CBG GC7 B;FCGFCBCG CGCBGCB BG #CCC$CCB2C C3FC#CC#BFGD 5 FBGC#DC3FCB0EEI1C##C &"(!(%" '(&.#,#! ",(&'(,* )# (%!*, (& FBF4FCFBFC;BFC#!BFC 3 CB $CBGC#GFFC:FBG C##B$CGDCCF C$#C F CF:#GFBGC#D B!F#C FBG D N:#CB2FCGCGCCCGFB CB CFB;FB GFC FCF:#D#!BFCGC BCC ##B!C C 3FCB ς i = G(ς i ) + 1 Nπ G(0)K(ς i, 0, E, τ) + 2 Nπ ς 0 ς 1 ς N 1 ς N!`Z#Zdl]`T$ = 1 Nπ K 00 j=1..n 1 2 K 2 Nπ K Nπ 0(N 1) 1 K Nπ K 2 Nπ K Nπ 1(N 1) K Nπ (N 1)0 1 K Nπ N0 2 K Nπ (N 1) K Nπ (N 1)(N 1) 2 K 2 Nπ N1... K Nπ N(N 1) G(ρ j )K(ς i, ρ j, E, τ) G(0) G(1) G(N 1) K ij = dη Z(η, E, τ)cos(ηρ j )cos(ης i ) 0 = 1 [ (x)z_dutdyt`_e]yjvz[z"]gy^zyz`\]_^`g_[zute]`\d^]`ffy^_zz`xp dη Z(η, E, τ)cos (η(ρ j ς i )) = 1 [ Zc (ρ j ς i, E, τ) + 2 Z c (ρ j + ς i, E, τ)] ] fc ] dη Z(η, E, τ)cos (η(ρ j + ς i ))

43 E CFC FC F CFB3BG -C 0 f(r) cos(kr) dr = B f(r) cos(kr) dr + 0 B f(r) cos(kr) dr m i=0 f(ib) cos(k ibr) + f(r) cos(kr) dr m m B } {{ } "CGBC;FBG FCB:#$#C FGCB 0 ech: #DC3BG 5D6 3##B!C:C# FCGC#D##B!C:Cn Cm = 2 ech CCGCCFBF4FCCF$4#CF #CC:#C$#C F BCCC$F9C#CFB3BB #C F n /CG CF# FB:#C =BBG4FC#CF4FC;F!#CF:BBC #B7B FCGCF #7 3 FB2#4C;F!#CFGCFB2#4CGC C#DBC7GC 3-CGC GCB ech1c FB2#4C A## FB#CF!#!CGC FC0B1 3GD##B!CG#CGD 2FFC$ $C 3GD##B!C0NCn BFCGCBG τ)b7fc F;I 15:ACC$#C 0.25"93C FCC7 C$#C FGCBC##C!#C:7BB#FCFBC #CE sub /E film = 10Cν GCa/t"7#BFFB!FC$CCFB C$#C film = ν sub FC#C F = $#C GC0UEE1:C$FC# CZ(B, E, τ)/z(0, E, echcn6 GC# D;C GC%CFC#759! C#$#C FG BG #CFG FCE<FCC#D$B# $#C:B2C BGC# C;#DGC $#C E>FCC#D$B# 100)C7BBGCN59! FGCn BGC#$#C FC FGCE "$F9C#BF eq(e sub /E film = 10, ν film = ν sub = 0.25, a/t = FGCEeq (E sub /E film = 10, ν film = ν sub = 0.25, a/t = 100) C7BBGCn ech"b2c#bfn= 800Cn ech = 16 C:$CCF!#!C:BC#CG#C#CB?ν film = #7BBG[a/t](r) CB$CF!C# 0.5: E 01## $CFG substrat nu (r)#bf + 59! FC FFB ;GC$#C C"CGBC; FCCB4C5CFB2#4CDC3FG#DCCFC#F FGCr72#C:#FB$CGD FB2#4C 37BFC$#C CCFFC F Ca/t FGCkG#DCC GCZ#!CCF#$#C FGCB6 #CC %B F C# FBGC#7BBB- a/t:#gfbc KCCFGC 6 C #; CGCCC!CBGC#$#C FGCB FC:#7 D;3000 D;EIB eqg C2GCGC# B BI> NFCC ;!CCFn FBCF$CFE ech ZYV_gUdTdZ_ddY^b^TUl\TYZZ_de]`\d^]`[Zτ = [Za/tp R U_TW^d^\^[ZUTe]`\d^]`G(r)mg^Z_d]adZ`gZfTYUZa^T^_[Z`]dYZTUW]Y^dijZf]gYg`ZbTUZgY[]``VZ t/ap eyvmgz`\z[z\]gfgyzbzy_[z_btuzgy_fug_vuzbvz_ b]^ykwgyz p p g`zjhjzbtuzgy[za/tzd[]`\[vfut\zuz\]jf]ydzjz`d\]jf]_^dzz`etbzgy[g_ga_dytdlzd[]`\ut [Ve]YjTd^]`_mgZfTY\^_T^UUZjZ`d l\zmg^tjx`zut ]`ZVUT_d^mgZjZ`dT\d^bZchdYZfUg_WYT`[Zf]gY ZdVdTd[ZeT^d_Z\]jfYZ`[T Z a^z`p ^UZkUjZ_d^`\]jfYZ ^auzl^u`zfzgdt\\]jj][zyuz_

44 (E * eq / E* 1 ) [a/t=100] GCN *+E<$B# 100)C7BB N BGCEeq (E sub /E film = 10, ν film = ν sub = 0.25, a/t = *+E>$B# 100)C7BB BGCEeq (E sub /E film = 10, ν film = ν sub = 0.25, a/t = GCn ech

45 <!"#$%&'()*+,-./0+#$%&, *+E $B# BGC#7BBG[a/t](r)C#B#$#C FGCBt/a01FCC# B F2CB2C $#C FGCBFB72#C CB F#CBFC$C#B F2C#C$CF# F GC$FCGFC #B2C CB## C BFFCBG B F 2F C##CC##C FE!C#$#C FGCBACGCFCFC7021BFC#C #!U 9#:B2##CF!#!C $ sub /E film = 100:ν film = 0, 5:ν sub = 0.2Ca/t = 800$C C B = 3000 a t n ech = 20 N = 800 ACC$#GBC3FC#CF#C 6 F#2CGCF 7 #C3FC 3 7B FF B:UA C BCA F!-G 5%% 0A0= =%AA1 &.$&" 8(.*,!(%"#) "# 5CGB7C3FC# C #CC9! FCE =BFCC#C B F -4CFC$ C7BFCPB CF#C2GC##C##CF C: FFCC CGD $CFFCGCBG F$CFGC##C##C:BGFCCC4 #C# GPa0GBCG F-BaG 72F1%F B" B B;C##C FF#BFBFCF#D$B# #C$C#D#!BFCFCFGCC BC3FC#CGC#7BFC# CE ind = 84.6 C$C#CF-BGC

46 + > * + E C FCBCGG B7C3 FC BFF9CF GGCBGBFC ABCBFCBFCCC:BCFCCFCFC GC BCCBFBGC BFC CB C BFCGCBGC BGBGCDFCCFGCFGCCFFC FC BC C BCFCGCFBFC FBCGCGDCCBF ACGFCCBGC FGCCC FCGCFBGCBFFC GCB BFCBFC!FCGCGFCC CF GFC BCGCCGBCBFCGCBGCC FCF"I BCGDCCBFBGC F BCBCGC C DCC FCCCGDC FCC CBCFCB CC ##,#/"*, &#" $% '(&&$&"!(&,(+ "& /$%& '*,*& BC %FFBGBGCFGGCFFCC FBGCBCC BDGCGCBGCGDCFC)FFCCFFCC+ C CF&B %CFCCFCCBGCCF '()* CCF GC C! CCFCGCG CCBGC BCBFE %FFBGFGFCCCCFC FCGDCGCB subcci E 'BBC CGC)BBν CFHCCFCBCCGC"IGD CF CFCDBBGCBFC,STYT^_]`f]gY\Z\i]^ Z_dZ fu^\^dvztg\itf^dyz-p sub = 79 GPa

47 )*+ #"! GH $%&'( \]^ LMNOPQRST IHJHKH mnopqrsrtqrtuvwxy _àbcdefghiajebcklf HGHVHKJHKUHJH WXYZ[ z { } ~ P a ƒ " }! "ƒ ˆ

48 + ƒ " } % + film " ˆ } ~ˆ " E " " " " ) ƒ g ˆ o! E ) %T ˆ P a/t+ % + + ˆ + ˆ ˆ! + +ˆ a/t ˆ ˆ ˆ!! ˆ + ˆ ' ˆ %ˆ + ˆ! film!"# $%&'(')*%+ ',- -* (*. /'/* 0.+- &%0 )*'/)%+ &-+/* 1+)* ˆ '23 ' 4 ƒ5 ˆ 4 5 ˆ326 4 } % "ƒ 4 }5 + %ˆ! ) 7 : ; ABC D< :CAE E<>;FBB<G:C HFAE HF:JKLEC M ABC?CKHNE<?AEC >BONE>CAEC M ;< TgP

49 } Charge adimensionnée Points expérimentaux Incertitude sur la valeur de E film * Modèle avec indenteur rigide Modèle avec raideur finie de l'indenteur a + + z { ˆ P 10 a/t

50 :;5<BC?ADC EFGHIJKJLIHJKMNONPGJHQJRONQSTOJITUV :;5<BCA?DC :;5<BCAD?C!"#$%&'()*+,-./0 z { "ƒ ) ' 4 ƒ5 % ˆ P a/t ƒ ˆ ˆ ˆ ˆ ˆ ˆ ' 4 } ƒ5 +!"W $%+X.*)%+ [ Y Z Z 4 ƒ " ˆ!

51 ƒ % +! ˆ ) % ˆ " "! ˆ " " ˆ ) a

52 "!" #$ $!"% $+ %$&"" &$& &"!' $ ( ) " ( " $ ( $& &ˆ! $ $ % ( $& " (! %*$!+& " ˆ$ $," " +"$- $ " ( #$ %!+ " (( ".&( " $," " $ &ˆ%+&$"! $ ( $& %*$!+& "-Y$ $!"% $!"! " / &ˆ " $ 0! $.&(# + $ "" "! "!$&!1 $ & $.&(!(!,& - 2" X *'XX%(0 0- &%0.7-17&8*.9*/('/ *.( 7- &%0.7-6:.),'7-+/ 0. *;*/<&- (-,=/. 0$ %"$! &ˆ! $ $ % ( $& ".&( " $," " $ &ˆ%+&$"! $ ( $& %*$!+& " $ (! >"1( " $ $ ˆ$! " 3. "" %&"!*$ # $ + %&!% &$& >"%("!*$ $! % " % ( 2 "! " $! $ " ( 0!# &$&" %"% %&!% $.&( " $," "! " & ( 1& 0! "$ %?$@ /ƒ# -Y$ % " & %$&""," $ " $ & ( + A " && Y$!" %". %$&"" / & &$(!1 "" (!- BB CD D Y$!! / ( %+&$"! ( $& %*$!+& " % $!"," $ Fƒ2- G! &ˆ + $" $ >"1( " "! " G! + ( $& E ( Fƒ 2 " $+! ( %? %+&$"!# %"" % & +!%"% " " "$8$ %! ( $& ˆ$ $," " +"$ / $ $" #!& $ '$" / $!(! ( "!%- F-F} # +!" *$ # (!!*$ ( "# $" HI<B; :< KC;AEC FJ :C; EN@A>?; P IFCKI>CB?;@C ;AG;?E<? ;FB? N=<ANO:C E sub /EfilmQ C ;? ;?E>I?CKCB? N=<: <A KF@A:C; N:<;?>RAC; P Esub /E film QP

53 !"#$%&!'()*+,-!"#$%&! :;<=>? :;<=>? :;<=>? 89:;<=>? 2324A 89:;<=>? A 89:;<=>? 89:;<=>? / :;<=>? z { "! " -FB~+&$"! $ " ) (E eq E '"! $ " film )/(E sub E film $! % " ( $& a/t E sub /E ( Fƒ 2 " Fƒ2- %+&$"! film C$, + ( *$ $ C " ( % + && '$! & ( 1& A " &&- 4 5-D $, " &&$ (,&,& (! " %&% & $ " $@ $" " / & '"! AE!.&( " &$! -( *$ & &!" " " $," " ( $& " $ ' " & *$ &!& " % %# & %,$" & "!"! " %&% + &$ '!,& - +& $ a/t- %&? " ˆ$"" &$ ( *$% *$ &.&( " $," " " %& +%- &ˆ%+&$"! $ ( $& & %*$!+& " % $!",!! ˆ$ E &! $ "> -F 9 & '"! (%&? Φ " "$8$ (! " ƒ " F- ˆ " "" '"! Φ *$ &ˆ / ( %&! ˆ " && *$! %!" & "!"! " & %?!(.&( (!' 0 " Φ(a/t) = & %?!( " + $," " $ Φ(a/t) = 1-3$ &ˆ%+&$"! " (E #&.?$ % " " -F (!1 >"%"!*$ &ˆ%+&$"! eq E film )/(E sub E film! % " '"! ) Φ!% $@! % " ( $& %*$!+& " % $!" '"! $ " a/t - F "" & % "$" ˆ, *$ (( "$" & $, " & &&$ # *$ & *$!"!&& $ ( $& $ >"1( - "" ' ( " & '"! Φ *$! "," $ ( 1& $ % A " &&- 4 5 ~*- F- - ~ "!$&! # & *$ & " " " ( $&!(!$ # & $, &$&% &?!"( +? " + & $, % & ( 1& A-! %$&"" G" &$ &! ( "!! 1 &ˆ &.?$ - - && )! % " & & '"! Φ &$&% " "! " ƒ- ( $& ( E eq = E film + (E sub E film )Φ(a/t)

54 ! z { $ $ % - B~+&$"!!($&% $ ( $& %*$!+& " % $!" '"! $ " ( $& ƒ- #ƒ- # F-F + " -F "" *$ # a/t ""?(( & +& $ # %$&"" " $@," $ + ( 1& A.?$ % "!" & & ( 1& $?!"!&&% - &$# & +& $ a/t &*$ && %,$" & "!"! $ A " &$? - &$ "!" &&," $ +" ( " &$!?! - &$ ( "!"!(!&! & &!" *$ & $ / &$!," $ ˆ$ $," " $- $," "- %$&"" %"!" "" $# %"" % *$ & ( 1& A $ $ ( & ( 1& " # '"! $ " a/t -F "" " $, %$&""#.?$ % ( *$ $ # " A# % "%!"!&&%-F +%!. & %$&"" ( $& (! " ƒ- " - D $&! % %*$ " " &! % " '"! (%&? && *$ $ + &$&% (( && % &&- " $ A " &!"! "!"! &!% $@ >"1(!($&%- ˆ$ +" ( " &$! *$ $," "# & "!"! " %&% + &$ '!,& +& $ a/t / & "!"! '$! & ( 1& & A- 3$ "! #!.&( " &$ ( &!" *$ $," "# %&? ˆ "$ + +& $ &$!( "" &$& %&%( ".! +&! " $(%!*$ ( " F- & " " a/t- %&? G" ˆ$"" &$ ( *$% *$ & % ( $& "!( ""-

55 B D D (( $ &ˆ+ % "% %% (( "# & %$&"" &>"!*$ A " &&- ~*- F- F # F- " F- " %"%," $ $ "$,"!+ / >"1( (! $+!1 "! $ & (?1 -D &! ˆ" ( "!" " %' ("! &$& " & (( *$ $ & $@," $ $ >"1( (?1-0$ ""# $ $," " +"$ " (?1-3!!#!.&( " &$ ( &!" *$ $," "#!& $ " ( / $ " &$!( "" & %' ("!#! $!" $ & "!,$"! $.&( / & %?&,& $ >"1( ' " &$ *$ˆ && &!" 9 >"1(!" (?1 E& "!"! " & %?!(.&( (!' " & %?!( $," " (!' %&% + > & "" &$ %& +%- 3 &ˆ!+ #!.&( " &$! *$ & & ( $," "# $," " " / $ " &$!( "" & %' ("! $ >"1( #! $!" $ %&?! & "!"! + +& $ a/t &$ "!" - 1 &!& ˆ> $ " / "" *$ Φ & '"! $ ' "!1 " A %&!(!" & >"1( $! $ & $," " ( &!" " & >"1( $ ( &!" $ $," "! - "" '"! %!" $.& (( " " % "! & "!,$"! &"!+ / >"1( & &! $ ˆ$.&( $," "9.&( " $," "" & ((!%"% (%!*$ +!.?$ - - 7& " 1 & "$" / '!" (& *$ & *$ & " " ( $&!(!$ # & '"! Φ[E sub /Efilm +? " + & '"! $"! A- ](a/t) ' >"%"!*$ # "! *$ #! " $ 0! %# & '"! Φ[E sub /E "," $ / & '"! A $ " ) film &"! & ](a/t) "!"! *$! '+! & "!,$"! & ( " & &$ ( &!" $ >"1( - %$&"" & ( " %'$" & 1?&!" Fƒ% #$ $ (! &!"! / & %" (!"!!%"% %&"!*$ ˆ$.&( (! - "" 1?& (!!*$!!*$ *$ # &ˆ! ""! ˆ$ $," " +"$# "" *$ & %%" "! "!'%! $ " " Fƒ% / &ˆ%! $ t $.&(# & % $ >"1( " && $.&( $&-F!& G" &! ( " *$ # $ >"1(.&(! $ $," " ( &!" + $ ( $& & $ (( " %& +% 0.2 < E ( & # sub /E film 1?& " (! %'$"- ""!!*$ ( ( $" "(( " < 0.5 / $ %*$ " $," " +"$ $! # "!$&! &! $! "" " ( $ % %? - :F=<E>?K>RAC; C KF??E<B;:<?>FB C;? K>; CB?EC =A>::CKC?; I<E :< M=AEC P C;? HEN;CB?N CB IFFE@FBBNC; ;CK> > IC;? :C ;AG;?E<? P PEC;HP : C M:K Q RA> C ;? :C H:A; IFKH:<>;<B?O:<?E<B;>?>FB IFKKCBIC H:A; O<>G:C; a/t PEC;HP H:A; OFE?C; a/t Q O IC RA> :<>;;C ABC FBC ;AG;?E<? BA PEC;HP M :K K<;;>O Q H :A; B CC?O@<B;ICI<;FB >KHFE?<B?CP : ND (E eq Efilm )/(E sub E film <DCI ) a/t P : IEF>EC CCI?ACE ABC KC;AEC CB EN=>KC :< <:FE; RAC :C ;J;?LKC C;??E<B;>?>FBP

56 & B - %""! %("!*$ &!" %""!$%&? &!"! & (1& "!"! " $ A-D '"! A","$ $ &, ( "!""%'("!,+% $ ("%!$ (?1- >"1(+"$ & "" + (1& & $ ($& (*$%# &%'("! " %'%"!&&(" (% ("%!$ $ &$ ( &!"- 3!! $ +&$%a/t# $ A#.&(" $,"" "!,$" "$ $@ / &!$$ >"1(# & *$ $ $,""!+"$$.&( ( & &? " &!" - $ $,"" ( &!"+"$$.&(! &.&( - $,"" '$! & &$ & "!,$"! / &!$-!((!&&$ "!,$"!$ $,"""!" + & " a/t #,"!" $%&? & "!"! + " $ "!!"!"% '( '"! Φ[E sub /E film ] -

57 " - ) B+&$"!(E eq E film )/(E sub E film '"!a/t $!%" ($&-D '"! A" %"%!"!&&%-D%$&"" &$& " %"% & (*$$-D% ($& " "!+(" F-F # # # F " -D &!? &!.?$" & 8$"(" F B!"#$%?(( +&$ &$ %&+%-F & *$E & (1"&"&"!'x 0 "&.?$ - Eeq Efilm Esub E film D8$"(" %"% - #%&!% $ν film = ν sub = 0.25 $ '$!" &,"$ "&"! & '"! A-.?$ D -F (""" %+! *$ & $, ((E eq Efilm )/(E sub Efilm ); a/t)!$ &$&" && '( (,&,& / & '"! A#!& (,&!"%" %" $ 8$"(" *$! & '"! A $ $ &"! $!+"E ( ) a = Φ Gao tx 0 ( ) Esub ln = ln(x Efilm 0 ) ln(x 0 ) 2 F $" &+!?$"!&! $ $%+&$ "> $"%" $ & $,@ %!("&(E - 9 & (!" 0!$.&(" eq ; a/t) $ $,"" " - -

58 2 4 5 X 6 XX X X : 7 ; < = " (!" &%$&"" *$ + " $ %"# $ + +&"!("@&$ & 0!$ ( %"$-F#!&@!" (, $ "! & (!" &!"! "!*$ 0!$.&(" &$ %&+% *$ &$!$ $,""- +"(" &>(1 $ $ $,"" + "!"$ & $,@( (!" 0$.?$-Y$@!! & ' $ $ &$ >"%("!*$ &"$ %" 0!- '!# $ &$& ' >"%("!*$ &%+&$"! $ ($& (!" " %*$!+&"%$!" ($& +!"" & (!" $ F 2" F2 + $ 0!$.&( νfilm (!"-F"-# 0! ν sub$ $,"" %"".@% /-- $%$% $# C$.?$ D -" - %"" &%$&"" & &$& "!+(".&( &$!" &$ ( &!" *$ &$ (!" &,+ $,""-.&(!# " ",&$?(" ) 0!$ (!" 0$.&(- 0$% " ($& #,+ (!"-F"-# &%+&$"!"!(!&!- $ ($&E *$ sub /E film &$?(""!$ 0!$.&(!$!" $ &%?%&? & & & "!"! + +&$ &$ %&+%a/t- = 0.5.&( ( &!"#?(" (!" 0!!$!" B?(" %*$" $ &%+&$"! &!$ %*$!+&"$ >"1( & + " & (!" a/t -F "" '!"$@ %(1!"!"E G! &!"!$%,$" & "!"!" &!?%# "!&& +! + 0!$.&(-!!# &$.&( 1 (!" $ 0! %&+%" &$ & "!"!" &%?!(.&( (!''" &%?!(&$,"" $'"!-D%"" & & "" & $.&(!(!,&" & $" "!&&$!" + ($&- B ",+ $ $.&(!(!,&#" & &$ "!" "" ($&# $ %(1 $ "E & ($& %*$!+&"%$!"$ >"1( $" &$ %&+% *$ & ($&%$!"$ ("%!$@+!.?$ - &$!$@ ", -!"" "( "!("- $#D D"#!#$ D%$&"" *$ $," " '!"!! & (!"! "! %(1-! "#!K"$!%& '! L#$((#% ') ()*(&+,&!(& '! - #+'+! '! "!-)$ ' )%.!++! (#'#",-"$R)!/ 0 νfilm12 /3/

59 -B+&$"!$ " Eeq/Efilm '"!a/t $% ($& /--D"$ -" -D (!" -F#, -F# -" (!" $ 0!$.&( -F #- #- #- "- 0!$ $,""".@%" %?& +!"! (!" 0!$.&( $ &!$ %*$!+&"$ >"1(" '!,&-

60 - F" B+&$"!$ " E eq /Efilm '"!a/t $% ($& #, # (!" F" $ 0!$.&(-F %?& /-- #- #- #- "- -D (!" 0!$ $,""".@%"

61 $ - B+&$"!$ " E eq /Efilm '"!a/t $ >"1( + ($&%$!" (!" 0!-D (!" -D (!" (!% 0! $.&("! %?& /-F #- #- #- $-,$ 0!$ D (! $,""".@%" %?& /-- %(1" & " & "$&&$ >"1(+"$ /!"!) &%'("! %'%"!&&(" >"1( & & &$ ( &!"- $.&(! $ $,""# (( & $,""" &$ ( &!"#&%'("!" "1!(" (%!-D (!" 0!$.&( $" +! *$$" '!,& $ &% (%!*$ &?&,&$ >"1( $ $,"" &$ ( &!" *$ D +"("- %(1",! (! %+! &*$!1 & $ >"1( ( %$.&("$ $,"" (( ($&%$!" (! $+$ (!" 0!!%"-!.?$ & & " %"% & - - (!" 0!$.&(" %?& / &$!$ $,""#"$+ & $ ("%!$ (?1-0 & & (!" "#! 0!$.&(" &$ "!" - &$? *$ &$! $ $,""# ($& %!$ ($& %*$!+&"%$!"$ >"1( $ (!!($( - $ (@!($(!'%!$ - $ $ $$@ ("%!$@-!""#,"$ &,%" ($&%$!"" & ((.?$.&(" $,""#" / &!?!$% (",+% $.&(!(!,& $ & >"1( %"% & ""!$"! - - '!"# " & ($& &$& &&- A" # "" *$ " & " *$! %!".&(" $,"" " $ ($& %$!" (! $!!&&("-F"$+ $! %$&""! "" &@ & '"! & ($& & A$ $,""+"$+!*--F (1"α " '!" &!!&&("$.&( $ &$!$ $,""-

62 & F *$ %! *$E $!%!!E (! film = E sub ν film νsub# $" µ sub = E sub (1 ν sub) µ film Efilm (1 ν film) = 1 ν sub 1 ν film F +%!. & (!",! & *$#! 0!$.&(" &$ %&+% *$ " %!$ &$!$ $,""# & " µsub /µ film $ / F-F,"!" & $ >"1( " *$! / ( (( &!.&( %"!" &$ ( &!" *$ & & $,""# &$?(""! ($& & (!" %*$!+&"%$!"- &!+# 0!$.&(" &$?> '!,& *$ & ($&(! &$!$ $,""#!!&&("$.&(" &$ %&+%" ($&%$!"$ >"1(%G" $ "( -!(( & &!(!" $ $ "1 F & """ $ ( "(" "> &$,"" $'# $)&/$ "! " a/t ($& %*$!+&"%$!"$ $,""+"$ (( / $+$# *$!@ &!*$ & %$ (@!($( -$ (!!($( ($& %*$!+&"%$!" &*$ & (!" 0!$.&(" &$ %&+% - &$ *$ '!,& &$!$ $,""-! %(1",! $"" &$ '!,& *$ & "" ($&" %&+%&.&( %"" &$ ( &!" *$ $,"" -!&@ &!*$ D! $ & " $*$!!& ",+% *$ &$&"$% (!" (!" + $ ($&%$!"- %(1"&"!' / &"$ 0! $ ($&!) (!,!&!"% -!!"&!% B $ 0! & '($& $!+"E - E B = 3(1 2ν) F +!" &,! *$ & ($&!( " & (!"!,!&!"% $?(" & (!" & + 0!) " *$!&"!.! $ν = 0.5- G! 0! $?("# ($& "!(!,!&!"% $?(""#& &%'("! (%!!&&(" / $?(" $%"!(" & " (% (! +&$(%"!*$- G!!1 $?%(%"!.&( $ $,""# &$?(""! " & &%'("! (%!!&&(" "$!" $ $?(""! & "!&&!& & %&"!*$(" & & (!" "!+# "((" $!+$ $ &!"'- $ (( " ($&%$!"# &$ 0!" %&+%" &$# / $ +&$% a/t# $,""&.?$!"' $> ""!( ""# *$! " / $?(" & "!,$"!$ $,""-! %(1" '!" +!!,& $ & '"! A$ >"1(-D %" - &!%" '"! A,"$ $!%" +&$ (!" (!" $ & "" 0!.&(#+ $ ($&E sub /E film " $ 0!$ $,"" = 10 νsub = 0.2-F,+ *$ & (!" &$ 0!$.&(" %&+%# &$ &?(( +&$k $ +&$ &*$&&C & 2/Esub" %"$- k %"" "!& / t/a # "" """!!( &!*$ *$ &%?!( &$,"" $',"$ $ +&$a/t$"" &$ '!,& & (!" 0!$.&( %&+%-!( &!"! "!*$ & %$&""" *$# $ >"1(+"$.&( " "1 $ (!,&" "1 ( &!"+" $,""#& "!"!" + ')$& $ #% #)+ +!,+'!,&&!%&$.!!%& -,M )+! / P* Q O#% #*(!+.! )% -!+,N$ ) -#",- ') #')-! R)$.,-!%& a/t "# +$(!%&+! 2!& / -

63 B"! - A &$&% $!%" (!" 0!.&( $ "" & (!" (!" $ $,""+"$# + $ 10" & ($&E $ sub /E film 0!$ $,"" = νsub = 0.2-0&$ 0!" %&+%# &$ & '"!!% A / &% $.&(C(k) 2/E %" $ $ film = 0.9 &??(( +&$k-!&!( &!*$ *$ &% $ $,"" $&,+% $ +&$ &$ '!,&a/t-

64 "1%$!" + $ $?(""! "1 ($& %*$!+&"%$!"-!!$ %) (1 $" +! %*$!( "" $ &%+&$"!$ ($&$.&( / "! &%+&$"!$ ($& %*$!+&"%$!" "" + a/t -"# (!" & &$ " (1& ) (""" &%+&$"! "!,$"! "!+$.&("$ $,"" $ ($& %*$!+&"%$!" %?&!?" &"$ 0! $ &% (%!*$$ $,""+"$-D$"!&!"! (1& $ $,"" "1! +"$ '" "1 ( &!"" *$ $!(!,&,$"! "! / $ $?(""! ) "$ ($&%$!"$.&( $ &!""!- &")&$( $?(""!$ ($&%$!" $ &>(1.% $ $$!""! ($% &&- F $")" " +!" %( &$& $" (! %+! (, ("" $ "!!"!() "" $ &% $ ($& %*$!+&"%$!"$ $,""+"$ +! +!!%"% %&"!*$$.&("$ $,""- D!(?%%!"%!%"% (%!*$$ $,""+"$!( "!"!" &!*$ *$ &! &%?!(&.&( (!''" &%?!(&$,"" $'"% &% ' / '+! & & ("%!$ &$ ( &!"E &.&(" &$ ( &!" - &$ *$ & & $,""# "!"!%,$" $ +&$a/t &$? - &$ "!" *$ && '$! & (1& A-!%$&""!+&! &1?&.?$E D"$% (!" &F '- 0!" %?&!?,& $'$@!& "" & "" (!" B ($&" '!,&" 0!!( ""# ($& %*$!+&"%$!"$ >"1( G" $" "$&&(" &$ %&+% *$ & "" & ($&%$!"$ '"& ("%!$ &$!- &! ($&" "1.&( %"" &$ ( &!" *$ & $,"" "!.&(" &!(!,!&!"%# "!"!" &%?!( & &.&( (!''" &%?!(&$,"" $'" '"("%$!"" ($& %*$!+&" %$!"$ >"1( $?(" $" "1,$"&("-!"" &!(!#! &> " &%+&$"!$ ($& &! %*$!+&"%$!" / (1& " ( ""# *$ ($&%$!"$.&( $?(",$"&("" '"(" &*$!&".%-

65

66 & 0$!"# $!% &%$&""&"!' $ ( "("$> > "! "" "" &!""!$ $,""+"$- '!# $!"$! & >"1( %*$!+&" & (?1G " & %%""!%$!" #%.! (( & %%""!@ %!("&" & %%""! *$!!","$ (( $ ""#! >"1( %"!" (?1- %"$!" &%+&$"! (( (1"# $ (" *$ &$"!&!"! & (%" F&!+" 0# "$" (%",% $ $ %*$"! %",&! $ >"1( &, $$ (?1#!$!" >"%("!*$ $ ($$> & ""# &"!!"%-!""$ $"$!" (( % &%+&$"!$ ($&$.&(- $ (" *$ ""$ & "" G" + ($&- $ %"$!" & $ (%" (""" $ "!&& "" "! $ $ "" %&"!*$ $"!&!" *$ &,+,&@ %!("&- $ (" $! & &!(!""!!$!" & &"!!"%- 3 9 = ; "$#$% # $"%!$#!(( $ & $ & (%"F&!+" 0- "!*$#& 0 (" &$& (%" F&!+" (%"F&!+ & $> $ ($&%$!" E " "" a / "!$ "! &",+,& {P; S; δ} # $ >"1( - "!&! & $ $ >"1(+"$+!" / "!" *$ "! &" ((!$$!!""! $ $ >"1( (?1 ($&%$!" P; S; δ E eq -

67 !$ & %.! >"1( & %*$!+&" (?1 (( & %"" >"1( "" S %!"" & &!"! (( $ ""! (( & & %%""! 'P δ *$ & & $,""+"$ %"$!%-D.?$ -F (" &&1& $ >"1( +"$ $!""!" >"1( %*$!+&" (?1!%- &" %+!" *$ & >"1( $ %*$!+&" (?1"!!!%" *$ "! &" P, S, δe- FB %""! %("!*$$ >"1(+"$ $!""! " $ >"1( %*$!+&" (?1,!% / "" %" $?("F!!!$$!'("! $ &&"!" &> a$ """ &> $ >"1( %*$!+&" (?1 ahom!"" %""! $&1+ $ *$"! $ & &!"! (%"F&!+!"? " 0 &> / &!""!$ >"1(+"$"#! &&"!" & ($& %*$!+&" E eq # "" a" &!$$ """ "$$ +&! # $" $ & +&!!"% " &!!",&1(E &!*$ & 0 (%"F&!+" %!E & / $ >"1(+"$+!" / %"$! & >"1(%& (! >"1( %*$!+&" (?1G$ & > "1F&!+" 0# $" F ahom" &>$ ""$ >"1( %*$!+&" &*$ (?1 F# & &!*$ & 0 (%"F&!+" / $ >"1(+"$# %!"E D% D!$ $#!#"%!$# $ hc(ahom) = δ ε P S h c (a) = δ ε P S H #)& ') #$%( ',%( -, #%! '! &+,%($&$#%/ %!!&O$-!(&,(($ $-,*-!,) M-,(($! P+!(/,) ()*(&+,& %) Q"!,$*-! ((!%&$!--!!%& +,##% '!,+"! "#%&,"& P+!(/"!#+& +,##% '! "#%&,"& Q / R)! "!&&! +!-,&$#% %! &+,')$& R)! -, ' M%$&$#%,' #" '! E eq /

68 %! E *$!+!"!( &!!"(" / F"!"!"? $ +&!!"% &&"! # *$! $$$) "!."! >!*$ &!! &% &.&( (!''"&$,"" $'# >"1(+"$ %""!(!&,& & / $ >"1( (?1# ""&"! (,&!),&!&" (! %+!" "!"! $ && $"!&! & %$&"" &$& $%"(! &?(( +&!!"% &&"! %&"!*$ a hom = a =!? a/t >? F P S > > a? δf >?! >? δ?? E δ homf E F E D > δ?δ hom a "$#$! "$"#D!#$ D"%#,!#%"&$#% '! ()+!,"! hc!(& *$!"&$.!/ δ hom = h c (a) + ε P S δ = h c (a) + ε P S δ hom = δ

69 B P, S, af δ δhom!! E sub /E film a/t %#$! "$"#!#$"%#!% %$$#! D a/td D ( ( ; a/t) E κ a δ hc (a) = δ εp/s F ε! sphere 1 = κ ( cone 1)!& #)+ +$.$,-!!%&" -! (#(&&! ($ $)$.,-!%& δ = δhom",-#+( -, +!-,&$#% *$)%$.#$)!!%&+! a!& δ!(& -, %! #)+ -! (#(&&! +!- # # &%!/'#%""δ= δ hom a = a hom /

70 δ δ hom ( δ a δ/δ hom = 1 κ

71 )*)+,-!"#$%&'(./0-12/3 4,53/5!-!56 3/0- ;,53/5!-!56 7!86!9: 3/0- E eq /E film δ/δ hom a/t E 5< sub /E film = = 1! > 1 δ δhoma ahom a/t a/t < "?! + ()-&,& #+($)! -! +,##% '! "#%&,"& a &!%'.!+( 2 - $),&$#%BA/ ED@!)&,-#+( (! + "+$+!F ",.,$& ' & $%&+#')$&,) ",@$&+!A',%( -! ",( '!(!,$*-!(.,-!)+( '! ab?!/ca/ / D / BE GD / θ(s) = 2 Efilm g(s) + 2 π a g(r) ( dk ( C(k, E, t) 2 E film ) cos(kr) cos(ks) 0 0 } D {{ } 0 2 Efilm g(s) "#%&+$*)&$#% H%! +!-,&$#% ')I- $)$ ($ $-,$+!!(&#*&!%)! &!%'.!+(!% )% &!+! '! "#%&,"& ()+ -! ()*(&+,& %)!& )%! 2 -#+($)! t &!%'.!+( +#/ ) dr

72 > a δ (

73 < 1 a! > 1! < > a t E eq = E film δ = δ ( hom!! &' a ahom δ < δ hom! δ < δ hom < a ( 0?!(& ',$--!)+( "!&&! #'$I",&$#%$)! &+,')$& -! ",-")-@!+&)+*,&$!,# "#--/ AE +,$'!/ & $%.!+(!!%&" )%@+#*-&! '! ($%$% ',%( -! ",( ') ()*(&+,& +!.%&)@,+ /

74 ! % %#!#$! "# # $"%$! < S P a ( <! ( '< & a/t > Eeq! E eq a a/t! a < E eq f(a/t) = a (a/t) = = E eq hom/t) = hom /t) Eeq < f(a/t) (a/t) = <!?#! '!(,)&+!( & #'!( '! &+,$&!!%& *,(!( ()+ '!( $),&$#%( &,*-$!(@#)+ '!(,& +$,) # # &%!(/?!$)$ "#++!(@#%'" )% (#(&&! ') &#@! +!.%&!!%&@#-# &+! ()+ ()*(&+,& '!.!++!/

75 -./ :20:/;:2842<2012!"#$%&'#()*$%+, _àbc JKLMKLNOPQRLSQKLTPL UVWXVWYZ[\]W[^[ZYW def ghij kl ml no l o l l op lmml m l m lmnol 0.2rml o o nmle eq(a/t) = f(a/t) m nnl m llmnol l lmnol no l m l nn tt l p ol po l nop nm n lul mq l s n nq ν sub = ν film = 0.4r nmomlolmol lmml mom ll l nmle eq(a/t) = f(a/t)mlll ll l l m l m llmml nm m m mo me eq l ol (a/t) Eeq hom/t)vl lm l m llmml l l no l llmml mal m m l nm m l mo s m m lm nmle eq(a hom /t) = f(a/t) nl m lllmml m l l m l nm m m m leeq ll al f(a/t)l l m p lol nno homplmml m lqomllw om n n lrl l m l (a/t) = m a ml m mm nmle eq (a hom/t) = f(a nmla/toll l m l t hom /t)l ll l l mm m xqn l m l mo laolyz m m nm ol tt opl m r plmml m l m loll l m l t{ n nm m

76 j nml pl lmollml op l m ll m l l l opo l l p lmmlm m m n n a n noml l l l lmolol10%m n nm l l nom lm l m l nq i rl o l nm l n mo no lol l nm no lmo ml m l m 2rl mo l l ql0.5 E xn nm eq /E film l m l nl lol n i no u l l nl l l l sm lml ll l no lmoo lnl om ll l s mmo l < l m ll nl m nq i r m nml mmno l l l mo pnmom lol l tt nml qop nrl nmonmoo l l l l m lmol lmol nnl plmml m l mn lmnol l op n pnq no i rl lml lo m l m o n nm nnm l mn on l l ll l no lop<lml mmq l n lll o l r ol l l nl nlomnol ol m l sm l l l no pol moml l l m l nl nm l l o n lommlo l mll ln ll onmlml l!" l mol lolonomnol mn l l o l l l no lollmol o l smlmno m l l mo n nmonmoo l n l l l no o l mmnm m l ll l m m< ll o nlol l m l m lo s lml ml ml onmool ol l lm mn m l l mo lmon l ou lopolm nl nolop<lml mnqn l l lol pno larl n lm mn lop l l l no lm mm # l l l l n lm mol nmm lm n n l lol nmm l ll mn n n lm ml l m nmmn mm nlol op l so l l l m l mn < n lono l n $%&%' ())*+,-.,*/ ,341 mnnol l o l 51,-24/.4 nom lm m l mm l m n l mmnm l m lolmol 6 l l n l 7 n s n m m 8 n subqml nls S filmr mol m l subqml δ δ filmr nmno mqml o r mnnlδ nmnml lo onmno l l lpl l m n nm on qi9r la/t δ film (δ sub + δ film ) = δ film δ = 1 P S film δ

77 jj l n S film S sub S Sfilm l mol m l lo S mvl l m l o l nmo l o l mnn l l mo no l m l l lo lmnm m δfilm /δ n nol l l l nno l nmno l l l onm nnlo nmo n l lml lmlm pm l l mn o n l < lol mnn o lol omnm n P/Sδ la/t $%&% 5.*34 -/0 /.4 53,-,41,-24/. * */4 ())2,-.,*/ 4/ 5* 5.,4 */,14 l =δ/δ hom ll pnloplmnol nm nml lml pnq r lmn n l = 1 n l l m ll m l om nn l nm qi tr l vl l l lr qi r lolmml (o op n n vl n lmm qi r lmlolll llmlolomnl llml l m l n p lmll l o l l pmso lll l l l l nno l lmllml n mn opm op l m m l nnomn ao nlωol po l l m ml l l lol nl oo l l l n on o o lol p mt mnm l l o mo l l p l l l nmo l #nm m n pmnn mmnm m m m l m l nl mnm l m l nq i rml nlu mnno l o l lol l nmo l pnn l mnmo s nm l o l lmll l no l l nmo l ono qnm mlirl nn s m o l nm l l o l n l l pnqi rl l p lmml mm l l l m m ml l ll lmnol ll n nolop<lm n o n nnml l lol m l l l mn ll l no l l pmn lvl lml p ll l n lml m m nm ll l m n lmo δ P/Sδ = δ hom (P/Sδ) hom = 2P Sδ δ hom (a) = π a 2 tan ω = Sδ2 2P mm $%&%&,,.-.,*/0,/31,.40 )- 2- )2-0.,,.5 #) %$ *#%# $!"##"$% "+"" ## P/(Sδ) ##@%,%%$" = 1/2 "+""$ ## %%#$-?#%$ #$"% +%$ %%#$" $% $.@ ##@$%, + %#$%#/% ### "!##$%# "%0-

78 j!"#$%&'()*+,- "#$%&'()*+, "#$%&'()*+,/0! "#$%&'()*+,. "#$%&'()*+, "#$%&'()*+,/0!!"#$%&'()*+,- "#$%&'()*+,. "#$%&'()*+, "#$%&'()*+,/0 "#$%&'()*+,. "#$%&'()*+,/ nol ghi 89 ml nnomnol m no mnml no mno lop<lml lop<lml mm l n l nm mm l l o op l m n l l ll n m n no m nlu tqrtxqrtiqrnt qorl 89vl l o l lml l l lmol n n l l t l nm n lu m l o l no mo lmnol l nm nno ll m o l mn ll opsm nno ll mn l n mmqa méthode = ar nol 89 lnll l n l o l l no lol<lml mm lml l ll o l n lu l l l o l l s l nm nm no nn

79 j l o l nm l n ln nmn ll nopsm l l l sml#ol l ll mm l l 2P/Sδol n op mnn m mlo nnl o l o n lol m l <nlml ll lmml n non lrll mm oq nm mli l l mn l nq ll ooo l l m l nm l n l l l mrl m l o l m o l mo l nll ol l lol vl l l mnl lmmnl n mn o no on pn nm l l2p/sδ P/Sδ 0.6 po l n 6 lm n 0.4 Silice amorphe Verre float Système revêtu E * sub /E * film = Pénétration [nm] 1000 ghi nnlml nmol l nnml l nm op lq rol l xtt lmml lq+rl lmml non lomnm nmnm l 2P/Sδ mn l mnm op sop Esub /E film nol l o l m l l l l mnm m nm lmnmo lml mn nml 8 5 s m l l l m <ml l l l l l l l l nm n n l lml o lml l mn o snn lmnm 2P/Sδ ml l nm lqxtt l l m n vl l nmo l l r <ml l o l l m o mn l nm mn l n ll l pmll mn nlol l l mn nml l nmo p ml o m m n l l m p nol Pl δ nl m l ml vl n nm l o # lmnm 2P/Sδ ml lml m l l ml lonl mn p lmo p l l l lml l l o l l vll l l l m l l s on 2P/Sδlml l mmnmnm l l lnl lmol mn o lmlm qmnm l l ml op l mn op l l n rn lmpll o l o l m nnmll l l o l ll n pm nm nnop % "!%!"@ #$ m l l mli m vl p l l nm l mm l ll Smllmnll l ll n l lmlm olmnmo ml l ml

80 j9 mml lml lol l m ll llml nm pnm n l nmmnomlol l nmlol lu pnon lop nnm l ll l l l lmol lm n mn lo n n l l m mm p l s ml ll lol lml non mnn P exp, S exp, δ lml l lmolll lll mmnom l s mn o exp l s op ll m n nm nom nl n pn noml lol o ml l mm l op l l m n m nm l n l l mn pnm non lmnm a/t no lmoo Efilml l mnom l no l l n lul o l n l nn ν film mn pmonop nm xr l qi δ exp = δ[a, Efilm, ν film] ml nmlol nmm l lol ll nnm l nm < l nm nml nm no n m mlm noll n nlulol nno lopl o l l vlloml l l l n m n mn l ll lnmlm nml lol l l op nm n n nm s lo o nol m l m ll l no lop<lml mm l l mo l l o n o op n m ml ll l l m l om l lol pnno l n m nmnml l o m onmnnlo o l l l l o l l s nm l mno loll no m l m l m l m l llmml o m n m lmn n l l m l l l l sm l m n nm lmnm nm nl lm l l mn nm l l mn nmm n n mnn nmlol pnomnol nlol l n ll o l l m l lol l l m n p lm nnmlm l l m no lol mon p n P exp S exp = P[a, Efilm, ν film] = 2aEeq [a, E film, ν film] l l

81 t

82 n nmoll # mol! l" #n # n n$$l #%ml $no n % & % # % 'l #nm$ m ml s # ( m #o lu n n n $no l l # % ( #! $ # ) ' $ # $ % m'l #l n *lm$l # $ lo # # % 'l m ml s nml **mnl n$ *lol molm # ( m l lol + *lm$l # *l #ol#lmlop p $no ll,nmlol m,l % l# l l #oml # $n *mll# % lml# * m! n l,nm$ lop # ol#lm.) mn- # $ % m'l $ % m'l" * #n # n # * # n n # l# l l *nm $no % l /nm $ % lm ln # % 'l m n ml$lml s ( m s n n n ol $n m n p n # # # % 'l" % n # o $nol % l#m op ' % o # # )! " *n # #lol n,nm m # # % l l#o $ %*l#o #lo # m lol $no ll#mll n l l l +$ l ( m # # " * m/ol **nm ( +$ * mm l * m # #l#mllm % /$l lm +$ l /$l l ( m *mno &,(lm)n oln # # # " & %* l +$on ##%l vlm $n ml l m /lol mo % # & ' *n # n 0t{ *l sml! mn o $no l l ol # lo # +$ * m/ol llm ' ( m # * * n % #! *lm$l # # l l#ol nm(l o l $no l $ % ' l# n % o m #l l n m/ /$$ # m l o l $no l vl $no ln! # l l #l n ol n n $no lol no l n m $ * $ # # o!, # & *ml#omll# n$ *l o lol %*l#o # l#l# *n # #lol n,n n n m # #l# # #o # m lol n n n $n m nlu l#ol $no l n $ # # # % p #1 l# 2nn lo # o +$ m l $nol% l#m $l vl ' % o o )! l3 #ll ol, l# m' lo #. ol ml +/ # m lol $no ll#ml +$ l ( m 2nn *l l#lm $no l #o nmoolnlu l#ol, (l" % # l $ % l#m &sml mlmqml mlmr $nolm ol ' % o *% * #, % % o n molqml m l l l n$ $ % m * * n$ * # +$ r! * # # # ( m l! *l n n$ * (l" #lol n m # #l#ml % /$l lm +$ $, l % /$l ( m # *l sml m n ol ml $no l o! *l l 4p! $nol % l#m ' % o #l nlu l#ol l# # * n$ 2nn *lo # +$ s *l n oml #lm m %lm o # & ml n m'lolmolmoln lmml * p/$l# # ( # op op # * n)$! n$$l % #ol & #l,nm l n #ol *mn /$l# * m %% % # 'l

83 o +$ n n o l #llmmlm n $ # # $l# % l# ) % $ 'l nmo l p ol mm *nm $ % nolop<lml 2 # )lm l on ##%l n ( m ml l m n n s l# * # #n # ol# # # ( m vll $ % n$$l nol" n l ml $ % nolop # )lol on # ##%l #n # ol# # ( %l mol n $no n % ' # % # # # m $ % m $, " l # mno #l n n qml 3% # * #l m n rol l % # mom)n oln # # nm'll l qml m/olr'll +$ * n$ * # * ( m n n $n m,nml n n l l op # # % o # # # # 'l% ' n l ' mol n$(ml n n o # o$ r l# ##% 2P/Sδqn #l Pl n ** ' %l" δ *%#% m #l mo S # *lm$l % * +(lom)n oln # # 4 * % $ l n l*l#o # p # * m ll 'lol # **mnl

84 x

85

86 m l # ml * l#ol l ml" #n # mnon $nm l l nm # n$ l lol lmml * $ l# * ' % * *! $ * l" ' #n nn # n$$l $no l $ %m! " o # lolll % nm ol % n # #l lol on ) #! ##%l ((n/m * 'l. #l m l nm l m n$ l * $ l# # *! 'l l m l ml o l m ' % $ l# m! * %"# n * % l#n l # m.o. # m $no n nm % # $ % # 'lo n$ l lol lmml * $ l# * ' % & n $n m # + #" olmn *! 'l l **l ' m mo n #k mlol lmml opn.)o l #n o $ #l m # # $ n mn *l mnn lk n l * $ # # #n o *% & m %3 " m # %,nm$ # * ' lo # l $nm * l! m l # %* %#%ml l / $ l# %m.l#ol $. l,n n #ollmm n l #l n 4l n n l l# # %* # & # $ % # 'll# m # $ n $ %m.o * l n m m nm " ' # m % m % * * % l# lop # n$ l % * $ * 'l m mlqnm +/mlj 0qrr 4l # * $ %m. $ % 'l 4l (n n l# #l l #. $ mlqnm lol * $ %m.o l # $ %m.,m/l " n ' # m % 4l m % lmml lolo n * mp(l# n mm n %,nm$ # m * # % lm(l +/mlj 0q(rr % #l# / %#%m # o m 4l % % n$$l lmmll #pl $ olo %m.,m/l m l l *. n. ( mm l# # * %,nm$ # % lm(l ml lo n p l *ml n ol lmml l nmop #m * #l o l m # $ * l". # * % % (l l vl l, $ * mon. %*l#ol#llol 'lll vn p #l#ml m ll 'lol $ %m.o l n l $ %m.,m/ll o- % m % m n # $ % # 'l ** ' %l $ % m 7ix8 # o mn % # #l n n n # $ % # 'lolo$l# # m % m 'la l

87 j *nm gh j 0 vn$ * mn #l#mll nm(l o l n l *nm m # $ * ln( l# o q ml # $ % m lqrl l #l # $ % n m #m,m/lq(r *. $ * l" #ol# % %l l #m)n oln n n p # # ar # # le p %#lm/l o *%l l p * ' $ l#l E f %#lm/lo *%l m n * +m #" n ll n n m n #" qj 0r # { Ep Ha 3 E f G c a 2 n Hl o l# $'lop l n %#lm/lo *%lo # $ %m * + % q/mn $(l m n o m $l#ol ml & ml%o $! $ % m 7ii8rl ol# l# G c % m,'lop %#lm/l l m l #% & % # op # # % m,l nmo l n + m # 7i ij8 l *l nmo m " # % + # #l l m % m ll #nm ' 'la G c /H le p (a ) = E f (a ) " l m % m 'laol n n # $ % # 'l ** ' %l $l n n mlml on n l op & # )! *% & a " E p(a) > E f (a) " # +m # #% $n # %#lm/l l o ' * # * 'l *nms %l 4l on $ %m *l nm nm # n$ l # n al %mlml l (l nm * $ l#,m/ # mml" #, & a ". # n$ * $ l#o l #mlmnl # #lo$l# vl 'l *mnl o n #ol Bol # m % m % + #,m/ 7i8 %ol l o % 4 #l m l3 n l % + # n$$l nmol o lm ** ml% & H l# I %, lm op K #l# # m #l $ # $ *mnn' # #l ml 7i "n + 8 c vn$$lk I c = E G c # a H/(EB 2 ) #mlmnl po %l ( l# ' * # $ % ml,m/ lq l * Bl /m # llol pnmom orl * lol ll#3ol &o l lll %ml ll ' $ o *l # l # " & #l % ml l l ' l nm mn l lmml n nm ' $ # " # # n$ l n * $ l# % * 'l 4 +/ mlj n$ l *m * $ l#l# % l# # # #ol# n #3 (ln( l# m % # n ol l $nm # * l8q #3 n( # mr m *! #l n *%#%m # $.$l # ol 0 µ$ % $% %% # $! + a #$ #%! -%$#"# $,$% ""#$%$%! %$+%$ $ $$ "# # %# %#$$ #$- %.% l

88 gh j 8$/l # op # # ol# n #3 (lol µ$ol *mn,n olmll m 0 # % % # n ol l $nm *m # * 4 % l# lop #l *nm #lo n n $ %,nm$ # % # m * % ml 'l # n$ l * $ l#o l lo $ % m! olnm # ll m m * l" #n * % l#n # #l lol m l l $ ) #! %. *%m$l#. * * # m l nm n$ l n 'lol lmml nmln( l $nm n n #lm l * $ *lm$lmn l# % ml * ml l#ol l *mn nlm / % *n, # ' # n # % $ * #l $no % # $ % l ml n l#mn ol m ml # 'lo * %# n$!#l n # n # # * * l m $no! $ l# l3 * l" ' # n lmm " o # * # " )! $! % %' pn( lol ,2, ,-1+ -/* -1+ # mn ol ml lol lmml l ml "ij # #,m/ % " m,m 7i " i9, o " t8 n nm l * olm. m)nm 'll nm mn$ l n pl * $ l#% * 'l lpl nm n$ l ol $l# % * $ l#" l# * 7 08l# 0 9i9 " %% $n # % o %" ' p # * *n(l op lm m l lmml l nol $ % 'l o l n m % m # $ % # 'lq n $ m * l"1l lmml.n l # r vl ml#ol $ll *mn(! l ol op # * $ # l nm n$ l l m * $ l# * ' # l l o % $ %m. m # # $ %m. m # " o n %,nm$ # * 'ln(lm %l mnn $ * 'l $ % vl lol $n l n l #om l +/mlj xr $ ll# $ l#olon # % m # qv, l# 7 8 * %#n$!#ll #lol o l & pnm/. m % m 'l *m # * l o l p * % nl ' ol n l lo $ # $n $ l %m. m m #lo n # 4 # m #l3 * nmn( l# %,nm$ # 'll #ln l $ # m #l3 l l#ol on n l l m lo ll# $ # * % nm'lql l#r $! ' $% % $% #% ""$ $% %$!#%!/ ""$! $0 $!! $"! %$ %! %$$ #%!- l

89 ol n # m #lml#mll# / #lol n$ *l 4 *mn * / n # ol on n # l lm % l m # /n(l $ l# # # / % 4p % nl $ l# * ' lo # l m.l on # & n$l n # # gh j x kl*m n % l# # % $ 'lo * %# n$!#lol l n $mnn vl / $ l#op n # %#n$!#l mnn $ * 'll #lol o n & pnm/ %,nm$ #lon l p # * ' & % l # oml m lpl * lmml n #ol $nm l n o nmon n l 7 x l 'l * 8 # % ##% & # /lo # 8 " ' #lmo lol lol on n. l# ol l pl l # l n l n$$lo # $ %m. m # 4 # l %, ' p % 'l# #. * olmn # * )'l *nm 'l p % nl $ l# n$l n # # 7 8 lmml #o ol * ' lop # n %*l#o *ml n l # # )omn ' ** ' %l ol l ol 7 i 8l & * " & lol #lln m o ol n l * mn % % l lmml n, (m #" # lm$no) # $'l ' +/ % $ l# # % 'l# $$ %o lolll mll l ll nl#on oml lllol l $n # %l ' mol# # ' m.ol l n $s$ n$ * n # $'lqnm +/mlj ir 4l lmml o * # op # n$l l (ml nm * $ * # 'll 4lm m. % nl ' nm l ((l $ ' $ l# * l l ol nml $ l# & $ %m. *. 7 j 8 l ln " 3 * $l (mll l n % vl %l * o n %,nm$ # * 'll n$no %l m o + # o $ % m 7 8 * %#n$!#l o l m l mloml l m %% $ l# % l# * $ * l#3 % # n m l ml #oml l ololm n lmml # 7 9 " jt8l * $ 7 8 m # p # %,m # o vll l lmml l n n n$no # * mol# + #lol # op #l n m #ol lol o n * lmml l * %,nm$ l#ol /nml # * (l ' % & pnm/ %* m. l % % % n 440 lm /* -1+ nm /* -1+ # n$ l n * $ l#l# #ol# #"n ll lmml # o % #nm$.ol lmml ml# # nm$. 4l lmml m l#l#ol $no l o l n l #nm$. * % + m # ((l l ol $ &.n( l# m ol # $ q(rr vll ml % + $ %o #l qnm mlj qrrlmol qnm ml l lmml &o lm l l l $m % $ %m. m +/ p %l +/ l # l o (l *mn n l# + l 7j0 & lmo n m, " j8 8 n$nol# l# %,nm$ *l# # * # j!%$$% $% %$$% $ %%$%#$ "$" $%%" #"$-

90 9 n gh j i n # o n$l *% +'lop # $ % m l l nm(l $s$l nol l $ *%m 4 ml l# m nmn $n #ml * ol l # ll n nm % # * # 'ol $n ml ( # #l n ml ll m # l n ( # nm ' l# # lmml 4 nm(ll# *n # % # $s$ % n ( # ll,n #l n m # # 'olnoln l#n(lml %lr # n( l# nm # * m ' m n nm # n$l *% +'l *,(lq #lol# l % * % 'lllmmlol l n l $s$ n$ * n # ( ol l m l $ l#! n %" l m ' #o' % * /l 7j8qnm n m #l o l $ l# #ol lmml * n % mmlol l# p / ml +/mlj jqrr #ol# #nm$. " ** ml# # + 4nmol o l #lol9lm qnmj qrr vl o lm l# # 'l *nmol ml n ol *l!ml vpl n! #p ** ml#l# $ mn # ol# ) * * ll n n # # ' $l#% # 9/ # & nlm,nm l * %#n$!#l l mllol & l#o # # ll /nmlollmml &ol# + l 7j,nm n $ % " jx8 lol# + # ) # l lmml $nlm n * n #lml & % m ol#l p mnlol m l # * n # l ml#o l oln " ' $ * # m #l nmol n " l# #l * + %l" * * n( l# $ l ml nmop #l m n lol #ol# lmo n mll # * # %m'l # "! # nm$. n$nol# * %,nm$ # * m n (olol# lon n 7ji + # " j 8qnm +/mlj jq(rr # # # m 'l m nm n$ l mnl * $ l# $ % 'l l o *lol l lmml n *mnl % # &,n! o % ml# l# ** l# l" $! * o # ) $mnn * 'l lmml l n$no n l ll l ll m mn nm n ol o n $l# o %ml#, l# $ l# * * # %,nm$ # ' %l mo n * + # o $ % m " 'l nmm l ( l# % %l l ol# # o m n % % # #3 %o ol# + % lmmll n * # ol# l" * # n$l (mll (l olo n, 7j 8 l * $m/lolol# + #l m % o l 7 8! nm " n lml mlmol # & m, n # ) lm % $ 'll nm n$ l n 'lol lmml * $ l# % * % " lm * % % ( l lmml l,l # % * # nm$ 'll pl 3omll o " 3 & $n # l"*n(l ol m + % m 'l lop *mn ml o l ml nm * n$ n l llr o l lmml qo n $ l# * ' l l# + #l # l# ( % $ % % & * # )omn ' nl# * $m' *n(l vpl *nm l l %l ' #n n n l#mlm # $ #l# # #n # m l lmmlol % #--- 4

91 t ol kl*m gh j n #ol n % lmml l# # % $ 'l 7jj *l o l ml n 8olo % ml# ) + (lm %l p #ol# nm % +ml $ %o #l r q " mol q #lol9lm (rll# qr lmml gh j j vn *l o l n #l #ol#%l *nmol lmml lmml l. o lmml %ml# 1n nnon'll # # #nm$qr #nm$q(r $nm * l n m ' * % l#llon(l #%ms opnm,nm * l *mn n o n n$ *l# # & l# + #l * n # $'l lol l lmml * $ * n % l

92 0 % %& --.5,0-.,*/ 4 ),, /1 5, /0, -.,*/ ,2,4 ol l $nm 3rl 4 * lqolol# % / $ * # nm$ol lmml # *mn msnm n mlnm4l n % ) #% # o * %#n$!#lolol# + # $ % # 'l l *ml#oo # $ %m # * # $ * #l ol mln l#ol #n$(ml l ol vl n 4 m/l ol l l %m $nm # l 4l *ml o %. *%m$l# + * %# n$!#lolol# # *ml n!ml l ml l n * $ $ ) % $ ' # %%ll %l l $ 3 l# l# #ll ml m $ *%m * ol *mll ( 6 l j t 7 9 " "j9 " " 08 m.n $n m *nm $s$l l ol *ml n l # # % 'l" # # # ** ' %l"* $l#l n % %" * ol# + #l *nm $ #l l $s$ l3 l" * l ml & 'lt ll m/l o l#l $ n ** ' %l l % nm n $ *%m %l " * ol# + #l *nm 7 9 $ " j9 " " 08 4 l# #l + # $.$lm ** %l m l * lml ol t{ 7t8 # l ml pn n #op $ *%m $ ( #l" ( l# % # n # $mnn * 'l o l l ji $nm l ol# + $ % # 'l l#ol n $, # ' 'llm l 4p olol l t %l l ml %! $ * ol# + & $ *n(l *%m % $ ( #l l m n jx * nm * p #ol# # 7 0 " " "j0 j j " 4l m x i ol j " " " " " ll n 8n p l n n # op #ll ll# $l3o$ # 7 i " " 9 " " 08 %. *%ml# # # +m$ % 'l n #ol poo l ol m/l n $ $ l# l#, ol# + # p/lolo % ml#l *l mnn l q k 7 i8n 6mn o * $ # l 8r nmopl o l m/l 7 " 9 n m/l " ml $ l#l#l# l $l3o$ # $ # * l# % l# ' l" # $ l# * $ l# )omn ' l" * %#n$!#lol ol# + $n n p$nm # & #l *ml n mn 0t t #opl# # l ' p m lm #%l mlml &o l *ml n l %l oml % # * % #p # o * $n # %m l 79 x8n ) " 4l 8 m $l! *mn(! #l $no /lol %% % o n l n 7 % n p # o) # $' $n ll n # % ml l#% % #o * %# n$!#lolol# + # $ % 'lo # l $nm l n m/l * # $ l# )omn l 8n o l ' # $l# % l# # * %#n$!#lol 3 n lol m o m/l n m # l# + l#ml lm &o l t o l *ml n l # 3 2 # )omn ' ** ' *l#o # $ % lm(l 'p&ol *ml n o l vl m # 0 2 % %l vl3 'n'l nn & " # o lmlm % lm % lmll#mn,nm lo lol m # %*l#o # % ol o * l# n$'l n " ml#ol# n$ *ll#nmomlol #olmol n n on l. lm$loll n /m (lm # *%m$l# vl*l#o #" p $l %ml n l mlml l # o) # $' $n % l %l l# n $ $ # o m %lol lol m/l % /$$ $ l# $(l ll l $s$lolm n oml # * & %* #. * mn( % $ 'l m l l o n ol & %lm$ # # * %#n $!#l l * )' $ * *m llo n % o # & %,nm$ # $mnn $nm * 'l #ll" 3 * %#n$!#l mnn $ * 'l #lol o n n l i j #l 7 & pnm/ l# + # #l# nmln(m * " " " 8 " #ln n l mn/ml l #,nm$ # (lol# % m #,nm$ # * $ l# %nml l m oln %* # # l n & # o mlm % 'p p/ op #l n $nm lol n n pllol *ml n #ln m # n,nm$ # *, l3 # n %l" #"l# #,nm$ # lol# %!%$ $##$$$ #!#$#$%#$ $#"$ " 4 # $% #%%#"$%!-( "+! $ %%$%" )##$ $ " %$,! ##$ #"# #%$ - %!%$ #!#$#$# $$%!-(" $%#$ %$%$% $ " %$ %$ %- "$% #%$ -

93 o n %3 ol# + # n(lm %l *m ml n! 7 9 " 8 lm nm m # # vn$$l mnl 'lol l $nm ml n # #n # n #% lml # l ll $no n nm l# $ l# & % #o n$ l $ * $ % # l l lo *nmol l n n * *nm ** $no # $mnn * 'l on n "#n * # l# #l ** #,nm$$ % **% % lm 'lol * %l# $ % # $l. n # # # * m! 'l ' l (ml,m **l o l $ % # 'lol $ l. n # # " n #,nm$l l m %3 m *m ol n mlol *m #l * % l l#% 'lol % % $$ m *nm l#,nm$lop # m! * % % l#ll# # ) m + m. * % % ol# # m ll $no n % # # %&%' -)) *352,0-.,*/ 31 * )*.4 4/. )2-0., ,-1+ l omlol n ol l n m/l #lm $l#ol #!ml p *l smlml*m m **mn.$ # $. # # lmopnmoml " n n #x $ l# ** ' % & # % $ % l#% * **l lmol % l# o n l # l# # m #ll n "mo lolo$l#!ml ##ll m/l #n l $ l# % vl*l#o l n$$ln σ # n $ % /l# * $s$ $ # & # $ $ # %m. pm **l ((l # %"n *l *nlm m/l l l m l # $ # l mm $ l# )omn ' % % # $ " % # # * + " nm 'p # lmmlol# + % lm(l n l l m/l o nmolml*m l#lm l nm $ l# $s$ $ % n$ l m l ml * $ l#op $ % m * ( op # m! l# ml"o 8 m # l# vn n pml nm * %" ' #n # l m/l l#on l o'lm " * # $ ##%" $ %m (! #l %,nm$ # * 'ln % ' l # o mn l lmol n lm$l n % # l# # m #l 8 n$ 9 n$ * n #l o/n ml*!mlnm n l )$ # # # nm$ %m'l 'l n *lon # 'l" n$ # jn$ * n #l l o # x #.l mn lm$l l. m 3 o/n n l lml*!mlol #. # * lo # # m #l *m # * l "n l # n( l# l# mo/n vl m l &om l l lm pl ol n # l# ' l# # m #lml *l smlo l % m " n n ol n n m l #, ( m mn # #nml# #" * $ * m$! l# 2 m$ l ml ml "n mn * m$ m nmml! *n o l # n mlo l# l p #l pl m n$ m # # m # l# nm * " l"op * " # & pn( l * )' ' * n #l m/l 4lol ml )omn' lo $ l#. n$ * n #l nmml *n # ol# % + # nm #l #nm$l *nmm$l3 #lm & n$ * n l m/l #o 4l o ll o l nm$l #ll# ml $ l#o. $ l# * l m$! & # ml" n$$lpl l nm ml n. * * # )omn ' # l * l %l n #nm$lolml o l $ * n) # " % + # n$$ll $.$ $ +%$%!% #$% #$% " - + $- $$"$% $ $$%, $ #$% $## #"$%!- %" $## %+%$ $%! $ "$!% $ $ " %$- #$% % %!% $ %"$ $ #$# $$%! #!#$ " %$ p = 1 ' Tr(σ)- 3 S $% "+%$%! #!#$ " % S = σ 1 3 Tr(σ)I-

94 x *-,!" # %&' ( ) * +, *., * -,!" *., *+, $ %&' # )( /2$2 /0 1.2$ * 4! * % 45% 6$2 442$2 2 4( # 3 $ % 435 # * * % 6$ * 6 % # # * 426 # )346 '2p2 2$ # 6 % '2 2 # τ89 # 35 6 # $ %4 4 #" # # # 4! 4/2$2 # 2 8 ( 42$ * # 3 # # *% * % 2 6 # + 2 # # * # )346 '2 #! * # # # 6$ * 6 *426 # 2$2 8 # 2 #% $ $2 * % * / # 6$ * # * ' % 9

95 32 2$2 6 2 #" 6 64$ # # " J(σ) " ' 2 #, # # 4 # # 2τ * % # # 2$ /2$2 #" # * # & # 6 3 # 6 2!42 6 * 28p τ9 # /2$2 35 $232 % # $ # # # * pτ # 6 % # # 6 $ $ #3 4( # * 6442 * # 34 # # 2 * 6 # 3 * # 8p τ9 % ! * % 6$$ /2$2 # % # 3 $ % 4 # 3 %,64$ # * '2 # 35 6 # $ %4 % * '26 42 # 2 # %* 64 * 4/2$2 τ /2$2 $ #8p " # 5 2 % #%42432 # 3 )! " # 32. * 2 % # % '2 & 4, /2$2 2 % ,6 6 2$ # # 4/2$2 243 & 52. %424 * 6 # # ## # 3 )! $28 # % 64 # # 92 3 % #3 &32 4,2 4 ' $2 " 64 2 # 4 # 2 (2 * ) #5! # * 5% 62$2 # * '2 2 $2 642$2 )! # 6$ * # % ' # " % 4 * # # 32 4/2$ * # % * ' '2 # 6 6 # 6 43 # " 2 % # % & 52. % 4,2 4 * 22 # # '2 * $2 * )! $2 8 # (4! #,64$$ % # " # '2 * $ % 2 64'2 2 2$2 # ** ' % $ % 4322 # $$2 # % 2 # $62$ # 236 # # *2 %,64$22$ # # 3 9 # % 6 J(σ)2 # 4 # # 2 " 3 5 ' % 4 #2 # % 3 2$2 2 #" τ 2 c # 3 # * 6 2 % 22$2 # * &342 τ # #3 8p " # * 2 * 2 6 % # # 3 # 2 6$$2 4,235% ' # f(σ) = 0 " 52 * / c864 # # ##% & 564 # 5 τc2 2 2τ 3 +/421 < )! $22 % '2 64'2f(σ) = 0 " #2 # % J(σ)3 2$2 2 # 3 # $ % 4 2 # 24 4 ' 2 2τ c " # $ % & 5% 32 * 4/2$2 '2$2 # 3 4! * % % 4 5% # #% $2 * / %#% # % 6 # 6 * 32 '2 2 2, # 3 $ % 4 " # # # #,64$ # * # % 62$2 22 ' # & + # # # 463 ", 6 # / %#% 42 6 " # 2 g(σ) 2 '2 # * 9 3 dε P = dλ g(σ) 6 5%#24/2 24 P σ = dλpn 81 dλ P2 ** 2 % $ * * '22 24 "* 6 26 # " 2 $ * 6 * *6 '23 2 *% 2 % * 6 )! '2 2 6 $ % 4 # "6 62 % % 2 # # ** ' # ' $$2 7 8 f(σ) 8 = J(σ) τc = 0 81 ( 99 # # " f(σ) < 0" 64 J(σ) " %$ J(σ) $% J(σ) = 3 2S : S- $ %+%$ $% % " #$"%! "$$%!$ " %$ $ "%#$ σ - $$ $%$$"#$,$ % $% ""#$% $%$-(! "+%, $ %"+%, $# ## #% $ %! #$ #$#$ +% "$%! +% $%!- #$#$ * $ +% "$$ $%!- #!#$+$ $ $$%$ $# % #$"% %"" #$"% $ $ % % $+%$%!#%#% % %- %

96 62$2 35% 6 22 # 2 # 64$2 & , ! 643 * ' ) # * *! # % 4 # g(σ) = f(σ) # *2 % 342 # 62$2 35% * 23 $ % 4 & * 43 4! * % # 64$2 & 4,2 # 4 ' # 3 4! # # * % 6 % " n2 * 4! &.2τ " # 3 %,64$ #6( # * '22 # 2$2 # * 4 # + ' $242 & 4 ' * * 6 32 $ % 4. # $ 235% # %,64$ # * '2 /$2 # 2 **22 2 * % %# % 2 6$ 5% 6/2 8 5%,64$22$ # # 6 # # %* # 2 3 # ! * '2!# # 24 # * 24 * 4$! 4235% 3 )! $2 # 2 # 3 6 %,64$ 4 2 ' 3 % '2 2 # ( * $ % 4 " # εp 45% 6/ /4 * '2$2 * 4 # %* 2$ # # * 6/2 6435% #% $ '296 6/ # 22. * # # # * # 6435% * 4,2 2 4 '23 # * # pτ %&% ( /,.4 34 )2-0.,,.5 )* ,2, '2323 # % # $ # # #,64$232 % $ * 4'26( # 4 2 $64 * 23 # * % 24$ # # 4! * % 42 dε P = dλ P f(σ) 81 9 σ = dλp n 6 * 4 # * 2 4 % 4 ' 2 & # $64 % # # * # % 24(2$2 4/2$2 ' # 6 # # )346 # #3 6 2$2 232 # & # # * 426 '236 # )346 ##% $ * * %#6$!# # + # 6 32 * %# 6$!# # + # 2 $ * 64' # 5% # # 52 # # % * " # (2 235,6 6 # # 4$ # 2. *% 4$2 # * # 2 * '2g(σ) 2 # 422$2 # $ $24 #% & ** " $6 # 3 # # * 2$ * " '2 " % # 2 $ * 22 6 % # 6$ * 0 ", ' ! * * 4/2$ # '2 #242 # 2 * # 6 # /232p0 2 * " 6 # '2 /2 2 42$2 # * # )346 '2 " 3 6 %,64$ # * '2 2 # * $ # # % & 4'2 4,2 4 ' * 6 # #242 # 2 * # 36 6$$2 5 ) *6! 235 # 6$ * 64 2$2 # * '2 6 % $ * " % "! $$ $+%$%!- "$$ $%$!%+! " $$%! $ %!% "+ +%$ g = f ε P! 2 3 ( εp : ε P)

97 # 2 6 * # pτ # 3 42 # 62$2 35% # 2 ( # 23 # # 2 " 43 %,64$ $2 # * # 6$ % 4'2 4/2$2 6 # # )346 '2 # $ * ' p p2 τ32 $7 4! 6 %* # 3 # 32τ % 4 2 * 22 ** & 342 " #2 6 '236 & $2 / #2 # * # # % ##% * 2 # * # 4,2 4 '2 2 6 # 6 # 3 2$2 2 #" 6 # 6 # " * # )346 6 '2 # + #" # + # # % 3 # * ", " #, ! * % % * # # 4! 6 % # # + # 2 # ) * " 6 '2 # (2 # ' * % 6 % # " # * 2 % $ # 3 # * # 4f(σ) 6$$2 f(σ) = φ(p, τ) Y φ φ > 0 p τ f(p = 10 GPa; J(σ) = 0) 0 Tr(ε P ) $63 & ,64$23 # # % ** # % * 46(! 6 24 * 32 6 ' # 22$2 $7 %42 2 # $2 43 # * 4 # * 2 * 462! $2 % # 5% 6 # $ ! * '22 32 $ % *% 4$2 # 2 # % 2 * 2 * 4$! 423! 2 2 " *42$ ! * * 6 # ! * 2 5 %* $64 32 * 22 &8$6 * # # 6$ * #1 # * 426 # )346 '2 4 # 4 # $ 62$ % # # 2$2 #" # * * 6 % 4! * ' # 2 f(σ) = 3 ( 2 α Tr(σ) ) 2 α (J(σ) Y ) 6 αɛ[ 2/3; 0]2 ** 2 %, # + # Y2 $ 235% % ##% * ! 6 # '2α2 99 % / & " 4! 42f(σ) ! # # " 64'2α= 2/3 " # 6( # # 4! * # % 2$ # # %* # 3 # 6$ * 6 # 2$2 4/2$2 # 3 # * 4 4$ 2$242 24$ ! 24$ α * # 6$ * # * 6 $6 # # 64$23! * # /2$2 6$ * # + # 3 $ % 4 6 # 2442 * # )346 '280 3, '2 2 2$ #, # $ # # 6$ * # % 2 * ** 6 % % * '2 2 * % 4 * # 6/2 6 % 46/2 $63235% " H " # # 9 8, 81 %%! % # %! %! $"% %$ $-% %$" $%%$" %% # $ %!# $# "$- # $# 8 9

98 2 $ # ' * 4$! 2642$2 $ $ * # % % # 6( # 6$$2 6 # / E" # # ν # % $2422. *% 4$ #3 H " 232 ' ** 6 % # #" 2 $ % % & * $242 3* $ *% 4 " # *2 % '2'24 % * 6 # '2 3, 4/2$ $242 4 *42$! % 323 #,( / #,64$ # 3 * # (2 4 % 6$ % 423 # ** ' % # 3 4 % % ' $ #. * 2 64 #52 24 * 4.! % * α #2 # # 23 $63235% 6/2H # * 6 2 * # 6$ * 52. # * %#6$!# 4 # # + # # Y # % % * # ) # # 6$ * 4 # % 243 * * 4 2 6( $2 # 2. *% 4$2 # 2$ #2 6 # * # # # 2 % $ # 3 * % % # $2 + # 2 % # # % # ' , # + # α6( # # 64$.2 (2 # *,(2 ' ( # 3 # $. 2422$ #" % # # # # 4( # # + # # & 3,64$ # /6( ' *% & " ' 2$(2 2 * 2 6$ * (2 2 % 32 4 # 6 " 4(2 # # 3 6 %,64$ # 6(24 3 % # 2 $ * & # + # 26(24 # # #,64 % 2 * % % # '6 2 # 6(24 %" % # # 2 4 2$64 2 * 3 # #% " # * 6$232 * 422 # * %% 6$$2 * 4! * # 3 # & 42. # # + # " / # + # ' ( ** # + # # 4 * 64 & 3 6 '232 %,64$ # 2 $ * # # # # ( # 3 * # ) # * * 6 % * 48$ ! #% 42 # " $ 3 % 6 2$(2 $24 4 # * * 42 2 $ * $ % # # + # 3 # %,64$ # * ' % $ )243242$ $ % & * 46(! " ' * # $$2 2 # 3 # 32 * " 4 $(46 * $ # #% # % $ %% 6$$2 8 * * # 2 # τe = S : S " ζ > 6442 σ 2 0 * # # 42 * 2 2$2 # α2 Y328$ %2 ' # 4 # 22 # 6$( # # #% *426 # )346 '22 3 2$2 2 2 # ** ' % # * 42$ * $ ! % " 4 $(46 ** # # 6$ * # % * '2 2 # % 46/2 6 # # 3 f(σ) = 1 3 Tr(σ) + ζτ e σ " ' ( $#%! % " $ $ "$%" %$%,$% #%$ - % ( %$ % $$ %% $! "#$% $ # %%-!! % % ' "!% %% %+%$" %,$" #$ % / " (, (,0 %"$" "," %

99 8 46$$28$ * # 3 #" 2 * 4$! 423 4! # % % 4 ( *% # 2 23 # /2$2 6 2'22 / % 6$ % # # * 2 $2. % 6( # # & # * % ' 2$ # % #22. *% ## 2 # 42 *6/2 4 # % # 6 32 # 2 $ #24 5 * 2 + # 642)2 2$2 # 32 * 4$! 422. *% 4$2 # $ ( # ' #! * #, " 6 0 * # 4 $( * 66 * # # # # ) # # 6$$ (232 4/23 4! 3 2 % 4/26( ** 2 2 # # 6 # # # # % # 6 32 # 2 $ * 4! # 3 4 % % 2 # 2 %% 4 # f(σ) = α 6 $ $6 2 αɛ[0; 1] Y # # % '2 $7 $2 2 # & 2.32 * 4$! 423 #6$3 # " # 64 (2 # % 32$$2 $ # 2 $2 4 # $ % 4'2! * 42 2 # 6$ * 2$(2 2 2,6 * '2 * 4, $ 6 % % 24 # 6624$ * # * # 3 # # 6$ * 4 + #6 ** # '2 5% 62$2 ' # * # 36 % $6 # *! # # #" # + 2 # $ #! ** " # 4 $( * $2 32,64 # 2α= $2 Y = 5.43 * 35 * #2 # 2 4 $ # * % % # + # * # # # % 2 # # # #% * % #% # 3 Tr(σ) + (1 α)τ e Y # #6 # # #6(242 4 # 32 # $ # $ % $2 46 % 4 * 2 2 # * * 6 % ' / # + %, 6 2 # 6$6/!# & $ ** 4623 * 46(! 6! # # '2 # ,6 4 $ 35#32 6 & # 2. *% 4$2 # 2 #22 64 % 632 * $ * 32 2$2 4$! #2 6$ * 2 64(2 # # 3 ' / %#% % 6$ * # # + % & * $ # # *46+35#32 # #" '2 5#32 6 4/2$ # # # 3 # 4 * # 2 2 # 6$6/ 4 2!# # * # " # ** # 6 )2 2 #, ' ,64 ##% 22. *% 4$2 # 24 % 62 " *%#% 4 # ** ' % # # * # #,64$ % 62 * 2$ # 22 # # #, ' $ #,2 # 6. $ % # * 2$2 # #,642 ** ' % 22 5 #% / # 4 # 2 62 ** ' % 2 4 4,22 6 *%#%4 2 # #% / $7 $ %,64$ 4/2$2 # # 62 2 z # 6 35 #2 6 6$6/ 6' !# " 6$6/ %#% % # $ * # 242 # ( # # 2 # 6(24(22. *% 4$2 # 2 #% / % '2 # $2 #" #! # "!$!! "! "

100 /0 1 6/4 * $ % # % *! # # 6 # # # 32 # $ 2 # % # 6 32 # 2 $ * 2 % # 6( # 2 2 $63 2 # # 4 $(46 6 # * 66 * + % 22 # + %, #! # 6$6/!# 2 4

101 235# # # 2 6 # 6$6/!# , # 4$ # # * 26(24(2 #% /422 # 6 % * ** &5 2,6 6 64(235 # 4$ # #32 '2, # (24(262 # $ # # # # # # # # 3 # #% " $63 $ # # # " & 3 # # * 4$! 42 * 8 # /4 # # # '2 2 $ ! * * 6 % # 2$2 # 34 6$ * 23 6$ * #! 3 2 $ % # /2$ # 3 # # 3 % # 284)42 " * 6/ #! #% 42 # 6 * 664 ** '24 5 ** # 4 $( $ * %,64$ # * 2$2 4 # % 6 2 ' $ # * *22 $6)2,64 # 32 $ # # #,64$ # $ % % 62 * 2$ #" # 642 & # #, 6 # %,64$ # 3 2 $ * * + # 42 $ % ' % 4 # $ % # '232 $ % 4. % # ** 6 22 (2 & % 22 6 " # # 432 $ % 632 # 2 & # % 6 2 # * 5 #2352 $ # 1 " $46 * $2 3 * $ # 2 * 4, *% * # 4222 # *4! '2'24 ** * 4 * # $ # ) $6 46 $ * 2 " # 6 # '2 $46 * ( 6 $6)2 35 * $ # # # # ' % #,64$ # 2 2. *% 4$2 32 # $2 4 # % $ * # %,64$ # % 32 # %, & # # # # 3 # 2 $64 * 2! $6$2 6 # 4)6 2$2 ## # % 2 46$/ #% '2E = E 0 cos(νt)2 6 $2 # # 24 # 2 # ) #23 6 '235 $ ,4 * 6 # # (4 # * * % '2 # 2ν S '2ν 2 ν S! 42 # 3 * % 2 4'2P # 3 * 42 $ * 3 # )! $22 2. * 4$ % * # $2 6 6 α2 # * 64( % 3 )! # % % ** # '2 2 $63232 ( # # $2 % % 346 ) 64! # 3 # * ( # $ * 64( % # '2 2 42$ $23 * 4( # 2 * * ## 2 & cos(νs t) $ * 3 % % # 6 * * ## $2 $6 % ** # * 42$ α ij P = α E 81 9

102 /0 1 * % # # 92 ' # % $ 9 2/ * % # %# 24/ % ' # ) $6$2 " $ # ( # 3 3 # 3 * 642 $2 6 2 # 3 3 )! " # 6( # Diff. Rayleigh Diff. Raman anti Stokes { }} { E diff α 0 E 0 cos(νt) + 1 ( ) { }} { 1 ( ) #42 2 α 1 E 0 cos (ν ν S )t + } {{ } 2 α 1 E 0 cos (ν + ν S 8109 )t Diff. Raman Stokes # 52. * $24 *222 2 *63 # 3 $ * % 46 24$2 * 6442 # & &323 6 # 23 6 # % ' # )2/ * # 3 # #% 45 # ' # 23 6 # #% '2 '2 56 # $ # 6442 * # & # 4)6 2$2 32,4 ## # % '2 2 # *,(2 '2 *3 2 $ * # # # $ # % & # $ * 3 % 32 6! # ,4 * # # # % '2 24,4 #! % 2 % 232 # % ' $632 # * * 423 (4 # # 3 4 % %" #52 * * 6(2 ' $2 * # 6 (64( % # * # 32,4 % '2 # 2 *% 4242 & 223 $ * # 32 # $ # # $2 )! $ # 4 # # 24 # % * 2. % )! * * % 35%#24/ $2 23'2 36 $$ % 3 # # # / $2 # )2/ " )! " # 2$ # * 6 2. % 3 # # # 235%#24/2 4 2 hνi2 2$2 2 4 $2 # $$ % 3 # # %% # " * # hν i3 # # 2342 # % 642 # # $ # 6 2

103 32 8 / ( " 52. # 3 # $7 $2 2 hνi,, 6 2 # '23 # # % '2 2 $ ,6 " $ )! # # * & % # 3$2 # # 2 # 22. $2 S,4 % 35%#24/2hν 2 % ' # * # % h(ν i ν S )2 # " )! 2 2'2 # 24/ * # # # 2 % &3 # 5% 2. % hν S # 2 #, 64,6 24 # # %#24/2h(ν ) i + ν, S # 24 5% 6 #3$ $6 #35 66 )32,4 # * 5% # * # h(ν i + ν S % '2 2 # *% & 223 * # # # # #, % 4242 & 223 * 6 6 # # 32 # # # $ # # / # 24$2 * 4 ' )2 " # *2 466 * '234)6 2$2 2 ## # 6( # * 43 6 # $ #6 * 64 2, & % # 6 4 $2 $632 * * 6 / (4 # 3 )! % 3 % 45 #%47 # $ % 4 % 4 % 323 # # # % 2 * # 24)6 2$ $ ## # # #" ' * # % 6 # # & 5% $46 #3 ( $2 $ # # # " * 2 # 4 % 4 % * ( $ # & # /23 # 2! % * % )32 " # 2 32 #6 $$2 2 $ # % " 2! 23 % 2 # # 6$$ $2 3 % % ) # % # % 4 42 % % # 4283 # " / 35423! # %4 # ##%, # &42 * 2! / $'2 #5 6 % ** 4 4 '5 & * #2 /4 # 323 # 23, *4 *4 % 2 # 2 2 # % # 2 * 44 ** % # # 4 # * 4 # * 2 4 +/ * % # # 4 2./6 2 4 # 2 42 $ /42108 * # 2, * % #% # ( 9 # % 2$2 2 2$2 24 # % 6 # $64 32/4 # # 2 # 2 +/42108 % (24 % 4 5 /22 #42 # # #2 % # " 422 # 6( 4 # 6 4 * * % 36 #% # % 2 # # % # ##% & 23 # 28& 5% 2 $6)2 $2 # % % # % $ % ##% 22 & # /23 # 28& 5% 223 $ % 49 ## 23 # " $ % 4 564/ # # )2 " ** 2 % ## 2. # % ## 2.2, # 2 $2 # # 3 # 6$(4235% % # 4 4. # 4 # 32 ## 2. * % # / # 4 2 * % #% # 3' % # 2 # & #5 4 '5 2 2 " # ) * 2 ##2. * 463 & # + # # ' # 3 4! *% " 3 4( # '232 * * # ##2.2 * 4/2 # " ) # $'2 $6 % * # 4 2 $64 2 * 6 $6 4 '232 ## * %4! /4 # # * 32 # % "! # #!! # # #!! "!

104 35 6 $ / # % $ '23! 23 % 2 # # % # # 6$ * 6 % #5 23 # 64 # '5 #2 ( $2 ( 42 $64 64 % # 32 % % # # * # **. 42 " # * 4 2./6 # * # & 4 * 9 # %4! $7 $2 #" ## # 22 * % 4! 342 * $6 * 46(( / $ * " 2 ## 2. & %4! * % # # # * * # 32 ## # # #3 # + % # + #" # 6 4 # 32 % ' # # $ * 1 6$ * / # # 422$2 35 #2 % 6 # # 3 4( # * * # 32 ## 2. " 0 " # % # $ # # # * 2 $ # 2 $ * # #3 # + % # * $ 1 " % #% # 4 * 2 # ( +/4210 # # " # 3 # # /2 2 # "6 $ 1 1 # ' # ( # )$ % # * & # $63232 # $ / ( # * 4 # * 2 $ $$ #% 6 # 4( & # (4 # % % & # % # / # / 3 # 232 % # / ( / ( # 3 # # # 3 4( # 32 # "6 32 / # 5% # 6 6 # # % % 12 $ 1 1 # 6( # **2 % * %, 864 & / 2 # # / 2$ * 2. ' % " 6 # + # 2$2 42 # %% 4( % * +/ $2 $63232 # &32 ( (4 # * * 4232 ## 2. & %4! # 42 2 $ $ ( # ( # 2 6 & $ 1 # 01 4( # & # 6 * 24 (4 # 42 # # 4624 % 0 " 0 " " 0

105 $64 2 #4" $!6 32" 3!4!(#!6 32" 6 #"!6 32 /0 100 * % # # $!'#2 $6" $#"!424 "! 4%! 2 #.3 "!"!$2 * " ( "$#"323) # # % * * % # % * ## # 2$6"" # :;<=>=? &'()*+,-(.-/'0* 13 SOROQO PO 2Z# ]$[ /T0U1V W X2$42 Z!""6Z32!"!$232Z!c]Y]$ `2$#Z]$[ Y Z32"!"!$2 Y64X[2\2X2$422Z4 \2X2$422ZX6!Z!""]$6442X6Z3b#Z!X"2!Z ]]6^_ Z!""6Z3232Z!] a$y 3 Z!d#2Y2Z

106 U U T T TT T T 6^2Z#23 /T0U1V W Z"2X2$42 2X4]2Z!6Z$[]Y Y Z32"!d#232Y63232`!^4!"!$2 Y64X[2\ ^ Z32X4!Z$!X!6Z 6$!] "22#^ Z X!4 #Z2]"6Za!6Z32!6ZY]4!d#232"5 ZZ2 #b 2 Za"2!!8 ]4 342ZX4]2Z2!$!"2$ # 12 2b32Y632 6$!]2b 9"2X!$323] 32 28^9 432Z!c]ZX2#$6Z \ ca#421v X4]2Z2 #!2ZX6!Z!""]"2X2$4235#Z]$[ X2$42 24d#2"5 #ay2z!6z32" 32Z!] Z!""6Z32!"!$2 ^!2Z2##Z2 2#4"2 Y64X[2 W\ ^ Y Z32X4!Z$!X Z32"5]$[ "223]$ `2$#Z232Z!c$ "2`24"2[!6Z$46! Z2 #X6!Z322$6Z6Z X"#"5]$[ `2$" ^ 23]$ " a2x2#742!z24x4]]2z24y2324#4 Z!""6Z #24]d#2Z$2!6Z3#Y632 X"#"24]d#2Z$2 32`!^4!6Z35]"6Za Z!""6Z232Z2X"#"2!6ZY]4!d#232 6$!]b$22^ Z 6$!]2b"2#4`!^4!6Z6Z]"2`]2 Za"2!!6Z2ZY62ZZ224Y]2 Z32 1 Z32 W\2X!$323] 3#$!6Z3#`6"#Y2"!^423 # Z #!3]$"]`24"2[#24]d#2Z$2" 4]_ 3242X!4!6Z32$2 ZZ2 Z"5]$[ Z!""6Z!Z3#! Z #!#Z24#4!6Z32Y632 V V $6Z!3]4 2X"#6Z$6Z 2d#2"2#4!Z2Z!] X46X64!6Z32 #42^ ^"2Y2Z8X 4!$#"!42Y2Z2Z$2d#!$6Z$24Z2 292Z$6YX # 4!6Z32$2""2 $4!Z24X4] ZZ2 2X[]Z6YZ2X2#742!Z24X4]]$6YY2#Z2 #32X2!2 #ay2z!6z32 V!""2#2!Z32" X6X#"!6Z32!$2X2Z3!6Z2$6[]42Z2 `2$324]#" 323Z Y!d#2Y6"]$#" ZZ2!42 22 Z32 ZX "5#Z!2"6Z"2X62Z!2"#!"!]3 Z"2$ "$#" ""2 Z2 Z # W\ 323Z VV32" Y!d#2Y6"]$#" X46X64!6Z32!426Z6^!2Z6!#Z2 ZZ2 #32X2!2#aY2Z!6Z6!#Z23!Y!Z#!6Z V ^ Z32b $Y 1d# Z!Y!] 26ZX2$42 "2!236Z$^!2Z#Z2$644]" Y 22Zb6^2Z!432$644]"!6Zd# "!!`22Z42"!6ZX"#d# 32Z!c$!6Z32"!"!$2 Y64X[2!""2 Z!!`22Z42"2 Zb2""232`!2ZY]4!d#2 Z # " $

107 1 U T T TT ` 4!!6Z35!Z2Z!]232X6!!6Z32^ Z322" 32Z!]Y62ZZ232" 6Z26Z3]2 2#4$[6!!4 ZX2#!YY]3! \246!^ Z323]$4!22Y63!c! 2Y2Z]"!Y!Z24" #$6#432" 32Z!c$!6Zd#2"X235!Z3!$ _! "5 ^!2Zd#2X4]2Z Z d#5!z3!$ Y2Z3]cZ!232Y632 ` #42"5 ^2Z$235#Z2!Z24X4]!6Z$"!42_ a ]$644]"]23232# #d#2"2""2$6442x6z342z3x]4!""2#26z#!"!!6z2z Z Z32b $Y 1 "5]$[ 6Z!3]46Z" ^ Z32X4!Z$!X X6!!6Z2247Y2Y2Z2Z!^"2b" X]4 #42c$!`235]$[ 32Z!]32 2#43232Z!]!Z!2""22#!"!]23 Z!""6Z32!"!$2 Z" Y64X[2 "!]4 #42X6#44] "!24#Z#!`!32" ""2X4]2Z2$2X2Z3 2Y_ Z "2 32Z!]$6YY2Z$2b742]"2`]2 Z!""6Z 2X"#!$[ VV 6ZY6Z4]d#2" VVVVVVV!Z3#!2X X6!!6Z32$22^ 6#4 #`6!!Z 4"23]64Y a235#z!z32z#zx[]z6yz232$6z4 Z32]!6ZX"!42Z!^"2b#Z$[ 4a2Y2Z]"!Z24]!3#2""2]"!d#246Z6^24`26#_!d#2 VV!d#23 1 Z"2Y ]4! " 22$6"" Y63!c$!6Z4#$#4 "2!44]`24!^"23#Y ]4! #"6432 # 32Z!c$ 2X"#"2#4 ^ X6!!6Z6Z4" Z32X4!Z$!X 4a2Y2Z!Z3]X2Z3 Z232"5!Z2Z!]323]64Y!6Z]" 2 "2!6Z!d#2 VV #a!#4 16ZX46X6]#Z2$644]"!6Z2Z42" 32Z!c$!6Z35#Z]$[ Z!""6Z 2$6"" 6#35 ^6432""232`!2Z3! $!"2b3]$6Z`6"#243#X!$ 1"64d#2" 32#!Z$6Z`]Z!2Z \2 #4` 4!!6Z35!Z2Z!]6Z$"!42Y2Z 6$!]2b#Z2 324Z!24X6!Z24]`"2!Z]42 ZZ6 YY2ZX6#4"2X!$ 2d#!2 2 3]$644]"]32" 22Z"2X!$ !"!$2 ]$[ Y64X[22"23]X" 2"2#44 `!"Z6#!46Z" $2Y2Z3#X!$ 26^2Z#X 42" 4X2$46$6X!2 Y Z#4$2!6Z Z!""6Z 81VV9 ( ) ( )!6ZX" 32"5]$[ ν0842x ρ092ν842x ρ96z42x2$!`2y2z" ρ X6!!6Z3#X!$ 2842X ν log 10 = log ρ 10 " 32Z!] 0 ν " Z!""6Z9 0 6 ` Z2 X432Z!c$ 22Y2#42X42Z32Z$6YX2"2$6Z4!^#_ $6Z4!^#!6Z32$6Z4!d#22]"!d#2Y!Z24]!3#2""235!Z32Z!bY6!Z35]Z64Y2$6Z4!6Z36!742Z]a"!a2!Z24]!3#2""2]"!6Z!d#2 ^"2 #! # # " # %2 "!!!

108 U U T T TT T T!Z3!$ cz32`]4!c24$22324z!42 2#43232Z!]^ 4Y!6ZZ6#Z6#X46X66Z35!Z463#!42#Z #42! ]#4" X46X64!6Z32! 35 ZZ2 #32X2!2!""2]! X4!64!$46! Z2 `2$" ZZ2 #Z 32Z!]$2d#!24 `#d#2" 3#! X46X64!6Z #Z2 #4" #ay2z!6z42"!x 4 "2$644]" $2#d#2Z6# $644]"!6Z!6Z2Z4232Z!c$ 2!aZ6Z!$!2""2Z26ZX Z]]] ^"!2X6#432Z!`2!6Z2!Z2Z!]42"!`26#$2X!$ 2X2Z3 #!"! #3232Z!c$!^"2d#2 Z!`232"5!Z2Z!]32X!$D 12 2 ^"2ZX2#$2X2Z3!6Z^!2ZX"# Z!Y!24$22 VV1 742Y2#4]2Y 1X4]2Z2Zd#2"d#2X2$4235]$[ Z"2Y7Y2 4!$"26!"X46X62Z"2#4$644]" Z!""6Z32Z!c]X!6Za4 4$[6$36Z" #a!#4 XX46$[2 X[!d#2 32Z!] X# $644]" $46$6X!d#2Y2Z\ ca#421v Y6Z42"5]`6"#!6Z3#4 XX642Z42"!6Z"!Z]!42\ $644]"!6Z6^2Z#22" #!` 2$6"" Z2 81V 9 4 ρ 236Z$32X6X#" XX6432[ Z!6Z#4"2X6!Zd#235#Z2X #2#432X!$Z2$6Z!#2X 4$2 #2Y2Z2a46!24235#42X 4"2 = H(D2) ρ 0 bx46x42y2zx 4"24#Z4 XX6435!Z2Z!] H(D1)!Z3]X2Z3 "5 a!!yx"2y2z!$!326#4z!4#z!z3!$ 2#42Y!_d# "!!2 32` 4!!6Z32X6X#" Zb" 6!32$6Z4!6Z!6Z $$2X!Z24]!3#2""2232"5!Z3!$ 2#432 #a!#4 cz ^"224!"24 XX6432!426#"2X!$$2d#!2 2$6""!Z64Y 3#$[ 6#3!X66Z3]64Y YX323]64Y!6Zd#!Z6#Y!6ZX" Zd#2Z#4"!35#ZY62Z32Y2#42432!d#232" 64Y232$[!"!$2 YX323]64Y!"!6Z_"2X6#46^2Z!4"2 6Z"6$!6Z"6435#Z2 "2#Z2$6YX6 Z2! Y64X[2! 2]#326Z3] b]]y2z]2 [ #2#43#X!$ 22$2""23#X!$ 12Z6Z$!6Z32" 32Z!]32"5]$[ Z!""6Z!Z!d#5#Z2 32$6Z4"24" 4]`"23! $!"2b3]cZ!4"64d#2 12" $6[]42Z$2324]#" 6#4Z!X ^ Z32X4!Z$!X 4"23]X" \22 #"!Z3!$ 2#4 $2Y2Z32 2 "22$6Z6Z32Z Tr(σ) = E (1 2ν) Tr(ε)! #!! #! #! "!! µ µ #! " # "!!! # %2 %! "

109 U T T TT 32Z!c$ #Z /T0U1V!6Z#^!2X W `6"#!6Z3#4 432]$[ XX642Z42"2[ Z!""6Z32`244232Z!c]Y]$ #2#432X!$ 22 12Z6Z$!6Z32" Z!d#2Y2Z 4 #2Y2Z"!Z]!42\5!Z3!$ 2#4!Z!6^2Z#22#"2Y2Z2Y!_d# 1ZX46X62!d#2#4" XX6432[ #2#4Z52X a #Z4 XX6435!Z2Z!]32^ Z322$ 4"5 #2Y2ZZ52 Z!!$ YY2 4"2 35!Z32Z!6Z2#4"5]$46#! V a232"!"!$2 Y64X[2

110 $ Z$2$[ X!42Z6##!"!6Z" #a2 Y Z 3]$4!2 #$[ X!42X4]$]32ZX6#4 Y 46a4 X[!24"6$ "2Y2Z"2$[ YX3232Z!]4]!3#2"3 Z"!"!$2 Y64X[2 X4!Z32Z_ 32"5!Z64Y ]4! ZX"#32$22$ 4 $]4!!6ZX 4!2""23#$[ YX323]64Y!6Z"6$ "3 Z"2 #Z6#Y6Z46Zd#2$22!6ZZ]$2!42X6#4$ #a2323]64y 4 $]4!24"2$6YX642Y2Z2Z]$46#!!6ZX24Y235 $$]324b#Z2X a232"!"!$2 4!2!6Z Y64X[2 \24 `!"32$ 46a4 X[!2X4]2Z]3 Z" #!2 ]]4]"!]2Z$6"" ^64!6Z `2$ X#^"!$ [!Y!232 "]4!2!6Z [4!!Z2 4!Z22 24Z 43 [ YX az6z3#\ ^64 6!4232 [!$6_ 4!Z2 ]4! #\#Y!Z2$2Z 24 `!"56^ #6Z 235#Z2 \_ VV!"" \ %]"!!&Z '($(($ '(#"!Y! #$ $ %&a%!%( X[!(!YX&(!&Z$&Z% ) W #Z($ '*#Z(X &Z$[(%$[(b&^(Z!%#Z]$[ Z!""&Z '&Z" %!#Z( X[!(X!""($ #Y&!Z#Z Y # '&Z$d#(" %] "!""(X(%Y(( '( "!(% %&a% %Y!$%&X($%&$&X!( Z &Z( '(Z!c]( Y(Z!&Z b"!""($ ($!]X Y ]#'!]( % $]%!!d#( '* &%'%( '(a% Z'(#%#X]%!(#%( % $]%!!d#( '#`&"#Y( %Y!$%&X($%&$&X!( Z +(( '(%Z!%( '(" (%&X!YX&% '#" (%#!"!],X %"*!Z(%Y]'! %] ']X(Z' "&Za#(#% '*&Z'(!%( '( '!_ '# ^( Y_-!. ""( Z(X&#%d#("*&ZX#!( "!(%

111 VU T T T TT T T ]%! #Z($ $]%!!&Z %]&"#(X! "(Y(Z#%#ZZ Z&!Z'(ZX#%(Y(Z]" &X" Y %,'( ]%!!""($ ##%"($[ '(Y!$%&!Z'(Z &# YX " %](%`(d#("( ( ( %]"!(%#Z((""($ $_!d#( % $]%!!d#(vµy. ($(X(Z' ZX&!^"( % '("!&Z '#!&Z#% Y!$%&c#% ']&%Y!&Z '#Y ]%! ^"("($[ YX W '(Z!]!(Z &^(Z##%#ZZ &^(Z##%#ZY!$%&!Z'(Z&Z Z&!Z'(Z ((YX#! %!$[( (Z!Z&%Y!&Zd#($(#d#! #&!(ZZ]a"!a( #cz '(Z&%(]$[ (% '(&#(c#%!&z '*#%(X "" %Z&# '(`&ZY!Z!Y!(%" cz!&z c#% '* #%(%"*!Z]a%!]X[!d#( Z!""&Z %a( '( a( %]`"("(Y(!""(#%$&YX%&Y!X&#%#Z!Z'(Z(#%!$ (% *+,-.-./ :;3<!"!"#$%&'() Y?Y(]$[ =T>U VW +&YX Z!""&Z,X&!Z!""].Z!&Z(#%#Z(c#%(X%] '($&#%^( &^(%`(d#("($&#%^((#x(%x&(z '*!Z'(Z"!&Z ^"(Y(Z &^(Z#(#%#Z]$[ &^(Z#(X '&#^"(&%!&Z Z!""&ZY!&ZZ!! %,% X"(!Z. '(!"!$( Y&%X[( % ' Z"( % \*(@( '(" # '(" %]X&Z(Y]$ ( c#%( #Z!`( Z!d#( '#Y( '&Z$Z]a"!a( ^"(Y(Z ^"( ABCDEF BEBGH IJKFLMB GHNN K OX '(X" d#(,!z_p&^!zq# '!Y(Z!&Z VT VT TU$Y3 %R SS. %!% '(!"!$( Y&%X[( '(!$V(% $$b'(`#( '(#X( ]] '*]$[ Z!""&Z &Z]] %] '*!Z'(Z '( Va '(# %] '("*]$[ +(!Z'(ZZ&# &Z&#%Z!#Z (Z#% "!] Z(X%(Y!%(]%!( "!]( $( Z!""&Z '(" '("*]$[ '*!Z'(Z!$V(% '( Va ]] %] '(`#( R&Z( '(Z!c]( Z(($&Z'(]%!( "!](X&#% &^(Z!% '( '(" ZZ&X" '(Z!c](S Z#ZX%(Y!(%(YX $&#X( R&Z( #!Z&# '] d#( # `&Z Z#Z( % #%( (Z#%!( Z!""&Z$&YY( '* Y&%W (@($#]#Z(!Z'(Z (Z#!"!..Z&# Z#Z `&ZX%&X '&#^"(_&%!&Z a(,x!a#%(, '!X&!! a]#z(c#%( &#_$%!!d#( ' '(!"!$( Y&%X[(,X!a#%(,^..!&Z!$V(% '( Va#%$(c#%( Y Z[ \] ^_[`[ \_a[ _^ _ab `cd e ]f \] `[^_[_[bz ^b[f[[ \[ \ _[ \[ b [_g_a _b `[

112 U TT U > T T T T T VTV c#%(z&# '(",$..OcZ `&Z (@($#]#Z$[ '(Y!Z!Y!(%"(X(%#%^!&ZY]$ Z!d#( '#(b" '(",X!a#%(!#%"(Y Y!'(!$V(%#%" c#%(\($&#%^( (ZX&!!&ZZ '( '! a&z "( %a(y(zy]%!d#( '*!Z'(Z '(!Z'(Z X%](Z$( Z!Z!d#(" ]%! #Y (#%" c#%(x%](z]( Z#Z( X%! '(" X X(%#%^] W&ZZ& &^(Z#(X&#% V(#X(%X&(Z ^"(" (Zca#%( % '#Y ]%! # #b"*!z'(z ZcZ" '("*]$[ Z!""&Z '(!Z!!Z'(Z] ( Y&Z% X%](Z$( '!X&!! (Z!&Z %]`"(Z]$( c#%(z* %]X&Z(!&Z %#X#%( $[(`]( a% $( '(!%($ %!" ( '! $!"( '&#^"(_&%!&Z +(X%&$]']$&YX"((( % `(%!Z(]"!d#( %]!'#(""( '(!%(X%&X '($&Z% a(%#z(c#%( #% '*#Z!Z'(Z =T>U WS($%!X!&Z (X]%!Y(Z"X(%Y( Z"*&^(Z!&Z '($&#X( &%!&Z " Z#!"! Z"*]$[ # '#X%&&$&"( '] '( R&Z(!Z'(Z]( Z#Z( % #%($&YY( '* Y&%W '*#Z Z!""&Z. &Z a(,!$%& %( Y]%!d#(,^.Z %]"!(#Z(!Z'(Z '!X&!! (ZY&'(&#_$%!!d#(#Z(c#%( ' `($"*!'( '(" ( $[(`](X '&#^"(_&%!&Z,$.\(X%&X a!&z '&#^"(!&ZY(%!d#(#%$((c#%( c#%( (Z#!( % '(",'.Z &^!(Z!Z! '(#$&#X( R&Z(!Z'(Z]( A C &$ BEGEB MHJ %( '(Z!] B B IJNB &Z]] JIJ KHFJ Y Z VTTT $,(Z![ -.!Z$"# Z#Z" VUZY ( '(X#! '( &^(Z#(b"*!'( '*#ZY!$%&X($%&$&X( (%O% '("&Za#(#% '*&Z'( Z$( TY \*&^ '!X&!!$&Z&$ ($!#!"!]] X[!( ]] %] "!#Z ("!]( &^ '&ZZ] ($! VTT\(" Z '!X&!!$&Z&$]]&$ Z($ "!] $(\ X"#X % (Z#% ]] `($ (% '( %&a% " %&a% X[!( %]X]]( "( '( %]#"!Y!" `&"#Y(&Z']b#ZY &^(Z# \ (Z%("(`#( (Z#!"!!Y#Y '(# ( '!X&!!$&Z&$,`&!%X"#"&!Z.Z&#X(%Y((Z "]!%(b$(# Z '*]` &^(Z#X%]$]'(YY(Z R&Z(]#'!]( Z"( '*(Z`!%&Z µy3"* $$&%' '( "#(%"( '($&#X( µy3 '*(Z`!%&Z dg `_[ [^ ^ \b!^ `_"e ] \[!! \_! [ ^! f ]!_ #g±1%$ \[!^!Z!_bZ \ b[%_[%[_" [ [! b %b![%[! [^ [ [! "

113 VT U T T TT T T T VV Z&# WOX% &#%"($ `&!%`]%!c]"(y]%!( `&Z %( %]"!]"($ '(`#( '(# X[!( '(" '(]$[ $($&YY(#! `($d#("d#(]%!( '(X%&c" '(#% Z!""&ZZ&# `&Z$ X[!]#Z[#!_ R&Z( '(Z!c]( %&a% $[&!! V X($%(!#] ) '( %&a% '(" #Z&(#' '*#ZY!"" &#%$[ d#(!z'(zz&# `&Z$&""($]!Y( XX&%!aZ (Z!&Z R&Z(!Z'(Z](X&#%%&!!Z'(Z "#%^%#! '#(YX $$#Y#"! Z!&ZZ]$( a( '(VTµY ( '(X&^(Z!%#Z!aZ +(Y!"" " Z#Z ]] a(" $[( % '*!!%(X&#% % '(" Z]$(!] %(&$"!!&Z W$(Y # $(Y Z#(""(b$[ d#(x&!z '(Y(#%(\ '# (Z#%,VTT. '*#Z( (X &#%"($!"" %(!$( ca#%(,.x%](z( #XX"]Y(Z $] a( '(" '(($!&ZZ&# `&Z (@($#] '(Y(#%( (ZU X&!Z $&YX '! µy$&yy(x%](z] '*#Z( Z$( '( (Zca#%( U,!%( &Z]] %]"!](&#".S(Y(#%( Y Z ]] &^(Z##%"(`#( #% $( '( &#%$[ d#(x($%("(!az '( %]#" b" `($$(# W&Zb&^(Z!% %(% '( '(# $$#Y#"]X(Z' Z TT &Z']a% $(b" Z ']$" %(X%](Z (!Y(%" '(Z!] '($[ $#Z '(`&"#Y( " #!"!]"( a( %("!&Z Z($ '#X!$D 2X&#% '(#, VV. %&a% X[!( (Z`#( '( '(%(X%](Z %]#"!Z! &^(Z# Z($ '(" R&Z(!Z'(Z]( R&Z(!Z'(Z](!`( (X%](Z](X!a,^. %( (Z$&#X( '( '( %]#"!Z! &^(Z# (Z&Z '! #$[ " X&!!&Z!`( (X%](Z](X!a U,^. '(" '(Z!]a"&^ +&YY( &Z"* X!%( ']X(Z' "( '(" '(Z!c$!&ZX" '("*]$[ &#%X ""!(%$(X%&^"Y(Z&# X#%(Y(ZX" +(!Z'!$ `&Z!Z%&'#!#Z($&Z'!Z'!$ (#%d#&!d#(d# (#%^ ]#%"(` %!!&Z (#"( Z($ "!!d#( '#X!$S2 Z!""&Z %(" YX"!#'(!`( '(S2!X(%Y( %(X%](Z '("!az( '(# '*!&_'(Z!c$!&Z '*&^(Z!% '(Z #%(!d#( %( (Z`#( '(,%(X Z$&Z (Z#!"! (&# (Z`#( '($&#X(. &^(Z#( Z$($%!%( (X%](Z]( (ZX!a,$.,%(X X!a U,$.. '* ^&%'d#("*&z (Z%("($ %( &^(Z#(!d#(S(X"#Y?Y(!"*!Z'!$ %(Z&%$("*!'](d#(" `($"( '(#!Z'!$ (#%Q# $&Z%!^#!&Z]" "!!`(Y(Z"("!aZ( #X% #&Z(Y^" '(" '(Z!c$ ^"($(d#!!&zx" _ #Z(^&ZZ($&[]%(Z$( '(Z!`( &#" XX%&!Y (#%^!d#( (Z]a"!a( ^"( ]#%"( % XX&% '([ (d# Z!!`(Y(Z d#(" &Z &^(%`(#Z^&Z '(`"(#% &^(Z#(\ '(Z!c$! #(#% '(Z!c$ '("*!Z'(Z(#%` $$&%'!&ZY(#%]( X&!Z( %!( (Z%(V ( T% % +( %]#" &Z '(#&Z$&[]%(Z `!&ZZ$&Z '( T &#%Z!(X '(X"#d#("( %" %]#" '#Y?Y( &%'%( "(#% "!]% #%( X&#%" &^(Z##%" $!d#( '!!&Z a&z '#X%&$(# (@($#](#%" #% '( ( "( '(" `($$(# &^(Z#X&#%"(Y(#%(#^#% `#( '( %! &Z$&Z!'%(" $ `#( '! Z$(]a '($&#X( '(# '("*!Z'(Z" &Z &^(%`(d#(" '(Z!c$!&Z '(Z!c$ (^!(ZX"#!&Z %( &^(Z#( (Z`#( '( Z!&%&X( )b#z( "( '#$(Z%(!" \ \[_[! ^! f _[!!%_Z! ]_ Z! _[ [b _b! ^^"!!^f [ [ [_Z b[ _[![ \!% [!! b! b!^!_" Z _[a!_ "![_[`!^

114 U TT U > T T T T T VT #!"! =T>U!W Z" X&!!&Z.!\("!aZ( + %( '(" '(Z!] '(Z!c$!&ZX%](Z]( (Z '(" '(# %]!'#(""(#%#Z[#!!Y( `#( '( '(" R&Z(!Z'(Z](, '(,^.,%(X!,$..&Z &^(Z#( (Z,%(X!"* %(" '(" ^ '("*!Z'(Z (b '(Z!c$!Z&!%!&Z]` '# %(X%](Z(Z"("!aZ( %(X%(!\($%&!&Z$](ca#%(Z"(X&!!&Z '*!&_'(Z!c$!&Z!\(` "(#%Z#Y]%!d#(!Z'!d#(Z" ]]Y(#%]!\( YX"!#'(!`(. Z'(S2!\($(Z%( "*&%!a!z( (ZX&#%$(Z! &"#ZX($%( % "#](

115 VTUU T T TT T T T X&!!&Z =T>U!UW.!\("!aZ( + %( '(" '(Z!c$ '(Z!]!&ZX%](Z]( %]!'#(""(#%"(Z Y&!!] '(" '(" `#( '($&#X( R&Z(!Z'(Z](, '(,^.,%(X!,$..&Z &^(Z#( (Z#!"! Z" ca#%(z"(x&!!&z '#,%(X!"* %(" '(" ^ '("*!Z'(Z '*!&_'(Z!c$!&Z!\(` YX"!#'( "(#%Z#Y]%!d#(!Z'!d#(Z" %(X%](Z("!`(. Z'(S2!\($(Z%( #% '(Z!c$ '("*]$[!Z&!%!&Z]` Z!""&Z!\($%&!&Z$]( %(X%](Z(Z"("!aZ( (b"*&%!a!z( %(X%(!\(%!a% #X]%!(#% $( (ZX&#%$(Z! &"#ZX($%( ]]Y(#%]!\(% "#](

116 U TT U > T T T T T VT Y!](" =T>U!W"(Y(ZX '($ Z( '*!Z'(Z!Z &^(%`(d#(" ( ']"!_ [&&a% X[!( '*#Z($&#X( R&Z( '(Z!c]( ]% % '( (%R ( (Z^ X %#Z(c#%(" Z"(R&Z(!#](&#"( '! a&z "(! "( ]% X%&Z&Z$]( ' '(" R&Z( $! &Z Z$(""(!#](&#"( $!"!(" '(Z!c$ $(! %]#" ( '# X%!""(Y(Zd#! Y!'(!$V(%d#*(""(Z("( ' +( %(Z'^!(Z$&YX( '("*!Z #(Z$(!&Z $( '(%Z!(%] Z&# &#%X"#&% '(!!a ( '("*!Z'(Z(#%!!(( &Z$&Z!'%(" &Z$&Z (d#("("!az( #&#% a! &#X&#`&Z (Z $&#X( #!$&Z `($"( '*!&'(Z!]X%(ZZ(Z#Z(&%Y( '* (YX!"]( $$&%' &^(%` (%d#("!&z!(x a Z &X!d#( '(c#%(y $%&$&X!d#( % R&Z(]" &^(%`]( `($" $ &^(Z#(!Z$&Z '(% - &%Y(,X%](Z](ca#%(!. ($&[]%(Z( %&a% X[!( ( '* ^&%'d#(" c#%(" "(d#! XX b" ']$[ ]% % %a( (Z%(" R&Z(X" (" '!!Z$!\ &^(%`(#%"($ ]a %(%&#`(^!(Z '*#Z$ '("*!Z'(Z!S(X"#!c](!d#( ( (Z%(V '(" '(Z!c](" ( TµY&#"($(Z%( #$[( R&Z( X%](Z$( '(#$ Z( '( (%R X%](Z$( Z( '( (%R$%!%(a]Z]%"(Y(Z#!"!]X&#% '!@]%(Z$!(% #Z`(%%( Z&%Y )#Z(R&Z(% " '*#Z`(%%(Z&%Y ( %!^#]b" '(Z!c$!&Z#^!(X %" " XX &#" &%( '(Z!c](^!(ZY&!Z$&YX%(!^"(!"!$( $ (%R"!Y!(" Z( )#ZX%(Y!(%b" "(Y(Z" %(%&#`($&YY(]Y&#]!" '(Z!c](!\(X&!Z!Z]%( ( '&Z$Z&%Y Z (" "d#*#z$ % X&!Z( '("*!Z'(Z(#% V T d#!( Z( ]% R&Z( X%](Z$( '(" R&Z(%,X"# '(Z!c$ (#Z '(# &%Y(X#!bY(#%(d#(" #%(b" '(&#(" '(Z!c](!ZX(#`&!%" Y "!Y!( '(V '(!&Z. "!Y!( R&Z( '(" '(Z!c]($%& #Z Z#ZX%(Y!(%(YX#ZX%(Y!(%$ XX '(" '(Z!c$!&Z %d#( X%&a%(!`( R&Z(!Z'(Z]( ) ' Z( '( (%R( R&Z( #%( % (X%(Z'"( %("!! +&YX " # %$( '(Z!%c# $%&Z a"&^ &^$(Z&( (X]%%Y(Z$ "(Y(Z$!%Y&" $%&Z!X%]!(Z$](!X % '%Z!(.!\ ($ #&""!,+!ca&%( R&Z( '(Z!%c]( &^$(Z&( `(# "( #%%$%( '(\ '(Z!%c](! Y^%&X&&"&! (ZX%(Z Z$ "(! '( " R&Z( +(X(Z' (""( (!$ #&Z!$%$&](X%(!d&( (#"&!%`(Y(Z$ '*&Z(!" $ $ $ Z ( `(# "(! %]!&"$ $! '(! Z$ α = 0.6 ($ Y = 5.43P #&Z!(%`( "(!X%&X&%$%&Z!

117 VT U T T TT T T T =T>U! W '*&ZY +&YX&%$(Y(Z$ $$(Z'& $]%%!&&Y%!b&Z#[ $%d&(!o` "*]#[ %a(y(z$['%&!$ Z$d&( " X%(!!%&Z $$(%az( '*]#&&"(Y(Z$, p Y 0 X ' Z! "( #! ` '( " = 9 GPa!%"%#(.!&Z#&YX&%$(Y(Z$X"!$%d&( (!$! '(Z!%c](b T. "(Y(Z$! R&Z(! $&%](,(Z"*&##&%(Z#( (X]%%Y(Z$ +(" "*%Z&%Y $%&Z &&%Z%(X Y&%X[(! #&Zc%Y(d&( Z$(X&&% %(Z'%( #&YX$( '& #&YX&%$(Y(Z$ "&# " '( "!%"%#( d&*(""(x(%y($ '( %($%&&`(% &Z(R&Z( '(Z!%c]( U!" $%&ZX #&Z`%(Z$ %]"]Y(Z$!cZ%!X%]!(Z$]X #(X(Z' \*[X&$[!( '(X"!$%#%$]X % %$(!(Y^"( '(!%Y&" % '%Z ($\ #(Y & '&X$!%YX"%c(% "( % %!&ZZ(Y(Z$d&( $]%% #&YX&%$(Y(Z$!(% "&%! ']#%%$X!! % " ca&%( (!$]"!$%d&(!\ $&$ "%$] '( " '(Z!%c# $%&Z '&Y $$(%Z'%( &ZZ%`( & '( #&Z$% %Z$(!&X]%%(&%bp Y &]"!$&X"!$%d&(X %$X&&` % _ Z$ '(Z!%c(% " X%(!!%&Z"%Y%$( Z$%""&ZZ(!&^%$ &#&Z( '(Z!%c# $%&Z! a( +&YY( Z!]#%&&%!! " X%(!!%&Z['%&!$ $%d&( XX"%d&](Z(X(&$X ']X!!!(% " X%(!!%&Z"%Y%$( '*]#&&"(Y(Z$ p Y $ Z$d&( " '(Z!%c# 0 $%&Z %%%(`(%!%^"( V/VZ*! $$(%Z$! "(&% '(! $&% $%&Z V/V #(d&%z( #&%%(!X&Z'X sat!!b" '(Z!%c# $%&Z (Z $%!X%&a%(!!%`( &^!(%`]( '] \(! %]!&"$ $! '( # %$&a% X[%(Y($$(Z$ '&Z# &$ #%%$%( '(\ Y^%&X&&"&!! % &Z( #&&%^( '*%Z'(Z$ $%&ZZ*(!$X Z$X&%!_!!& _! +(X(Z' "(!Y?Y(!X%&X&%$%&Z!a"&^"(! Z$ " &%Y&" $%&Z '(\ Y &V Y^%&X&&"&!!(Y^"(X"&!! $%! ($!_ %! Z$(d&( #(""( '(!&% Z$ '( %(" (% &Y&%Z! &Z( '(![X&$[!(! '&Y&'"( )X" $%#%$]X % %$( &&X"!$%#%$]!!&#%](! " X"&!]`%'(Z$(b%(" (%! Z (@($ %Z'(Z_ "( %]!&"$ $ Y^%&X&&"&! (!$ &Z(R&Z( $]( (Z$%%(Y(Z$! $&%](! &ZY +( %]!&"$ $ (!$b% XX%&#[(% '& #&YX&%$(Y(Z$X"!$%d&(X %$! % ""&!$%&Z! #(#% `(# $]%% Z$ &Z#&YX&%$(Y(Z$X"!$%d&(X % %$ ($!& ($b &Z( '(Z!%c# $%&Z %Z(`,!!&#%](. &!d&*b&z( #(%$ "(&% "%Y%$( '( '(Z!%$]! +&Z!%']%&Z!X&&% & (!$!&&Y%!b&Z#[ $%d&(! &Z X_ Z$d&( %a(y(z$['%&!$ " #&Z$% %Z$(['%&!$ $%d&( X"%d&]( &!!$Y( (!$ %Z]%%(&%(b" X%(!!%&Z"%Y%$( '*]#&&"(Y(Z$!( 0 p Y!&Z#&YX&%$(Y(Z$ $]%% & %$bp0!\(!!$y(z(x&&%% "! 0d&*&Z(&%! Y $&% $%&Z $$(%Z$(! % &Z!( % YZ( & #! '( "*%Z'(Z$ $%&Z %"Z*(%!$(]`%'(YY(Z$X!d&*&Z!(&"]$ $

118 U U T T T > TT T T VT ^ =T>U! W &ZY %Z'(Z$](X%]`&(X +&&X( '( " R&Z( % "(Y&'"( '( &@( V T!\(Y&'"(!]!&% &X"!$%d&(X b % %YX&!(d&( "(! ^&"! "*(YX%"(Y(Z$ "*(#(X$%&Z '& '(%Z%(%!&%(Z$b" '(Z!%$] '(! $&% $%&Z!\* &&$ '*&Z]#%&&%!! a( %Z'&%$ &Za% '( '(Z!%c# $%&Z!(%Z '(Z!%c](! & '( " R&Z( Z $]%% $&&! $&%(""(Y(Z$ Z'%(Z$ #[ #[ #[ Y&%X[(! Z$ &Y '( %a(y(z$x(%y($$ '(X"!$%c(% "!%"%#( +(X(Z'!(&"! "(!]$ $! '( %a(y(z$ '( "!&% #( #%%$%d&(d&% %(!$( $&& &&%! " Y?Y(X(%Y($$%&Z$ $]%% & '( '(Z!%c(%!\( %a(y(z$]$ Z$ $%! %Z[&Y&aZ( "&%! '*&Z( %Z'(Z$ $%&Z "*]`&"&$%&Z (Z '( " R&Z( '*&Z$("Y '(Z!%c]( $]%% &Z(X(&$?$%(d&( #("&% %Z$%&'&%$X % &@( V T X&&% ']#%%%( "( #&YX&%$(Y(Z$]"!$&X"!$%d&( '(!Y $]%% &% a%"(! ) &Z( #&d&%""(!x[]%%d&(! $&%]( '(Z!%c# $%&Z (Z$&&%]( '*&Z(Y $%%#(]"!$%d&( `(# &Z(cZ( #&&#[( (Z#&&%! '( '(Z!%c# $%&Z &^$(Z&(X!.!\ (Z$%( "(! '(&,`&%%ca&%( R&Z( '(Z!%c]( %Z!% &^$(Z&( (!$!!(R!%Y%" %%(b#(""( % '%Z ($\ Y^%&X&&"&!!O!!(R%Z$&%$%`(Y(Z$ "* &&$ '*&Z ]#%&&%!! a( '&%$a]z]%(% &Za% '%(Z$ '( '(Z!%$]!(%Z #(! & '( " R&Z( '(Z!%c]( ($X(%Y($$%( '*&^$(Z%% '(!^&"! (YX%"]! '( '(Z!%$]! ']#%&%!! Z$(!bY(!&%(d&( "*&Z!*]"&%aZ( '( "!&%\ ` "%' $%&Z '( "*(%!$(Z#( ($ " # % #$]%%! $%&Z Y&%X[(! '*&ZX[]Z&YZ( '*]#%&&%!! a( ' Z! "!%"%#( Y&%X[(!(X%]!(Z$( "&%! #&YY( " X%(Y%%(X%!$(X&&% Y]"%&%(% "( #%%$%(X"!$%d&( X%&X&!]X&&%Y&']"%!(% "!%"%#( V V U "*(X]%%(Z#( UV VV &&!Y&Z$%&Z! %#% #&YY(Z$ & &&%'*[&%X%(!d&( #"!!%d&( '( " Y(!&%( '( "*]`&"&$%&Z Y Z #(Y Y &Z$]$] %] &X$%d&(X"&!Y]_ '&!X(#$%( '( "!%"%#( Y&%X[( ' Z! &Z( #(""&"(_(Z#"&Y( '%,+ S.X(&$?$%( %]%Z$(%X%]$]( ' Z! &Z( # Z%#%(ZZ(X&&% &^$(Z%% &Z( # % #$]%%! $%&Z (X]%%Y(Z$ '( "*]#%&&%!! a( '( $]%% &!\(!Y(!&%(! "%!](! (Z#&"" ^&% $%&Z `(#\ &%(Z$P%&!`"($ ($ (%Z +[ +\_! YX az&z '&\ %' ^&% $&%%( '( [!%#&_+[%Y%( '(! $]%% &\&Y%Z(!#(Z$! + Z$ "(X %$%(""(

119 VT(U T T TT T T T \*]#[ =T>U!(W $%&Z!#[]Y &Z#&YX Y (X%]!(Z$ ($ "( %&^%!!&Z$ %Z$%&'&%$! ' ' Z! Z! &Z &%Z$Y]$ X%]!(Z#( '*&Z &%'( $%!%&Z!!&%( "*['%&!$ $%#%$] #[ '&!&^%X "*]#[!#[]Y % ($ "( %&^%!!\(!X(#$%( '( "&Y%Z(!#(Z#( '& %&^%! (!$ &$%"%!]X&&%Y(!&%(% " X%(!!%&Z (@(#$%`( XX"%d&]( ' &%'(!&&! "* #$%&Z Y X[%(X%]!(Z$( '(! '% X[&$&a% (Z`&( '( '(!!&! "*%Z$]%%(&% '( " #(""&"( ]"(`] Y! " d&(y(z$x &Z]#[ %(X%]!(Z$]!#[]Y &Z#[ Z$ '*&^$(Z%% %a(y(z$ ($X&%(Y(Z$['%&!$!( $%d&(!&% +( '%!X&!%$% % " ca&%( (!$ #&Z!$%$&] Y Y (Z '( '(& '% '(! '% % %!&Z Y '( "(&%a% Z'( '&%($]d&%x(%y($ '* $$(%Z'%( '(!X%(!!%&Z!]"(`](!! Z$%( "(! '(& '% &ZX" #( ""%d&( ]$]X%] "*]#[ X(%#]X '%R &Z &%Z$Y]$ ' %]"(#$%&]%&!%&Z&Z$%&& '*&Z '*]X '(VTTµY '% Y$%( # % #$]%%!$%d&( ' Z! &Z(R&Z( '(d&("d&(! %Z(! '(Y%#%&Z! %!!(&%! #&YX +[ Y +*(!$ ' Z! #( %$%Y(Z$d&( &^_ "*&ZX" #( d&( '% Z$ &Z(!(%` $%&Z (!$(%Y](X X "(Y(Z$X &X$%d&(!\( '%!d&(!&x]%%(&%x(&$ #&&"%!!(%`(%$%# % % XX&%$ & '%!d&( %Z]%%(&%d&%!&"%' %%( '( " Y&%$%]%Z]%%(&%( '( " %&% ($]%%(&% '( " #(""&"(!\ Y!&X]%%(&%! Z$` #[ #(""&"( % &Z#&&`(%#"( '&Z$ " #( %Z]%%(&%( (!$!&"%' %%( '*&Z( Y^%(b Z %% %! ' OcZ Y^%(b &Z Y %% #&YX &%Z$! XX"%d&( ' Z! "( %$%Y(Z$ '& '*!!&%(% "*['%&!$ $%#%$] #[ &Z #&YX %a(y(z$ Y '& %(YX"%$ "( Z!Y($$(&% %$%Y(Z$ '(X%(!!%&Z!O%Z!% "&%!d&( " X%(!!%&Z&Z% % "( '(! '% X Z$%""&Z]$&'%] $%d&( '& '%!X&!%$% #(""&"( (Z#"&Y(_'% %$%Y(Z$X%] &$%"%!]! Z$ " %]"(#$%&]%&!%&Z ""%d&(!\ '(X%(!_ #%(&!] Z$!!\ Z$%""&Z Z!Y($$(&% ^"(Y(Z$ %a(y(z$ Z! "( $%!](ba &#[(! &Z Z$%""&Z! Z( #(""&"( (Z#"&Y(_'% Z$ (!$ '%!X&!%$%X(%Y($$ $%_ Z$!!Z&$%"%!( Z$! Z$! Z$%""&Zb]$&'%(%! Z! "(d&(" " ^"(Y(Z$ &Z Z$ (!$!(%$%!&% ""%d&(x(%#] '%!d&(y]$ '*&Z$%&&X(%Y($$ b"*]#[ Z$%""&Z!%$&] #[ $&%%d&(d&% XX&%(!&% "( '%!d&( %("%] & '% Z$ %%(% " X%(!!%&Z Z! " &Z(X%(!!%&Z!&% "( '% Z$!&X]%%(&%d&% " $% &Z Z!Y($ `(# &%'( $% Z$! X_!* [!_f \ ^ ^ f ` b[[!!! ^ _a[_[ \_^" _! \ _b b_![_[b a![z f[b! ba!f^[[!f ^" b![!!^f [ \!^fb_["^b \[ _[ #!fb!^!! $ [ \! _! b_" _a[ b b ^b[!"

120 U U T T T > TT T T / :;<=>?@AB;CD! "#$%&'()*+,-%. JAB;CDKDLMNOPQRB EIG EHG EFG ESG VT =T>U! V &W&Z #_ &[!(%\] X W(XY"(! '(!Y(#$%(! '( "&X%Z(!#(Z#(! [ %!bz]\ '& %&[%! ' '( %`(X(Z$!a(!Y(#$%(,. (!$ &[$(Z&!&% "( %&[%!^\%'(!a(!y(#$%( Y%]!(Z$] ']#_ %`(!bz,[. (!$ &[$(Z&!&% "( '( "&( c _d'%&!$ $%e&( '!Y(#$%(,#. (!$ &[$(Z& Y%f! &[!(%\(e&( ]\!a \ &Z#_ g "(!!Y(#$%(! &[$(Z&! %`(!&Z$!&Y(%Y&!]!!a(!Y(#$%( (Z$% %$!`%!Z&%%,'. (!$ #("&% &[$(Z&!&&! ']h&%x $%&Z!&Y]%%(&%^ TP "&]^ P '&!Y(#$%( (!$!%`Z%i# '( " Y(%$( '*_d'%&!$ $%#%$] ^ '%@]%(Z$!Z%\( '& #_ %`(X(Z$ %&[%!^&Z(Y%(!!%&ZZ&X%Z ']#_ Z! "*(Z#"&X(^cP!a( Z$ ($ Y%f! %`(X(Z$ $%\( YY"%e&] ' Z! " #(""&"(! #_ Y"%e&(!&% "( &%Z$g"( %`(X(Z$Y(%W&Y "*]#_ Z$%""&Z % #_&%!% '(h X ` #_ W&Z^%(!$(%_d'%&!$ $%e&( ' XX( '( %`(X(Z$!%&Z_d'%&!$ $%e&( ' ($ #&""! c '&!! +_%&X( Y%]!(Z$ ' ' Z! "( &%'(g "*]#_ ($ '&Z#!&% Z! "*(Z#"&X( '% Z$ " Y%(!!%&Z Z$!g (!$_d'%&!$ $%e&(!a( &%'( (!$ Z! " &$%"(! +&XX( " Y%(!j Z! "( &%'(Z*(!$Y "*]#_! &Z(h&Z#$%&Z!%XY"( '( " Y%(!!%&Z&Z% W% "( '% &Z%Z$%&'&%$ \(# Z$%""&Z&ZY($%$X&%#( & '( %&[%!!'& &Z$Y%&Y&!]&Z( #&%%]" $%&Z [ "! (Z$%( "( ']# " `( '( " Z'( '( "&X%Z(!#(Z#( Z! "( ($ " Y%(!!%&Z_d'%&!$ $%e&( YY"%e&](!&% "( #%%!$ Z$ "(!Y(#$%( '& %&[%!g &ZY(&$ &[$(Z%% &Z(X(!&%( '( " Y%(!!%&Z YY"%e&]( Z$%""&Z!Q&("e&(!!Y(#$%(! &[$(Z&!!&Z$Y%]!(Z$]! (Zi`&%( &W YY"%e&]( O%Z!%g (Z!&%\

121 cctu T T T TT T T! #$ $ #_ &Z#_ '*&ZX "*]#_ (Z!&(""(X(Z$g" X(!&%( '( "*]#%&&%!! `( $]%% &!*(@(#$&( YY"%e& Z$!&% "(!d!$fx(^]$&'%(% %`(X(Z$ #&ZZ& '(`]&X]$%%(_&X&`fZ( ($ (ZX(!&% Z$ & #&&%! '& %`(X(Z$ "* ""&Z`(X(Z$,&& " #&Z$% #$%&Z. '( $%&Z!Y%%Z#%Y #_,#_ '%%(#j "(!!a( %`(X(Z$]$ &ZY(&$ %("%(%!%XY"(X(Z$ "(!`% Z'(&%! #&Z$% "](! ($X(!&%](! %`( ($ #(X(Z$.^"(&%!]e&%\ &W ']Y" "(Z$! "&#,#&Z$% %Z$(! ($ ']h&%x $%&Z!.!OY %$%% '(! ']h&%x Pg &ZY(&$]\ &ZY $%&Z!Y"!$%e&(! ε "&(% % Xf$%(!# " %%( '*%Z$(Z!%$] '( " ']h&%x $%&ZY"!$%e&(g`]Z]% "(X(Z$ " ']h&%x $%&ZY"!$%e&( ]e&%\ \ #_ "(X "(Z$( ε P! &&! "*_dy&$_f!(e&( $]%% &]$&'%] (!$]"!$&Y"!$%e&(g"*]\&"&$%&Z '( " "(&% '& %`(X(Z$ YY"%e&] (Zh&Z#$%&Z (Zh '( ε P $% '&%$ %$ '&Y&%Z$ '*%Z$(%!(#$%&Z '&X (Z$%( "( #%%$f%(y"!$%e&( $]%% & #&Z!%']%] #_(X%Z #_ ($ "( '( YY"%e&] &X &! $]%% &&%e& Z$%i(% "*]#%&&%!! `( '( "!%"%#( X&%Y_(g%"Z&&!h &Z#_ %`(X(Z$^ &$ '&Z# `]&X]$%%(_&X&`fZ( #&ZZ& %Z'&%! Z$ '( "!$%#%$] &ZX&d(Z Y" ($ '(X(!&%(% " ']h&%x j Y!$%e&(!a #_ #_ $%&ZY"!(&"(`]&X]$%%( '( %`(X(Z$_&X&`fZ( %Z'&%! Z$ &Z#&XY&%$(X(Z$ Y"!$%e&( ' Z! "!%"%#( X&%Y_( (!$ #(""( X,+ S.!bZ '*]\ '& %`(X(Z$Y&%(X(Z$_d'%&!$ $%e&( &[$(Z& % "([% %! '*&Z( +(""&"(j Z#"&X(S% Z$ &[$%(Z$ "&%! &Z( ']h&%x $%&Z Y&%(X(Z$\&"&X]$%%e&(ge&( " &`( ZY(%X($ "&(%! &$%(Y%&$&#&"( (WY]%%X(Z$ " #&Z!%!$( '&Z# (Z" %]Y($%$%&Z '( "!&%\!]e&(z#( Z$(, &%%i`&%(!ct.!&% '%@]%(Z$!]#_! c! &Z#_ X "*]#_ Z$%""&Z! Z$%""&Z! ) (!&%(% "( &Z(\ "*]#_!Y(#$%( Z%Z%$% " %`(X(Z$_d'%&!$ $%e&(!&% + S!bZ\(%""(% ^Y%(Z'%( "(&% '(Y%(!!%&ZX W%X "( '%@]%(Z$(^#_ #_ %`(X(Z$! U!S]#_! e&( (!&%(% " Y%(!!%&ZX "( YY"%e&](^"*]#_ Z$%""&Z! "*]#_ Z$%""&Z! X Z "*]#_ ']#_ %`(! %`(% OY [!Y(#$%(iZ (!&%(% "(!Y(#$%( '( Y%f! ']#_ #_ e&(]#_ %`(!a Z$%""&Zg &Z(]\ %$%% '& ']# " `( '( " (Z$%( "(!Y(#$%( %Z%$% " ($ "( " '( Z'(S2 &ZY(&$ &[$(Z%% "& $%&Z '( " '(Z!%i# $%&Z!&[%(! "*]#_ Z (@($g"( %`(X(Z$]$ &#&Z( #&Z$% %Z$( %]!%'&(""( ' Z! Y%f! Y(%$( '(\&"&X(X(!&%]( (!$ '&Z#Y&%(X(Z$Y"!$%e&(!bZY(&$ %Z!% ##]'(% ^"*]\&"&$%&Z '( " '(Z!%i# $%&Z (Zh&Z#$%&Z '( " Y%(!!%&ZX "( YY"%e&](! +( %]!&"$ $ %(\%(Z$^(WY%%X(% "*]\&"&$%&Z '( " Y%(!!%&Z_d'%&!$ $%e&( "%X%$( '*]#&&"(X(Z$ '( "!%"%#( (Zh&Z#$%&Z!cT.! '(Z!%$]!bZ '(! &[$%(Z$ %Z!% "*]\&"&$%&Z '&Y&%Z$ '*%Z$(%!(#$%&Z (Z$%( "* W( '(!Y%(!!%&Z! ($ "!&%h#( #%%$%e&( '& #%%$f%(y"!$%e&( '( "!%"%#( X&%Y_(,\&%%i`&%( a(!]#_! #$ $ '%R, %Z$jP&[ #_ &Z$]$]&ZX &W "( %`(X(Z$ &[$(Z&! (Zh% #$&% Z$ '(!X&%#( '(!%"%#( X&%Y_( %ZQ& %$RgSS.\(# %$( &!S(!]#" $! '( $ %""( '( "*&%'%( '( " %Z( '(X%#%&Z! &Z$]$]!]"(#$%&ZZ]!!a*[!(Z#( '( '(Z!%i# $%&ZX(!&% ["( (!$ Z$_&X&`fZ(g Z$%""&Z!("&Z"(! X W%X Z$%""&Z`% #(^" Z$%""&Z Z$_&X&`fZ(g%"Z*d Z$%""&Z W%X Z$%""&Z!Y&&%

122 U U T T T T T > TT ccc =T>U!cTV $%&Z!#_]X X (Y%]!(Z$ " %(" $%&Z (Z$%(Z&!X(!&%(!,. ($ "*]#%&&%!j! `( '( "!%"%#( X&%Y_(,[.!a&%! '*&Z#_ '*&Z]#_ %`(X(Z$ '(!%"%#( X&%Y_( ',.g" Y%&\(Z '(Z!%$] '&X Z$^" h&%! '*&Z( #&Z$%%[&$%&Z]"!$%e&( ($ '*&Z( #&Z$%%[&$%&ZY" "*]\&"&$%&Z X&%Y_(g (Z#_!$%e&(!OY%f! '( " Y%(!!%&Z"%X%$( '*]#&&"(X(Z$ '( "!%"%#( %`(X(Z$_d'%&j!$ $%e&(g(zh&z#$%&z "(Y '( " ']h&%x '&X &! $%&ZY"!$%e&(!&[%(,[.!+(" h&&%z%$ &Z( # % #$]%%! $%&Z (WY]%%X(Z$ %$%(""( '( "*]#%&&%!! `( $]%% Z$%""&Z $%e&( ']#_ Z! &Z( #(""&"( (Z#"&X( '% Z$ $]%% & &`X(Z$(g#($$( '(Z!%i# $%&Z " %`(g" '(Z!%i# $%&Z %]!%'&(""( (!$Y&%(X(Z$Y"!$%e&(!S&Z#gZ&$%(Y%&#]'&%(h&&%Z%$

123 cc U T T T TT T T!"#$%&'() * /01 +,-.*' =T>U X!&4&ZX?X3]#_ $%e&363cup9! \ Z$7$4 %$Y"3%Z8!ccV2Y3#$43! Z5[$3Z&! \]4%i]33Z#5XY "3!X54#3 &W63!]#_ a54!63#_ &W54%`%Z e&3#_ "3! &W63!%"%#3 4`3X3Z$g&Z]#_ X54Y_3!!Y3#$43! ]$]X3!&4] X Z$!a3!Y3#$43 "3"%e&%63$4 &ZY3$%$X54#3 Z!X3$$3&463 X X54Y_33$ & Z63! Y43!!%5Z63"; c ^<TP9 X]$_ Z5"j]$_ Z`3]$_ Z5":X]$_ Z5":3 Z`3 "343XY"%!! \3# Y43!!%5Z!5&! \5Z! &$%"%!]&ZX]" &g$4f!y45#_36&x]" Z5" 1 : 5g#3e&%!%"%#3!!&43&Z#_ $&433Z$43<T3$<P9 &!$%i]y $%e&3 &!e&;^63!\ 4"3h %$e&3"3y_]z5xfz3 "3&4!63 4`3X3Z$_d645!$ >Z#d#"363#_ YY"%e&]^#_ c<!=3#_5%w3!$ 6363Z!%i# $%5Z63" X54Y_3!!5&! \ Z$63X3!&434"3!Y3#$43 6]#_ e&3]#_ Z$%""5Z!a Y43!!%5ZX Z!X3$$3&463 W%X "3%Zj 4`3X3Z$3!$ 6;&Z]#_!%i]!a i`&43!ccx3$3zy X Z63";]#_ Z$%""5Z63Zj P9! "7$4 $%e&3x W%X "363cU!Y3#$43! $%5Z3Z$43"36]# "!%"%#3!&4&Z]#_ Z$%""5Z63Z!%i]^3Z\%45ZcT%!a "3#_ $%5Z63";]#_ 4`3X3Z$!9 [ `36&Y%#S23$ 63Z!%i# $%5Z63" X54Y_3 T g" 63Z!%i# #5XX3X i`&43!363!!y3#$43! X3!&4]! Y4f! 43W3XY"3g"!ccY4]!3Z$3"3!4]!&"$ $! 5[$3Z&!!c<Y4]!3Z$3"3!4]!&"$ $! Z$ " 4e&3&46363Z!%$]!=3$$3]\5"&$%5ZY3&$ Y5!%$%5Z63S2 Y4f!7Y5%Z$%""]!8&Z#_ Z$%""5Z63!%"%#3 3$ 4 4`3X3Z$_d645!$ %Z%$% Z$%""5Z! \3#63!!Y3#$43!5[$3Z&!!&4 634&[%!5Z$]$]%Z$456&%$!6 ]#_ \ Z$%""5Z63!%"%#3 Z! &Z3#3""&"33Z#"&X36% #3""&"3 Z$%""5Z! Z$ `363" $%5Z &Z3!5""%#%$ $%e&3 (!!%$&3!$5[$3Z&3`4 #3 _d645!$ &4&[%!!OY4f! " Y43!!%5Z!;]#_ %!!3"3 &%63$4 Z$%""5Z63!%"%#3 #3""&"3 4 %$Y"3%Z83$iZ 4`3g5Z" YY3463" ""f"3"3! %Z%$% "7Y5%Z$%""]!8 \ Z&$%"%! Z$ " 43" Z$3$ 5[$3Z&!3Z&$%"%! Z$%""5Z63!%"%#33!$5[$3Z&3!&4" "

124 ?$43 &!$]3Y cc 7!c8 $%5Ze&;5Z\3&$3Zh max3!$3wy4%x]33zp9 &Z3h5Z#$%5Z!%`X5 63Y!a3#_5%W 6_5#63#3$$3h54X363h5Z#$%5Z3!$6 ^";&$%"%j %436\ Z$Y #_ Y%$43(!bZ43#_34#_33Z &Wg &Z3\"3&4 5"P! "3# 64363" X56]"%! $%5Z6& $%5Z YY45#_]33Z$43"34 "3&463<T Y5&4&Z3Y43!!%5Z%ZiZ%3! 4"3Z& `363Y5%Z$!3WY]4%X3Z$ YY54$63_ " %43^#3""365ZZ]3Y 3$ &$3&43Z$43"3!Y%#!S13$S2 "!%"%#3 47!c8Y3&$?$435[$3Z&3! \5Z!Y45Y5!]3 #_ Y%$43Y4]#]63Z$g 63Z!%i# $5[$3Z&Y h54x3`"5[ $%5Z63" Z3$P4%X!6%$#_3Z!Y3#$45!#5Y%3 X54Y_3e&3Z5&! & &Z3]\5"&$%5Z$4f!!%X%" $%5Z &W3Z\%45Z!63 P9 g3$5z\]4%i3[%3ze&3 XX3Z$g ["3 "363" #5&4[36;]#45&%!! `35[$3Z&33!$ $4f!!3X[" &4]!&"$ 495"% 4%""5&%Z (!5$ 5Z43$45&\3[%3Z&Z6][&$63Y"!$%i# "! $&4 (!bz43$45&\3 #5""! ( 3Z6dZ %43! "3!<TP9 g^&z3\ ["3^ "3&4 $%5Z6&Y_]Z5XfZ36363Z!%i# $%5Z3!$5[$3Z&3\34! Y45#_363<T &!!% &Z3h54X363#5&4[36;]#45&%!! `3!3X[" X%#45!Y3#$45!#5Y%3 X 4 "3j!$%e&34]!%6&3""36 ZZ5&! Y34X%!63# #$]4%!34"5# X3Z$ "!%"%#3 X54Y_3! #3$$3%Zh54X $%5Z!&4"3$34X3 &WX3$$3Z$3Z6]h 6]h54X 63Z!%i# $%5Z63" "3X56f"363'%Z3$a X54Y_3%Z63Z$]3!=3!Z5&\3 X[45Y5&"5!! 4$5`4 6]h54X $!3WY]4%j Z$ \5"&X]$4%e&363" $%5ZY"!$%e&3gZ5&! \5Z!Y& `3 # Y_%34" j Y" X3Z$ &$ Y4]#]63Z$! 63"; &!!%X5Z$4]e&;&ZY_]Z5XfZ36;]#45&%!! "%3&!%"%#3 4!&4h#3#4%$%e&3"3"5Z` "54!63" 63Z!%i# $%5Z63" X54Y_33$Z5&! \5Z! # %$Y "3X56f"3 5&!6%!Y5!5Z!6]!54X %!6;%Zh54X #$]4%!]";]\5"&$%5Z63" W363!Y43!!%5Z!_d645!$ $%e&3!!=3y_]z5xfz3z;]$ Z! &X5%Z!Y 4!%"%#3 X54Y_3g$3Z "3X3Z$! Z$63Y45Y5!34 $%5Z!3WY]4%X3Z$ "3!Z5&!Y34X3$$ &Z3Z5&\3""3"5%63#5XY54$3X3Z$Y5&4" e&3z5&! \5Z! 4$%3""3X3Z$ # #$]4%!]3WY]4%X3Z$ U U T T Z&""3 Y5&4 P Y = P Y 0 = 9 GPa83$ &Z3\ Z&$%"%! bz#5z!$ $3e&3" #3""3# "#&"]3Y 4!33$ a;&$%"%! $%5Z63" 4" h5z#$%5z!&%\ Z$ " 43" 5&! \5Z! Z!63"!%"%#3 Z! Z$3 ρ ρ = ( 5.85 X%e&3X5"]#&" p max 9 )3.2 Y43!!%5Z YY"%e&]3 d Z$ 7%#% Z&$%"%! \ &W4]!&"$ %$! %Z#"&!6 `3 Z$ #5XY$363";]#45&%!!

125 ccuu T T T TT T T Densification [%] P9 =T>U!c<V $%e&3x W%X "3 Y6&4 P Y -P Y 0!%"%#3 [GPa] \5"&$%5Z63" 63Z!%i# $%5Z ρ/ρ 063" "3#d#"363#_ 4`3X3Z$7 X54Y_33Zh5Z#$%5Z63" Y43!!%5Z_d645!$ 63Y4f!63c P9 63Z!%$]!a X3!&435[$3Z&3^Y4f!63<P9 #5443!Y5Z6^&Z3\ Z$ 4"3 &%63$4 Z!X3$$3&463Y43!!%5Z $3&463 \3# YY"%e&]3P P Y 0 = 8!=3$$3#5&4[33!$5[$3Z&33Z&$%"%! Z$ "36]# " #5XX3%Z6%# =cp9 g 7#3e&% `36&Y%#S2 "3&463P 8Z3Y3&$?$43Y4%!33Z#5XY$3# Y P0 Y Z;3!$Y"&!_d645!$ $%e&3^#3$$3y43!!%5z c<!q& Z$ &Y5%Z$`4%!]^P Y P0 %" %""&!$43"3h %Z!]#_ \ #_ 4`3X3Z$! %$e&3#34$ Z$%""5Z!]$ %3Z$6] ^63Z!%i]! Z$ Y

126 cc Y4]#]63Z$Y5&44 #3#_!$%#%$]Y45Y5!]Y 4'%Z3$a `3X%!3Z]\%63Z#36 #_ Y%$43 Z! Y%$43gZ5&! &$%"%!5Z! "3!4]!&"$ $!3WY]4%X3Z$ &WY4]!3Z$]! & <! Z34"3#4%$f4363Y" X[45Y5&"5! $4 5&!X5Z$45Z! \&W5Z$]$]4] #5XX3Z$Z5&!Y45Y5!5Z!6;%Z#"&43";]#45&%!! # "%!]!6 `363iZ6;]$&63!63 $!Y4]"%X%Z %XY"]X3Z$]36 %46 "3# " X56]"%! $%5Z6] ^3W%!$ Z$3!=3$$3X56]"%! $%5Z3!$ $%5Z!=3! 3_6% ]"]X3Z$!iZ%! >2!5&!Y4]!3Z$5Z!63!4]!&"$ Z! "3# 6436&!$ %43!63!%X&" 5&!!! Z! Z!!! " # #!$"!%! # & Z$Z3Y34X3$$3Z$Y 6]h54X %#%e&3";%zh54x!636]iz%463h $%5Z#5Z$3Z&36 "3!_dY5$_f!3!h "3!X3!&43!4] %$3!Y5&4 "%!]3!3Z3Z#"&X3j!&4h#3#4%$%e&3 5&!X5Z$45Z! Z! '5Z&Z%\5e&3";]\5"&$%5Z63" & #5&4!63" $%5Z!5&!6]$ %""5Z! [5&$%4 4 Xf$4363 &X5j Y5&4Y5&\5%44] Y 4 Xf$436; &!$3X3Z$! W $%5Z!h %$3!Y 44 &ZZ5&\3 4]`" `3!5&! %Z$456&%!5Z!3ZiZ"3!63&W43" YY54$^#3X56f"3%Z%$% " "%!34! X%!33Z53&\43Z&X]4%e&3!a;&Z36;3""3! <63\ &Wh5&4Z%!Y 5&!\3Z5Z!63X5Z$434 0$434 Z]Y5&4Y5&\5%443Z643#5XY$363!Z5&\3 4$5`4 Y_%3Y #_ Y%$43 4X%#45!Y3#$45!#5Y%3 /e&3"3x56f"3y45y5!]y X 4'%Z3$a 25Z363Z!%i]3 $!3WY]4%X3Zj & ";3W%!$3Z#36;&Z X[45Y5&"5! %$ &W4]!&"$ $ $%5Z3 1 Z63" & #5&4!6;&Z3%Z63Z$ 5&!\3Z5Z! &!!%63X5Z$4343WY]4%X3Z$ "3X3Z$ X #_5%!!%!!5Z!6;&$%"%!343$Z5&!X5Z$45Z!e&;%"6%!Y5!36;&ZY 6% 6f"3e&3Z5&! %Z$456&%$ ()*)* +, -. 4" # &

127 cc U T T T T T 6 "3X56f"363a TT!%"%#3 X54Y_33a;%Z#4]X3Z$e&3Z5&!Z5&!Y45Y5!5Z!65Z#6;%Z$456&%43 ]#45&%!! `363" `33 Z! VZ` X[45Y5&"5!3!$ " Y4%!33Z#5XY$363#3$]#45&%!! 46 #_3X%Z63#_ 4 "365Z$Z5&!6%!Y5!5Z!3!$5[$3Z&3 "_3&43&!3X3Z$g" # #$]4%! $%5Z3WY]4%X3Z$!3"5Z"3 3 4`3X3Z$ 4 3&WY45["fX3!!3Y5!3Z$ "54!!$%#%$]h5&4Z%3Y 4a X[45Y5&"5!g";]\5j Z$ ";3WY43!!%5Z6& #4%$f4363Y" &Z%e&3#_3X%Z63#_ 0$43#5ZZ&3!&463&W#_3X%Z!63#_!&4h "&$%5Z63" "%X%$36;]"!$%#%$]65%$ #3#4%$%e&33b4 Y4 $%e&3g 4`3X3Z$ 6%!$%Z#$!Y5&4Y5&\5%4# #$]4%!34Y"3%Z3X3Z$ ";]\5"&$%5Z63" 4`3X3Z$3 Z5&!Z36%Y5!5Z!e&36;&Z!3&"3$ Z! "!%Z5&!]#4%\5Z! "3#4%$f4363Y"!$%#%$]63"!%"%#3 X54Y_3 6%!Y5!5Z!Y54$3!&4"34 f ( σ ) = γp + τ eq τ c \3# Tr(σ)3$ p = 1 τeq Z$63h %43]\5"&34"3&44 J(σ)g";%Zh54X YY54$63h '5Z#5Zh54X3^ $%5Z3WY]4%X3Z$ "365Z$Z5&! 3 YY54$ = S /γ3bzy3&$ : S = "54!3Z\%! `34&Z3%ZiZ%$]6;]\5"&$%5Z! 3 2 VZ#_ γ\ ";3WY]4%3Z#33a Y5!!%["363τ τc c3$ γy34x3$$ 7 i`&43(3cy4]!3z$3"3!63&w# τc\ 6]h54X!$%e&33!$3W#"&!%\3X3Z$\5"&X]j 4%33!j"%X%$3!Y5!!%["3! 8τ c3!$iw]3$ 4%35&7[8γ3!$iW33$ 6;]\ 6]h54X!$%e&3]e&%\ 4`3X3Z$_d645!$ $%e&3g" $%5ZY" $4%e&3g#3e&% 43!$3#3Y3Z6 %XY"%e&3e&3" $%5ZY" "3Z$3ε P3!$!$4%#$3X3Z$ Y45Y54$%5ZZ3""3^" 63Z!%i# $%5Z\5"&X%e&3Tr(ε )3 5$43X3!&43Y34X3$65Z# e&3""3h5z#$%5z[%3z#_5%!%363#3!63&w\ ZY4 43\%3Z$^%`Z5434e&3""3\ "&34" #5Z$4%[&$%5Z63" %Z#5ZZ&33 63Z!%i# $%5Z^";]#45&%!! P `33=3""36& #%! %""3X3Z$ Z$ $%e&3g#3" 4% ["36;]$ $ 65%$ 0$43&$%"%!]3Y5&4Y X3Z]!^h 4 P5&3Z#543Z;%XY54$3 X]$434";]#45&%!! ["3!3 `3 4% Tr(ε P )gε 5&!!&%\ Z,;-[13Z036;.Zh54j!5XX3!65Z# %43"3!_dY5$_f!3! Z$3! V!"#!,.X./3Y4]13Z/]Y-4,-i`24333c7-83 $% "&!'%# #!(& $ %) " #"%$$* " +%!%3 =3,-43\.3Z/^0_5.1.4,30-1 X-/.5Z3WY]4.X3Z/-,3g5Z0_340_3.Z/ ,3X5.Z1Y511.[,363Y-4-Xf/4313=3,- Z5214-XfZ3^0_5.1.43Z/43,31632W0-1,.X./317-83/7[ Wh54X31gZ521 -\5Z1 0_ g1521,;_dY5/_f136;2Z]052,3X3Z/ ]g3,,3Y34X3/^,-h Z64305XY/363,- 7[8.XY513e23,-Y45Y54/.5Z63,-6]h54X-/.5ZY,-1/.e23-005X56]3Y-463Z1.i0-j 124h-0304./.e23g,304./f43 Z 1-/24-/.5Z63,-63Z1.i0-/.5Z3/6;-2/54.134,316]h54X-/.5Z1 Y,-1/.e233Z0.1-.,,3X3Z/,541e23,3X-/] //3.Z/ 1-63Z1./]631-/24-/.5Z3 343/g1.,-6.430/.5Z6;]052,3X3Z/31/ 0_5.1.3Z54X-,3^,-.Z/34j 763 /.5Z31/ 05Z1/-Z/33/ 3.Z6]Y3Z6-Z/363,-63Z1.i0-/.5Z6]5^12[.3Y-4,3X-/]4.-2 f1,541y52443z64305xy/363,- 1-/24-/.5Zg,;] `365./ 0/43/3,e2;., 6./ /52/3h54X3636]h54X-/.5ZY,-1/.e23,541e23,3X-/] //3.Z/,31<6 63Z1.i0-/.5Z3 2 05Z/4-.43g,304./f437-86]04./ 2ZX-/]4.-2e2.63\.3Z/6;-2/-Z/ 89: ;<=>?<: :@> AB: C<D=>: =B>:<@:;>EB> F:@ C:AE:@ CA GFEB phτi J :FE <:K=:B> L <:G<:BC<: MN I OPQ :> L GD@:< α 3 γ = :> τc = Y 3 RSB (1 α) (1 α) :T:>Q >DA>: UDB;>=DB K<=VEB> f(tr(ε G:<W:> E G<=D<= C: P ); ε P ) f(tr(ε P ); 2 <:BC<: ;DWG>: C:@ CDBB:@ :XG<=W:B>EF:@ CDB> BDA@ C=@GD@DB@ 3 Tr(εP )) = Tr(ε P ) YZ[:@> C[E=FF:A<@ ;: W\W: G<=B;=G: ]A= E EW:B ^=B :> 9EW_<DGDAFD@ I AB ;<=>?<: C: ;<DA=@@E`:Q GE< WEB]A: C: CDBB:@ :XG<=W:B>EF:@ I

128 U U cc/ T T T TT TU33cV 05Z1.6]4347-8e23 05XY/3 13Y4]13Z/-/.5Z10_]X-/.e W0-1j,.X./316;] `343Z6-Z/ 63165ZZ]31h524Z.1Y-4,30_-4`3X3Z/3Z3Z0,2X36.-X-Z/3bZY32/ 13X[,3Y,21^X0X36343Z643,-,.X./36;],-1/.0./]62 1d1/fX33Z0.1-.,,3X3Z/Y2431/ 05Z1/-Z/33/e23γ\ Z/4-.437[8e23γ31/iW33/e23,304./f4363Y,-1/.0./]12[./ 2Z] `3.15/45Y33 05XY/362Y_]Z5XfZ3631-/24-/.5Z63,-63Z1.i0-/.5Z \5Z1 0_5.1.6-Z1 12./36305Z1.6] , 2Z3Y_-13_-2/3j63Z1./] 13X[,34-.15ZZ-[,31.5Z-003Y/3,;.6]3e23 Y,21Z54X-,e2;.,31/6]5^63Z1.i]g03e2.,-63Z1.i0-/.5Z4]12,/36;2Z34]54`-Z.1-/.5Z,50-,33Z/432Z3Y_-13[-113j63Z1./]3/ 3g3 3 V %!%*! %!*% (&%! $ #!&""% " $% "&$ '!*% $%"(& +$&*!(&=3//3_dY5/_f1331/,;.6]3634]54`-Z.1-/.5Z 2Z 05_]43Z/3-\30,3h-./e23X0X _-4`3X3Z/Z5Zj_d6451/-/.e23g5ZZ;-//3.Z/Y-16363Z1.i0-/.5Z12Y]4.3243^<6 7 63=3//3_dY5/_f1331/63Y,213,,3j-211.3Z \30,50-,363,- 1/420/243 Y,21,-Y-4/63Y_-13[-11363Z1./]31/Y3/./33/Y,21.,31/ 6.0.,36363Z1.i34X-.1.,431/3Z]-ZX5.Z1Y511.[,36363Z1.i34/-Z/e23,3X-/]4.-2 /-Z/e2;.,3W.1/32Z3h4-0/.5Z63Y_-13 Z;-Y-1 -//3.Z/ 1-63Z1./]631-/24-/.5Zg [-113j63Z1./]3a316]h54X-/.5Z13Z0.1-.,,3X3Z/,-.11-Z/,.]31^03//3431/420/24-/.5Z3.Z0_-Z`]3,-63Z1./]62 X-/]4.-2g3,,31Z315Z/Y-1 ()*) -!!"#$%&'!(!)*+#-$, -.! 0544],34,-\-,324 63γ^,-6]h54X-/.5ZY,-1/.e23\5,2X]/4.e233 -Z1, _dY5/_f131e23Z521\3Z5Z163h54X2,34g.,h-2/ 733c8 Z2/.,.1-Z/,-43,-/.5Z7/3c8g5Z5[/.3Z/ γ = 1 + γ 0 τ c A 1 γ 0 A 2 ( ρ ρ 0 ) 1 A 2 A 3 1

129 5 γ cc3 U T T T T T TT,-\-,324.Z./.-,363γ3/ 031/ A1gA 23/ 15Z/ A3,31 /45.1Y-4-Xf/4316;-521/3X3Z/ 2/.,.1]31Y /34,314]12,/-/1631X Z3Z0,2X36.-X-Z/.,1\-,3Z/.0.431Y30j 63<g333/ 3<3 733<8 /.\3X3Z/ Z2/.,.1-Z/,- 05Z134\-/.5Z63,-X-113 g5z-[52/./h-0.,3x3z/ ^ γ 0 γ = 1 + γ 0 τ c ( A 1(1 + Tr(ε P )) A 2 Tr(ε P ) 1 A 2 ) a-i`24333<y4]13z/3,;]\5,2/.5z63γ3zh5z0/.5z63,-63z1.i0-/.5zg3z2/.,.1-z/,31 Y-4-Xf/431Y45Y51]1Y-4.Z3/a-X[45Y52,51Y5246]/34X.Z34γ 03/ 1 A 3 τc3,-63z1.i0-/.5z TU33<V\5,2/.5Z63γ -\30 3=5XX Y-4-Xf/43e2365./Y54/34/52/3-YY450_3 Z05Z1.6]4-Z/,;3WY4311.5Z62 04./f4363Y,-1/.0./]g5Z05Z1/-/3e23γ 031/iW]^9-^Y-4/.4631X Z3Z0,2X3j6.-X-Z/g,3132,Y-4-Xf/43,.[4362 px56f,331/ 6;.63Z/.i0-/.5Z-YY,.e2]3^Z5/43Y45[,fX33 Y,-\-,32463τ c3=;31/65z0 0 = τ c ()*) (-&'-'$" " (,%$()!&$,-)- %,)-'$"&--+)+%!"', Z521h-2/43X]6.343 =3//3Y4.133Z05XY/363,;] `3Y513632WY45[,fX31Z2X]4.e231-2We23,1.,31/Y511.[,3e23,-63Z1.i0-/.5Z5[/3Z ;2Z3./]4-/.5ZY5242Z52Y, ],]X3Z/16]Y-113<6 7 3b4gγZ;31/Y-16]iZ.3Y524631\-, Z1.i0-/.5Z12Y] ^<67 0-,02,3 3!52/6]Y-113X3Z/63<6 7gX0X3/4-Z1./5.43X3Z/g.Z ,541 2Z-440/62 /45Y],3\]3g., ;2ZY-1630-,02,gZ5/-XX3Z/ 1.,-\-,324.Z./.-,362Y-131/ "Z: ]A= EW?B: L ρ ρ 0 = Tr(εP ) 1 + Tr(ε P ) I p Y 0

130 U U T T 05Z/.Z2./]63,-6]4.\]3-263,^ cc T 63,.X./ Y-,,.3403Y45[,fX3g5ZY45,5Z`3γY-405Z/.Z2./]3/ 63< Z1.i0-/.5Zg^Y-4/.46;2ZY5.Z/ 0_ [./4-.43X3Z/Y450_363,- 63Z1.i0-/.5Zgc373=3Y45,5Z`3X3Z/ 2]453 13h-./65Z0Y524631\-,324163γ /4f1Y450_31 a3x56f,3e23z521\3z5z1636]04.43y32/ 0/43.XY,]X3Z/]/3,e23, 1521 >23a- -2 0_2/3[42/-,363,-\-, Z/4-.Z/634] _-4`3X3Z/ /4f1.Z_5X5`fZ ]3^03/311-.3/^,- Z343/gY X5634,-\-4.-/.5Z[42/-,363γg >231/ γh54/3x3z/,- X3Z/1Y450_3163,- 1-/24-/.5Z33Y,21g05XX3,30_-4`3X3Z/31/./]4-/.5Z13.Z_5X5`fZ3g.,43e2.34/ 63Y,2163Z5X[ Z1.g1. 03X56f,3h524Z./4-Y.63X3Z/ 631`]5X]/4.31_5X5`fZ3173Z05XY4311.5Z2Z.-W.-,3Y-43W3XY,38g2Z313X-.Z363/3XY1,;_dY5/_f1363Z54X-,./]63,;]052,3X3Z/3 -\5Z165Z /]2ZY-4-Xf/4312YY,]X3Z/-.43g3Z,3\-Z/ n7\5.4,-6.430/.5z6;]052,3x3z/ 3 3c X2,-/.5Z13_324/303Y3Z6-Z/g6-Z1,30-163,;.Z63Z/-/.5Z^2Z3,.X./-/.5Z,.]3^,-h5.1 /-.,,3631Y-1630-,02,1 -iz63/452\342z315,2/.5z-003y/-[,3y524,31],]j 2Z4]12,/-/6-Z1 630-,02,Z;-Y34X.16;5[/3Z.4e2328%6;2Z3.Z63Z/-/.5Z63cµX39524Y52\5.4-2 X5.Z1\]4.i34,;343/63,;-552/63,;] `36-Z1 2Z6], ZZ-[,3gZ521 a-y,-1/.0./]z;]/-z/y, ]3g5z65./.z/ zy5/3z/.3,y,-1/.e23h524z.11-z/, /.5Z63,;]052,3X3Z/Y,-1/.e233bZ.Z/4562./ -,541 n = γn 3 S 5 + 2Z0-643Z5Zj-1150.]7\5.4i` J(σ) 55232Z4,3]e2.\-,3Z/^03,2.63γgX-.16-Z1 γ _-e23Y-1630-,02,gγ N N31/5[/3Z2Y-4.Z/34Y5,-/.5Z,.Z]-.433Z/43,;]/-/.Z./.-, 7ρ 083/,;]/-/ 0 γ 1-/24]7ρ = 1.2ρ ,365ZZ]33WY]4.X3Z/-,3124,3Y45j 2ZY-4-Xf/43 0-4,;]\5j 13,-W34,30-4-0/f ]63,;]052,3X3Z/Y,-1/.e23Z;31/Y-1`0Z-Z/3Z15.,2/.5Z63γ -\30,-63Z1.i0-/.5Zge2. 05Z1/./23,- 634]`,-`312YY,]X3Z/-.43g0_513e23,;5Z0_340_3/ ^,.X./34,3Y,21Y511.[,33 [,fx3g31/3z343/ 05Z134\]33a3\4-.Y45[,fX3\.3Z/6303e23,;5Z.Z/4562./!!!&# 124,3h5Z0/.5ZZ3X3Z/6; >2g,30563],]j 1/420/ Y4]13Z/5Z1.0.e23,e231],]X3Z/1 X3Z/1iZ.1 2/.,.1]6-Z1,- 12./36303//3]/ ]04.\5Z14-Y.63X3Z/,- 1.,.03,;-,`54./_X3e23Z521 -X54Y_33 -\5Z1Y45`4-XX]Y524X56],.134,-,5.6305XY54/X3Z/63,- 521Y4]13Z/5Z1 2Z3\-,.6-/.5Z63Z5/43-,`54./_X3124,-[ X2,-/.5Z1 6305XY4311.5Z1 2Z.-W.-,31 2Z] `3Z2,3 -\30

131 c<6 U T T T T T TT TU33 V 13Y4]13Z/-/.5Z62 04./f4363X56],.1-/.5Z-\ /.5Z -+ ())*!"'-'$"(! 0-,02,15Z/]/]4]-,.1]13Z0_-4`3X3Z/e2-1.1/-/.e23 g 2Z36.104]/.1-/.5Z3Z31Y-03 1d1/fX33 3/3Z/3XY162 0X31.Z51 >26]052Y3,31Y_ _-4`33/636]0_-4`33ZY3/./1.Z04]X3Z/1636]Y,-03X3Z/ 2Z.Z04]X3Z/63.Z6]Y3Z6-Z/3 63,;.Z63Z/324g03e2..Z/4562./ /3XY1gZ;31/Y-1 6]Y,-03X3Z/63,;.Z63Z/3243/ 0_340_3^]e2.,.[434,31d1/fX3g.333^\]4.i34/52/31 1d1/fX33,31 /4-^ >2630-,02,3403/]e2.,.[433=3Y45`4-XX3g-YY3,]452/.Z3>! Y5Z6-Z/^Z5/43X56f,3g.,31/Z] Y45`4-XX34,;-,`54./_X3e2.Y34X3/j >2g63,5.6305XY54/3X3Z/Y4]Y45`4-XX]3054j ]e2-/.5z16;]e2.,.[433z/521,31z =5XX3.,Z;3W.1/3Y-1g ]3Z 1g 34.-,8g31/ b1! _-e23],]X3Z/g-2Y-1 h524z./^,-452/.z3>! n + V,;]/-/63,;],]X3Z/ 05Z1.6]4]-2Y-1 n7,-6]h54x-/.5z02x2,]3521e2; _-4`3X3Z/7ε n8g,- n83/,31 n+18n8 h5z0/.5z16;]/-/63,;],]x3z/7γ3/ γ 0_-XY636]h54X-/.5Z V,;.Z04]X3Z/636]h54X-/.5Z7 ε >!65./ -,54143/524Z34^ >2632W/dY316;.Zh54X-/.5Z -2Y-1 7ε n+1 = ε n + ε n+18g-.z1.e23,31h5z0/.5z16;]/-/ 3=3165ZZ]31 n + 1 ZDWW: F: WE><=EA ;DB@=C< :@> FE@>DGFE@>=]A:Q F[GD>?@: C: ]AE@=@>E>=;=> CA ;E<`:W:B> <:K=:B> =;= B`F=`:E_F:@ >DA@ F:@ :T:>@ C[=B:<>=: I 9[]A=F=_<: C:@ EFD<@ EGG:FDB@ =;= DB ;DBBE> FE CUD<WE>=DB >D>EF: C: F[FW:B> :> F: ;EWG C: ;DB><E=B>: σ = 0I σ ]A= FA= :@> EGGF=]AQ EFD<@ DB ;DBBE> EA@@= ]A:FF: GE<> C: FE CUD<WE>=DB :@> GFE@>=]A: :B ;<=KEB> ]A: Q ε P = ε Sσ DS :@> F: >:B@:A< Q F[=BK:<@: CA >:B@:A< C:@ <E=C:A<@ EI a3y4.z0.y363,- 1.X2,-/.5ZY-4],]X3Z/1iZ.14]1.636-Z _-e23]/-Y3g 2Z/3XY1i0/.h3=36]052Y-`331/43Z62Z] Y-4,- Y4]13Z0363Y,-1/.0./]g,-e23,,3g1.3,,331/ 63,;_.1/5.4362X-/]4.-23.Z6]Y3Z6-Z/362 2 >2.Z62./ V,30_-XY6305Z/4-.Z/37σ n+18e2.]e2.,.[43,3z52\3-2 05Z/4-.Z/3],-1/.e23^,-e23,,331/ 152X.1,;],]X3Z/7σ

132 6;23 3=3/ / ,-452/ ,02, 12.-/3,- -/ / 343/630-,02,34,;343/ /-3/3D= 3/./3-4 >2-, /.563,;.043/63654-/.5 d σ 124,;.043/6305/4-./33 d ε,31/ 2/., /.34,-6.430/.563,;.043/63654-/ /3,,2. 134/ ,- /-.,, /63654-/.5 /-./ < 121-3/ 3/./33 ()) '-,#',-!(!)*-).$-'%! ;-,54./363,5 56,.134,30554/33/ -33=3,-1/5,-1/ /45.1 / /31,2136/-.,3 9,-' /43, n3/,362/ / -,541 n ε 2.,;/-/ n 6305/4-./3σ n,;2.,.43,;/-/ (γ; γ )63,;,3/3/,;.043/63654-/.5 -,.2 εn+13,3, 521-2/6/34.34,- N 2.,.4-/ 523, 05/4-./3σ n+1 /-/ / ,- 1!1/"3ε -, /.516;/-/ n / ;-,54./331/ 1/420/ / #8-1, !1/"3431/3,;,3/ --./ /33/,-1/ ,02,,;-,54./36/34.3,;-, ,-1/.233,30554/33/62 n -1,30-15., /,-1/ /56363.,6/34.3-,541,;/-/6305/4-./362 1!1/" / / -4./4-/.53,-654-/.5,-1/5,-1/.233/ 2/.,.1-/,- $3%/ / ( ),- -,32462 f σ n+1,3 2,/.,.0-/ /5/-,363,;,3/3,-1/.23 λ n+131/ 0-,02, 5/3.4,-654-/ /45.1."3/31 &-05.3 D31/ 0-,02, ,316;/-/63,;,3/ 15/ //3-4/ ()) '+-,#-'$"(!)*-).$-'%! ,.634,3 () *+, /.533/63 5/43-,54./3 521 / //-/ "43,3 1., ,!/.233/,31412,/-/ /,-036-1,30-1 6; , ,33/ / -.,,-312.-/ 2-051/./263 < -.,, /.51-2,../ /, / < 83 /.513,36,-033/ 13,5,; ,-632 / /.51631!/ <83/ =30. ;31/ // ;., ;! - 45,"3-4/.02,.34-30, /.51631!/4.313, / / 0Z[:@>1L1C=<: ;DWW: UDA<B=@ GE<

133 <<! " #$%&'()*+,-*&./*)01+( ! "=>6 >?> 9: 9 ;!< "=: 7B 0 E23"=4E5 0 7? 8! 9! FG 10-/.2363,;-,54./3>! 33# 13413/-/.5

134 < 33 -.,,-33/ 056./.51-2,../31 2/., ,- -,.6-/.563,-452/.3 >! ( ) -. =5/3/3263,- 5/ /5 32/ σ = σ 1 e 1 e 1 733#8 7338,-,../36;,-1/.0./5-05/4-./3,../363 f(σ lim ) = (1 + γ 3 )σlim 1 τ c = 0 -,-1/.0./ ,331/650 σ lim 1 3 = τc 1+ γ 3 3/-, /3-4-,,",3,31 -,324163σ 5/ ,-/ / 1 --,!/.233/ /31 03 / 051/-/3 -,324163γ lim 23, ,-/.31 15/ /4"1 -.,313=31412,/-/1 -,.63/ 5/43-,54./ , ,!/ ,-/ γ σ1 lim σ lim 6 33<63 33<63 3/6 63/ 3 / 3 3 3/3/ 3/3/ /3 / 63# 3# 3# < /3 633/3 / /3 / 33 = "43 -,324163σ,!/.233/ /31 -,324163γ /3-/ lim -- 5/ ,-/ / 1,;052,33/,-1/.23,-,-1/.0./

135 <# ε p = λ p f σ 3, --4- / -, ε p = ε p 1e 1 e 1 + ε p 2e 2 e 2 + ε p 2e 3 e 3, -30 ε p 1 = λ p (1 + γ 3 ) ε p 2 = λ p ( 1 2 γ 3 ) / /63,-654-/.563,- 130/.5 124,-654-/.5,5./26.-,331/ -, ,33/636-/63γ3/ 1;04./ ε p 2 23 ε p = 3 2γ γ / 051/-/3 23 2,,3 3=3, //3 524γ= / -,32463γ ,3,- 130/.563,;0-/.,,5431/3,- εp , ,; , γ,34-54/31/ 51./..,.2-/ 2;3 1.,3,3,3 -/ / 231/4.0/.56-1,- 54-,,; = ,/-/31/ /43./2./.3 / 32/./.3403// /-/-/ /4.-2,-1/ "43,3-4-./ 2.,3 56",3 23 ;31/ -1,30-163,- 1., =336-/ /,; , γ0 -/ ,3,; / > / / 231/4.0/.56-1,- 54-, < 3/-,3-2 3/3-4-,,",3,314-54/1 ε p -41.2,-/ /ε15/321 3/ --,!/.233/ /31 / 051/-/3 p -,324163γ 23, ,-/.315/ /4"1 -.,313=31412,/-/1 -,.63/ 5/43-,54./ , ,!/ ,-/.3 3 γ ε p 2/ε p 1 ε p 2/ε p 1 3< / 3 63< 63< 636# 636# / << 63< < 63< < # 63 < < 63 < <# 3</ # 63# < <3#6/ -41.2,-/ / / --,! /εp 33< = /1 ε p /.233/ / #6/ 63#6 /336/ -,324163γ 0!#"! "!! $ 21 1 / 1.0., 1 12,/-/1, / , ,-/. 1. /-/ , / ,/-/1 Z[:@> EA@@= F: ;E@ GDA< αi N CEB@ F: ;E@ CA WDC?F: C: ^=B :> 9EW_<DGDAFD@ I

136 1 / 2 2-,./-/.13,1 / / 0 -/ 2,-.1 0 / / / , , 1 12,/-/1. /-23 +! #-&'$"(,%-))-.! ())* 0-,02,3,2/ / 2 -,.1..-/ / 2 1.2,-/. 2. /-/ ,-/. -, / /-/. 1/ 2 0-,02, 0 / 2 / , , / 2. / , -2 1 / /63 o 3 -.1!/. 2 1!1/" 21 / -, 1 4 0/2 2 0-,02,, $ /.,.1, -.,,-, -,1- / / / 2 1/.. /,-./ 2 0 1/ -. 2./ 2 1.2,-./ / 2 0 /-0/3 0-/.,, 1/,.1-2 0!,. -2/ 2 / -! /-/. 2 -.,,- 6 2/., /2 1 0-,02,1-3 1 / 2 1,-,- 2 1./2 1 21,. / ,,-,0-/.,, 0, /1 # 3 -.,,- 1/ 11.!., 1/ -20 2, ,-./,. / 2 2,. 0,, 0.3 /., , ,02, "#,,, 1/ /. 1-2,../ / 1., 1!0./. -.1!/. 12,-,2/. 2. 1/ -211.,-. /-/. 0-1/ /1 12, / /. 2 1, /,, 1/,. 3,21, 0 /-0/ /,. / 2 /, / 1-1 // /3 C[FW:B>@ EX=@W><=]A:@ L ]AE><: B&AC@ I Z:FE W?B: L AB BDW_<: >D>EF C:'()(B&AC@ I

137 ()) +,)'-'!'#$%%!"'--! 1 12,/-/1 / 21 1 / ,- 0 0,-,./ 0-,02, /-/ -, 2 21 / / "1 1 1., -2.4 /1 - -"/ 1,- 1 2 ", 3 -,2- / 1 0-,02,1 -!-/ 0 / / -./1 2 γ α 63-2, 13,21 2 /./ 2 1 1/,.11-1,- --/., , / ρ/ρ / Tr(ε )3.1.,-,-/ /./2,-,-/. 12.-/! 333 P γ 0 γ = 1 + γ 0 ( ) A 1 1 τ c A 2 (Tr(ε P )) A / -1, / 1 1/ 0,21 -., 2., -2 -./,0/ 3 -/, 1 12,/-/1 / 21 /-/ 0 1/- 11 /.,, / 2-,./-/.1,.-0/ 0 // ,--,!1 1 12,/-/13 () 0! / 1 /, /-/. / 2 1 2, 1 -, / 1 3 / /-/. 1/ 3 γ µ 1 A 3 Force [N] γ =1.2 γ =1.3 γ =1.5 γ =1.6 Courbe expérimentale Pénétration [µm] 33/ 2 1. /-/ , / 1 -, 2 1 γ /-, 3 /. 2, / / -1, /-, 3,21, , 1 1 / 1./ , /-, 3

138 / -./ 0 12,/-/ /-./.1., 0 / / 2 1 -, / , 2 1 γ / "1,- -, 2 α / - 2, / ,21 0,- -, 2 / 2-0 α 63 / 3# - Y 1/., ,-/. 1 p Y 0. /, ",. / - 2, 1 /, 2, /! -5 2/ / -5 2/-/, / 1 / 2,-,../,-1/.0./,- 1.,.0-1.2, 1./ / ,21, 2 0,, 2, /. -./ - 0 2,. 0 / / / 0 2,2 1./, / /. 1,- 0 -/ , 1 2 -/.-2, /, / ,.2,21. /-/ -1, ,-.,.2 2,- -, 2 γ //-/ -521/,-,. 0 / / ,- 1.,.0-12, / 2. /-/. 1/,21 -., 2 0,, / - 2, 13 12,/-/ 1, / ", / 0 / 12, 1.,.0-/. 1 γ0 > / / , 2 1 γ / 63 / 63 1, ,/-/1 1 / 0 -/ ,- 12, 1 1.2,-/ /-. / 2 - / ( ) /, 1 0- / 1 1./ / 2 1-0, 1 -, 2 1 γ0 12.-/ 1! 30 / 3 3 #., /. / / ,./-/ ,21 -',, 1 / / 0 -/. 2,-5 2/ / / / 1./ 1. 2,, -!-/ ,21 0-0, /3#3 4 /, 1.0-/. 1 -./ /,-, / - 2, 1 // / 0 1, , 1, / 2/ - -/,- 2 1-/ ,-./,. / /-./ -1, , ", "! $ 21 1 / 0 /, , /.1-/ / /.,, ,2.--/ 2-./ 0/.1 0 / -1, ,-/ ,- / 1, /1.13 $ 21-1,21 0./ 2 -,./ //-/ -,.1 2, ,-/ ", / 1, 1 12,/-/1 / 21 1 / 2-,./-/.1 / / "1,../13,1..2 / 0 -/ 2,-.1 0 / / 2 2, -521/ / 1 0 1/-/ 1 1 / 1-1, ",. / - 2, 1 / / /,-,,2 -, 1/, ,/-/1 / / / - /2 1, / "1 // 2 / - 0/

139 3!"#$%&'#()*+,-.!"#$%&'#()*+,=. 01 / 29: ; 97 ;7 < !"#$%&'#()*+,Ṅ >?@ABCDCECF B IJ KL KM nopqrqostuvrqwxyuz{ }~ OPQRSTUTVTW KI MI < S Z[ \] \^ ^Z \Z YSRSXS _àbcb`defgbfhijklm QS / 1 1.2, 1 1./ / γ0 γ 3 0 γ / γ , /. 1 / /13 / 0 1/-/ 2,-5 2/, / / / ,-./ ,

140 $ $ $!"# $%&'%()*)+ ),-+*(./0+ 10,- +(,( 0-2&%'30 0* 104+(5 6 -*(&4! 7 8 9: ; < = >?@A B 8C;D CE: F D G H H H J G HK G L K A KM N A@@ H O ; 89=: ;9; < 8C NL P = GH JO G JO GJ O QA =S T J >?@A B 8C;D NO J

141 S!"# $ ' () %'%( % &* -./01 ++! -./ (& % %, 01 -./01 (+&+ +'+ (('!)*, % & 23 = G E(1 ν) C11 D G 6 = (1 + ν)(1 2ν) E G = GH J E B = G HK O 2(1 + KM N ν) HHNJ 8 3(1 2ν) 9: F@ G@GG S < BFBI JKLMNOPQRSR BFBEBFBGBFBH TUVWXY BFB Z[\UVWXY BCBDCDBECE 789:;<=>?7@A 23 = HH ρ G B GH M K A ] JK A KM N 89=: T K A D ^ JK A # K AJ L @ _D GH J G HK C G`G H H JJ @ J6 O JO D G GJ H J

142 S! " #$" #%& "& 23 ) G',HK) ')R)@()*''@(+@ ', (+@ M)() K,A)](JK,A) KM(,'N) H,)'@ G^G)() T) ;9; <* 8C-: T) ),),)GH,)H,J)@)@ K,A)D ) ),) (JK,A) ')R)@()*''@(+@ JK@'@()@QJ L,'@ H,)'@ HHNJ)) HJ,),) <* L-; O),() S JA.,) )() ν(@ AGG)() K,A)G)@, N)) H', ) ')R)@ JN)(G@)@ (),'@() H'@)() 8-: F@ H), ) K'^ /= I2F36 '@(.,) GJ,(),JPJ,)@)D,' +'@ ),J')@ H,?,') ' 8 -C:5@))D 02F1()@QJ() JK@'@() O),,)() ',) '(J H,)) AG)@'@() H,'H''@('@(+) S _( G'()()2'@A )),() G),) G,) ) JK@'@() H',,'@`,) H',,() G',HK)D ) G',HK) '@D, ()('@@J) +JO''@() G'(.)() '() H,'H,JJ JN) O) 'GH',)G)@ J'HN) HHJG)@,)( 'GH',)G)@D )) 'GH) H),G),() OJ,Q), H,))@ +'@() ) G',HK) 'GG) GJ,() )4())!" &,/*(&4 1/ 2&1/,0 %)1/(* 10,- +(,(80-2&%' (*) 0' H,J)@'@ (),J')@ JK@'@() )()@QJ L K) H,)'@) L K) )GHJ,,) T) JK@'@'@ JJ H,JH,J )@ '','@ O)9MO) T):'K O) ) GJ,)( T',',)()*KMN)()

143 S- 9] 3IT6 O) ) (,)() A)() (+J() )H JK@'@() ) () G',HK)/9@6<'@,D 1'@ JJ()@QJ ' K) H,)'@) K) H,)) I) T)(H'P)^HJ,G)@),)H,J)@J KJGN)G)@)@ QA,) =3KN) M@(,)() JK@'@D@ ;9 ± GG K)() S=; ± ; HJ(@ Q@(+JO), ') KGN) O) '@)@O,'@@)G)@*D ) HJ(@ ',)() '), P'@ L H@) T H)))@) () M@(,)() A,HK) ) A)() 'G) ) M@(,)() H,)(+,)() N H),G) K +JK@'@ F@ H) O)()^'K'@() T) HM,'HKM) A,HK)))@) M@(,) ))@ HM,'HKM) T,) N) K,A)G)@ HHNJ, T) )() H H,)() '@,@) HM,'HKM)) 'KJ() H,)(+,) +()() '()^ ) M@(,)() ', L H')@ ),3) H' '@ '@(),) G)@ '@ O) A,HK)9'@ )@'@)@,) )()^ H' GJN)D 'GG) ',) () ) ) H,) T) HM,'HKM)) '@ '@D ',@) '@,@(),), M@(,)(),O),( A,HK)D N +JK ) ') ) P H(,))G)@, )GHJ,,) K G, ) )() T) M@(,)() H@)(HJ)(@ J'@@A)( (H'P H),G)(+JO), )GHJ,,) L N))) K J +JK@'@ HM,'HKM) 'KJ))@) )@,) T) GJN)! K,A)G)@D HHNJ H, ) (+@ 'GH,G)@,)GH(+K)('@ H,)'@) '@,7J)D),@G) O),)G)@ L +JK@'@ T) JK@'@'@ JJ 'G MA) O@ A))@()^ G'@J))@ H,)) O))() H,, K )GH " +AG)@'@() H@)(HJ)),JJ) O))() 6()'() L #]4N+L ; # O), H),D H H)@)),J() T) 4 L ; #] T G@)@) H'@) )GHJ,,)) K),GN) T H,)'@))@),)$KJ),)H,)@( H', H,'A,)O)G)@ ) = KN) H,G.,)() JK@'@ ) K,A)G)@ J %H,.(JK,A)D ',() ),),'O) '),(+@) +JK@'@ A@A)() HM,'HKM)D(+' '@) '@,@() +)^,,) ) P)@),),), +)GA)() H@) J +JK@'@3) P)@ G@ HJ,HKJ,)() K@)()()^ &'( )*+,)-.// )126(20 )(4 72 / /1 5-(+:1; ,25 ( )+.,+. )(4 2,2 )/74 -*6+,< 40(0.871= >?3,@ /1 2,; 61 )+1441 A1/0=

144 SS 23 =4 @) H,)) I) P' G) ) M@(,)() H@),)@ +JK@'@ )'@ ) AJ@J,,) F@ ) N,))() +)@O)'HH)() +) )() H@))@ (JO)'HH@ T) JK@'@ M@(,)D G ' 'J) ) '@,@) L )GHJ,,)D ' '@,J)@ H)(N) F@ OJ,Q) L G,'H),''H) H,J)@)() +()(+@ G@ +K'G'AJ@JJ() ) N)N)(N))@) H,'Q T) H),) G@')@ H),H')@ A')G)@ F@ '@) )H)@6 L,J(,) ) (@,), ) H',',() JK@'@ G)@J )GH() G@)@() ) )GHJ,,)(@ M)() K,A)6 ) G)@ )) P'@D ) JK@'@ S L 9 '@(JH',O(),)'),O) G,'H),''H) H, G@ G),)() T ()@J G,''HN)() JK@'@),JJ) H,''@3)) GJK'()D N))@ G@J,'A)D '@) H'@A), ) JK@'@(@ N()() J,)() ()@J '@@9 ) JK@'@ ')@/,)H ')@1D '@ G'@()@)/,)H H()@)1 N() T',N+ ')@D ', ) JK@'@'@ G`G)()@J N) ) ('H),()^ "''@(H')(+@) N()F@ H) ', HH,'K) N()()()@J O,) N ),O)@ L J'@@), ()@J() JK@'@D

145 S -; 5K- ;; 9; ; -; E; S 5K ; S -; ; S; -; 5K C S ; 5K ; 5K E S 0o5K *,)'@ *@) )GHJ,,)() )GH() 8>*: HHNJ) 8<*: (HJ) ) 8#: K 8 o3: G@)@ 8G@: = 43'@('@() H,)'@) )GHJ,,) HHNJ) ^ M@(,)() )(@ H,)) I) ''@ ) GJ@A)('@'@ H) P,) O,), '@@)G)@ ()@J)@ K@A)@ ) GJK'() N) H,'H','@3+) 4T) O'@ ('HJ '@),'O), 'H)() '@(6 N() G),)H)@ ) '@ O@) N()()@)()()@J HJ,),) L-9 AG 3 D Q@() H'O', G),), 5K 9 C S; -; 4()@J(+JK@'@() ) G',HK)()@QJ N()()()@J H P) N)-- AG 3 D Q@() H',O', G),), ()@J () 0' GJ@A)(),,'G'GJK@)/3?I,31D()()@J-C AG 3 D )(+JK@'/32?5F?1D()()@J C,'G'P',G) T) G'()'HJ,',) ) AG 3 K') O@ " ' )(N) '@P(+@ JK@'@ '@ )3'GH)6)@() JK),,)GH() ()@J( N()D ' ) JK@'@ ')@ )@,P)( N() F@,4'))@) +JK6 G'@()@) N) ) GJ@A) ),'G'P',G)D'@ '@)@( KN) '@(.,)()^ JK), H,. 4' F@ )@( H',) H', Q@(),)@) )), ) +4' O@ F@ GJ@A))@ H,)," ) )N) N) ()^ H', H,)G),(N),P)) ) )(N) H'@AJ3) GJ@A)(J),G@)@ +@),O), )N) ()@J() T) +JK@'@ O,) T()@J() K@() ) N()) G),J) T+@),() AG G),))()±0.005 ) =-,JG) G),)) ),J() 3 )J), ) G',HK)()@QJ) JK@'@() ) ' K) H,)'@) K) )GHJ,,) F@ OJ,Q) )@ N) () JK@'@ JJ 'G H,)'@) J)OJ)D H ()@Q'@ ) GH',@)/@ +JK@'@ 9) H()@QJ N) +JK@'@ E1 F@ '@) H N) ',( 'GH,)@,) )- _() ' '@ ()@Q'@D N))@ O) J,,)3)H)@(@D'@ '@(J,), O) ),@),J),O) ),J')@, ) JK@'@ )-)@,'@() H,J)@),)D('@ ()@J) H,', H J)OJ) N) ))() ) G',HK) ) ('@ H') N),. ) O),() G),J) H, ''@,)G)@ ()@Q'@ &,;;72 ;120 ())1/ +,;,,+;1=

146 S; 0o5K G^G) 5,,)P -E-; 5K- -E; ==_ =;_ -;=; -S -; -E CS_ --_ ;C_ 5K S -S; -E9_ 5K --; -C -E --C E_ - E_ 5K ; - 9_ - 9_ 5K E -=;_ SS_ 5K 9 -SE - C_ C E=_ =-4 J() G),)()()@J H, ''@, ) JK@'@() )()@6,J))() QJ) T) JK@'@ )-'@ JA.,)G)@,),J T),()@Q'@,)H)O) '@('@ H')@))G)@,JOJ) ) JK@'@ @),,'A), '@ F@ H), ) K'^() )) )K@N)5@) )D'@ K),K) L JO), +JO''@() H,'H,JJ JN)() ) G',HK) H,G.,) ) G'(Q),() O) ()@Q'@ F,D ', ( H,')(+@()@'@ ) G',HK) T )'@ )@(('@ L P'@ H,', H')@))G)@ )@) O),( K),K'@ L G),),0J@G'@D J) 'GG) ()@Q'@)^HJ,G)@6 ) G',HK) ' +@()@),) L AG)@), O),( G'() JN) G),)) G),JD ) )J),'@ GH)G)@ )@(@)D H,',) T,J,'@( G'() JN)() JK@'@ )@, 'GH)(+,) HKJ@'G.@)/J(),P)() JK@'@D Q,),6 G),) PN)D)1D L,JO), ) G'(),J(3)) )()O,(+), +J@), L N) G() ()@J() JK@'@ HJ@J,'@)) )J))@ G'M)@@) I), 'OK()-µ, KN) JK@'@ '@,JJ)(@() '@),'@@)G)@ )() O),,),P)()(N) T,'@() ) H'@) JJ) JK@'@ '('N) 7@) G'(.)( JG'JT)('@@J))^HJ,G)@) GJK'() H,(JK,A)) GJK'() H, G),) '@@)() H),,),,(),( M.G) T),J')@ '@ H,J)@J QA,) ) HKJ@'G.@) O)@@ G),)0' O'@(J4L (J() ()@Q'@() ) G',HK) T+) N G.@) )() H,', G'(),J(() JK@'@ ) G'@()@QJ Q,'@,PN)) '@,,)()(G@),,(),() +JK@'@)('@ '@( L '6JO), ) T) G'(),J((+@ JK@'@ H'@ GH',@) N) )?1 /( 4,+019,2 )170 + (/ (/. +(0., ;(0 +.(7 (*( )+,) ; 5( )+, //14 61 /( 4./.51 (;,+) ( +(25-.+ )(+0.1//1; ),0120.1/ (0.,29 / ,6,5(/.871 0(20 2,+;(/=

147 SE H P,A) )) )() '@ ),' ) L +@)@)(),A'J() +) )(),P)D'@ +)@( ) L N+ ' P))@,'@() P',) HJ@J,'@ % Q@D ) L G), +J,() G'(),J( )@,) ) JK@'@ ) H) ) G'@()@QJ T+JO''@( G'(),J(( P',) O,J() G),) H),J), ),J F@')@ ',,)'@ O@)" 1 /= E[GPa] = ρ ρ Module réduit [GPa] Densification [%] =;45O''@( G'() JN),J(() P'@'@() JK@'@() ) G',HK))@ ),()@Q'@ F@ '@) N) ) G'(),J(,' O) ()@Q'@ () +JK@'@ 9, T),,)(+@),() QA,)@ (H),'@ N)() G),) )(),J()*'@) <,G(K 89=:D H,J)@J QA,) =-D'@ H) J,,)" ρ 0 B sat 3 B 0 ρ sat 2 9'@ HH') N) ()@Q'@() ) G',HK),J))()- _D N)" B sat 1.8 B 0 /=S1 /=-1

148 S9 O', 'GH) ) O,'@() ')R)@()*''@ P',@) H, K ) ' 8C-:D QA,) =S5@ H,)@@ ν0 = 0.16) νsat D'@ ' L " = 0.21 Esat = B sat (1 2ν sat )(1 2ν0 2) E0 B 0 F,D ),HH',)@,) ) G'(),J( G),J, ) +JK@'@ H()@QJ) ) (1 2ν 0 /=1 )(1 2νsat) G),J, +JK@'@(),JPJ,)@))() E ± D -F@ '@)('@ N)DGA,J ') J) H,'''))^HJ,G)@D ),J')@ '@,. 'KJ,)@D L P' NO)G)@) N@O)G)@ O) )('@@J))^,)() J,,)!" &48,/+(&4 T) H,'H,JJ JN)() ) G',HK) '@(JH)@(@)() ()@Q'@ )/JN)) HN)1 ) H, +JK@'@*, ) () )J) JK@'@() ),() G',HK)()@QJ)@ H,)) I)D@' @J,))@,) ) G'(),J(() ) G',HK)) ()@Q'@ 0',J '@ 'KJ,)@ O) NO)G)@ N) N@O)G)@ 3),J ',)@ )H)@(@(+@) H,'''))^HJ,G)@ H',')@,(),J H Q) H) )G) N H,'G))) '@), L HHN), ) H,''') H', J,J,), +J,'A)() '@() ) G',HK)/O',3KH,) 91)@) )@ JK@'@() ) H, G,'H),''H) G@/H',')@, ()@Q6 +JK@'@1) H, H),''H) I,'@/) P',@, O,'@ ')R)@()*''@)D '@@@ ()@Q'@D +AG)@'@() G'() J6 N)1

149 SC

150 ) KH,) 9) CD@' H,'''))^HJ,G)@ H,))( 'GH',)G)@ H, HH,'K) G',HK)) HN)0' () ),)'@(@ KH,) L +(H'@() )) HH,'K) L() O),,) ''('N) 'GH''@ H 'GH)^) 0' G'@,'@ H,'J(,))^HJ,G)@) G),) ')() L() O),,) H),''HN) H),G)6 ()@J( GJ,0' H) H`,) ) H()(JP 0' H,'H''@ +'@(+@) '@(),,) 2 )) N) +'@3K,'G) 'GG) H),''HN) T+(J)(+), 8 -=D S '@ 8 S D S-D SS: 'GG) '@(),,) O),,)() +) H )) )K@N) H', N)9'A) ' 8 S :'@ J J(), H', ()@Q'@,,,) ') ',(+'@5 3+)@ G`G) ''@(@() ',)*,J)GG)@D3') ' 8 SS:'@)GH'MJ )K@N) J,)@(),J,),D L +()()9G D() 2+ G'(Q'@ ')(,J) O,)^() O),,) G@'J '6A)3)H)@(@D 'GG) KH,) H'@() O) ( )() HKM)@( 4A) G,'GJ@N)()(JP',G'@0',) K'^() )) '@(),,) GH,)J()3,3+/H,)^)GH) +'@3,3+@+) H)^P(+,) '@(),,) JJ G'OJ H, P N),'O) ) 'GG),) +'@ P)G)@(@ () O),,) J '@)@@() ) '))() O@D() (,)D().,)1 3)) J() JJ,JJ))@ '','@ O) >)K(:,(') <) J,)

151 " +,-./,0,123-0,-. #$%&'()$%&'%* 23! 49H),) G@')@, P) O),,) )@,),(+@ ' '@/O),1) ),()- AP #8"# -%-8*)%(+-*(&4 '-% 2(8%&+'08*%&+8&'( ,- 104+(68-*(&4 1:/470%%0 +(,(8&+&1&8-,8(./0 ; < -= >-- T QA,) H,J)@)()^ H),) JK@'@() O),,) ' /*@^D9@6<'@ )@,) H),)/O),1 <1 ),()- A, P), T+@() JJ G),J +@()@D +,)/',@A)1D JJ G),J)@ '@ 5@,) S ; ) G 1 D'@(@A) N,) ",A))@O)'HH)) O))@,)-; ) G 1 %O) +AG)@'@() ()@JD)) )(J) JA.,)G)@ O), ) J6 H', P',@ H(+@),H,J'@ GH',@) ^ )@',() )) G 1 O,) T(J@'G@'@() ) (,)(+@) )'@ ) ), >'@) ' 8 S:D(@ J() ; O),,)() H',@,() )('HJ +HH))@ L G H,)@() 1) O,'@ ')O)(J'J) ) O),,) GHN@ L P'() (+@ 'D > >@) ' 8 S;: L ; G 1) +,)@ ^ () )'^MA.@) H'@@ ' N+)@ 'D G'@ H,))G)@,)H,J)@O)(()A,J H'MGJ,'@( )(J) O), ) ',N) ()@J AG)@)3) HKJ@'G.@)),J L +AG)@'@() +@6

152 @() J) ^ )@',() E G 3))(),@.,)) H,9K,G) ' 8 SE:) >'@) ' 8 S: 'GG) JNO)@( H ) G',HK) F@(@A) '() ^ )@',() 9C G 1 8 S: 'GG) 4 C 1() L G )9'@ JO''@ O) G)@'@() H,O) J))@,) - C ) G H )@O) H),G)()(@A),()^ JH)G)@ L = ) G 1 > >@) ' 8 C; H),G)(+) O), G 1 3) (J'@O''@() 'GG)()H J,)H)O)G)@ L =; D S D ) G 1)@O,'@ J(), ) >'@) ' 8 S:,)@ ) H L G 1) L =; G L() 1 O,'@(+J'@A'@() ())H.) 3) 2(,J) O,)^/O', QA,) %O) +AG)@'@() -1 ()@JD +@)@J,)O)( H N) )),' ', 2 ( H 3(J,' I)@ +@)@J,)O)(+@ H ' H GH)G)@ ',,J) )G) L H'H'@(+'), 'JD )) O,'@(+@)@J() H,J O),,) 3 ; < -= - >-- 3'GG) ) O),,)() H,JJ()GG)@(@ ( K),K'@ L ') H),) ), O),,) 'GG) G@( ('N) ''6 ),))()^ '@(J,J3'GG)(@ H,JJ()@D '@ 'GG)@) L JG@), ('@ +@),H,J'@) H,))' '@,'O),J)D A,'H) " N HH, ; L L G 1 2 3)H)@(@D 'GH'@))@ )G)@() (JP',G'@ )@), ) G'()() H(+@6 O,'@ 'J () ) L S 25@) ) H', H,', H 'GG)('@ G), 9) H') ) H,'.G)() (JA)( H ', 2 ( H )D)@,'@() L G 1 D ),.(R) 'GH,), 2(. ', GH',@) '@D H) HH',), H),G)@() T) H),) 2 )()A,J()()@Q'@()()^ O),,) JK@'@() G`G) 'GH''@ G@( ''('N) H', 4 'J) L 3) 2 GJK'()() P ') ') L +JK))( G,'@ &'( ,;),4.0.,2 5-.;.871 5,;)/ )+, // /.51= 2 (.0 /3(, ,;),4 4 (/5(/.24,7 (/5(/.2, (7 + 41( ( ), ( /.(.4,24.< < ( = 1/( 120+(21 /3())(+.0.,2 63, *: / / (0,; /.5.7;./4 4,20 ())1/ 4, *: 214 2,2<),20(204= 4 2 )170 (/,+4 5/(441+ / ( (0 :, , ,250.,2 61 /17+ 2,; +1 4 n 63, *: 214 ),20(204= n

153 KJGN) 8; :(),,) O),,) '6 (N) ),J) J',)() ) G',HK)/QA,) T+(6 (+'^MA.@) +1 E /11 ('@(+'@ (JH'MGJ,'@(,J) H, +J),'@),J( O),,)

154 S #8"5 0%%0 +(,(8&+&1&8-,8(./0 104+(6) 0*,/2( ,:(&4 3%&20 0' N) G,'GJ,N) G`G)() ) ) L ),D(@ () O),,) ''('N)D (JA)( H()(JP J(@ ) G',HK)3)) H),G)(),@H'), O),,) N) J H',(J),G@), '() 'GH',)G)@() GJK'() HHNJ) ) G',HK) ; >- J,@ '@ J3) O)),)(J, H, N@N) " N@N) H,@HD n DN,J,) )() +',)) '@ N@N) GD l D N,J,) P',G)() )@), 4 'GH,)@,) ) n 1 N@N) GA@JN)D m D N,J,) +',)@'@ H)() +',6 T) 'GH,)@,) l) H@D l ms D N,J,) ) H@() +J),'@ ) JA L ±1/2 T),@'@'@)@ 'GG@(+O', ), J),'@ H),Q) J, G l = 213'GG) /7', H,)@(,) 'J O),(@) ', m /{ 2; 1; 0; 1; 2}1D (( J,)@)5) H)O)@`,)(OJ))@- A,'H)D t2g) eg D )'@ ), MGJ,)! QA,) '@() G`G) +)@)() J@),A))@ ' KGH )^J,), '@ H,J)@ L T H,J)@)(+,) @),'@ HH)J)KGH,@DN H) `,)'.(,N)' J,.(,N) )'@,,)(,3) H',) )() H,) (JAJ@),))@), )O),)@ T+) KGH'.(,N) ) )',) t2g)(j) )',) eg D ', N+@ KGH J,.(,N) )( KGH,@, J),'@, ),JH),) ) +'@D('@ G'(Q) O,'@ ' )( KGH,@ JJ J) 8 S9:),)H,J)@J) ' T QA,) H,J)@) ) T HKMN) N@N) ') L KN) J),'@(+@ O)), H,'H,),6 +'@3,3+ 'G KGH'.(,N)3)(A,GG) >'14,+.0(/14 eg 4,20 41/,2 /14 ( ) +1 (/, /14,+.0(/14 t2g 4,20 o ( 14= 2 )(+/1 63,+.0(/14 6 : = 0(./ ( : ,2 21+:.19 /1 6 40(./.41+ (7:; :.1=

155 23 S4 ) T)()^ H,J)@))@ +@)@J Dq( KGH,@))@',('@@J) ^) '@ (G)@'@@J H, ) N N@Q) 'O)@)() '@ O) '@)@O,'@@)G)@ H,G.,)B 'GN)()3,3+ HKJ@'G.@)() G@))@)9) L +',H'@(+@ HK''@D +J@),A) A')() 3+ T) +'@D) N) H,J)@J H, QA,) D('@@)@ ) L() O AG)@),*',,)O)@, L '@ J P'@(G)@D +'@)^J O(H), '@ J@),A) H,( ) +'@() H),() T+@() H,)G), J,)@ ) H,') '@))@ +JG'@(+@ HK''@ H),G)@ L '@ J)^J L '@ J P'@(G)@ " +) HKJ@'G.@)() G@))@) @O)^(+J@),A)(),)@)() O,'@() +'@ '@(J,JD ', P,JN)@)() HK''@ JG H, G@))@) O,))) 3+) H,@H) N H,J() L +'@(, H,)'@(@ ))^HJ6 K,A)G)@)@)@G)(G@ '@)@@ () GH,)J()3,3+)@ )'.(,N) T',N) 'GH,)'@D ) ( )'HJ H, +'@3K,'G) (G@)D ) 'G) J ^ 'GG)() +'.(,) /74 )+ 5.4 ;1209?8 140 :(/ ;1 61 /( (/ :() ( / /14,+.0(/14 t2g 10 4,74 / (;) 5+.40(//.2= e g / 43(:.0 61 /3 0( )/74 ( :.1=?(24 /1 5(4 61 /( :7+1 =9./ 43(:.0 61 /3 0(0 41/,2 /( (/17+ 61,7 2 E 4 T 2 Dq/B =

Les gouttes enrobées

Les gouttes enrobées Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model.

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Mitra Ahmadi, Lucie Sancey, Arnaud Briat, Laurent Riou, Didier Boturyn,

Διαβάστε περισσότερα

SPFC: a tool to improve water management and hay production in the Crau region

SPFC: a tool to improve water management and hay production in the Crau region SPFC: a tool to improve water management and hay production in the Crau region J.C. Mailhol, A. Merot To cite this version: J.C. Mailhol, A. Merot. SPFC: a tool to improve water management and hay production

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

A Convolutional Neural Network Approach for Objective Video Quality Assessment

A Convolutional Neural Network Approach for Objective Video Quality Assessment A Convolutional Neural Network Approach for Objective Video Quality Assessment Patrick Le Callet, Christian Viard-Gaudin, Dominique Barba To cite this version: Patrick Le Callet, Christian Viard-Gaudin,

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena Koussou Mian Oudanang To cite this version: Koussou Mian Oudanang. DYNAMICS OF CHANGE WITHIN

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

Jie He. To cite this version: HAL Id: halshs https://halshs.archives-ouvertes.fr/halshs

Jie He. To cite this version: HAL Id: halshs https://halshs.archives-ouvertes.fr/halshs Pollution haven hypothesis and Environmental impacts of foreign direct investment: The Case of Industrial Emission of Sulfur Dioxide (SO2) in Chinese provinces Jie He To cite this version: Jie He. Pollution

Διαβάστε περισσότερα

Inflation Bias after the Euro: Evidence from the UK and Italy

Inflation Bias after the Euro: Evidence from the UK and Italy Inflation Bias after the Euro: Evidence from the UK and Italy Pasquale Scaramozzino, Giancarlo Marini, Alessandro Piergallini To cite this version: Pasquale Scaramozzino, Giancarlo Marini, Alessandro Piergallini.

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure Hervé Rivano To cite this version: Hervé Rivano. Algorithmique et télécommunications

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

Langages dédiés au développement de services de communications

Langages dédiés au développement de services de communications Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications

Διαβάστε περισσότερα

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires Aldo Decio Pourchet To cite this version: Aldo Decio Pourchet. Développement

Διαβάστε περισσότερα

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix algeriensis NRRL B-24137 and Biochemical Characterization of Two Pyrrothine N-Acyltransferases in This Extract.

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,

Διαβάστε περισσότερα

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development Isabelle Buisson, Ronan Le Bouffant, Mélinée Futel, Jean-François Riou, Muriel Umbhauer To cite this version:

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

Modélisation de la réaction d alkylation du motif zinc-thiolate

Modélisation de la réaction d alkylation du motif zinc-thiolate Modélisation de la réaction d alkylation du motif zinc-thiolate Delphine Picot To cite this version: Delphine Picot. Modélisation de la réaction d alkylation du motif zinc-thiolate. Chimie. Ecole Polytechnique

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

!  #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $ [ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

! #! & 0/! ).#! 71 1&$ -+ # &>  %+# 1 2$ "#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3

Διαβάστε περισσότερα

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

!! # $ % & ' ( !  # '' # $ # #  %( *++* !"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L )

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L ) Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L. 288-1) Guillaume Nicolas To cite this version: Guillaume Nicolas. Des données anatomiques

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1 ! " " #$%&'(&) *+,-. /01 34 564784 37964 :4 ; ?@ 34 E156F57E1 GHE H567JF4 H5F:7H4 K06 LF37:4 M4N45F415 30 6PG34 0F EK0 F17JF4415 R465071 K6ES3P4 :4 E156F57E1 3M07:4 :4 4 4F3 7156F415 4 E15 6H9H3H 7KE7S34

Διαβάστε περισσότερα

Global excess liquidity and asset prices in emerging countries: a pvar approach

Global excess liquidity and asset prices in emerging countries: a pvar approach Global excess liquidity and asset prices in emerging countries: a pvar approach Sophie Brana, Marie-Louise Djibenou, Stéphanie Prat To cite this version: Sophie Brana, Marie-Louise Djibenou, Stéphanie

Διαβάστε περισσότερα

&+, + -!+. " #$$% & # #'( # ) *

&+, + -!+.  #$$% & # #'( # ) * ! &+,+-!+. "#$$%&##'( 0 1 2 #$$% 3! 4 4 &5 -! 3 &-! 4 &5 -!63 &-!6 41 7+ 8 " : 4 ; 4( & 4 # < 4/45 45 4 &- 4= 4 6 % 8 " 8 ' : "#$$%&/#'( > #$$% 8 8 4! " 4 3!??? - "#$$%&=#'( ( #..1@+A >+." (% &+.*+1+.B1.1>6+!#$$=A#$$%(%

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation J. Kron, Michel Bellet, Andreas Ludwig, Bjorn Pustal, Joachim Wendt,

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

!"# $%&'"()"%'*& # $"%)"#"+(#,'(*,'+*'- *'%,$2%&"%%&,-%&'-,--"%,-$,'-"##%&''3),'4'+%-"-"%&'-,-$ %&'('1'' $"-%' $*,'+*'.

!# $%&'()%'*& # $%)#+(#,'(*,'+*'- *'%,$2%&%%&,-%&'-,--%,-$,'-##%&''3),'4'+%--%&'-,-$ %&'('1'' $-%' $*,'+*'. !"# $%&'"()"%'*& # $"%)"#"+(#,'(*,'+*'- $.."+"+/01'+,'*% *'%,$2%&"%%&,-%&'-,--"%,-$,'-"##%&''3),'4'+%-"-"%&'-,-$ %&'('1'' $"-%' $*,'+*'. $..,4) 5) '"( $'"%4'+% &,-,-% *'%,$2%&"%6'&"!''"(%&,-%&'-,-"+(%&"%,+

Διαβάστε περισσότερα

Discouraging abusive behavior in privacy-preserving decentralized online social networks

Discouraging abusive behavior in privacy-preserving decentralized online social networks Discouraging abusive behavior in privacy-preserving decentralized online social networks Álvaro García-Recuero To cite this version: Álvaro García-Recuero. Discouraging abusive behavior in privacy-preserving

Διαβάστε περισσότερα

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

! " #$ (!$ )* ' & )* # & # & ' +, #

!  #$ (!$ )* ' & )* # & # & ' +, # ! " #$ %%%$&$' %$($% (!$ )* ' & )* # & # & ' +, # $ $!,$$ ' " (!!-!.$-/001 # #2 )!$!$34!$ )$5%$)3' ) 3/001 6$ 3&$ '(5.07808.98: 23*+$3;'$3;',;.8/ *' * $

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

! " #! $ %! & & $ &%!

!  #! $ %! & & $ &%! !" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

Microcredit: an answer to the gender problem in funding?

Microcredit: an answer to the gender problem in funding? Microcredit: an answer to the gender problem in funding? Sophie Brana To cite this version: Sophie Brana. Microcredit: an answer to the gender problem in funding?. CR10/EFI08. 2008. HL Id:

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers

Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers

Διαβάστε περισσότερα

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1 ! " #$ # %$ & ' ( ) *+, ( -+./0123 045067/812 15 96:4; 82 /178/? = 1@4> 82/01@A74; B824= 6/87 60/8567/; C 71 04D47/10; C 82/1 /

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

&,'-- #- > #'$,/'3&)##3!0'0#!0#/# 0'0';&'$8 ''#&$'!&0-##-#;-# B !"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#

Διαβάστε περισσότερα

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon Natalia Egorova To cite this version: Natalia Egorova. Spectres

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

# $" $ %&&'( ) " %**( " $ ' * %'*('+, '" $ ' " - &&'

# $ $ %&&'( )  %**(  $ ' * %'*('+, ' $ '  - &&' ! # %&&'( ) %**( ' * %'*(', ' -., ' - &&' & & / 0 / 12*34.5216781 0 // )18*9&7*:4 0 /0 2;!2*)*481'529*1' 0 0 1

Διαβάστε περισσότερα

! "! #" # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! '

! ! # # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! ' ! "! #" # $ #% & '#()!!*$( & +( $#!,-'(. $ ), ( )* /0 1234 $ 5- (6 7# 8,6 - - /& 4&! ' 6,!(*$(- (,('& 9 !" # $% $% $$!" #$ # % # &'&&&&&'& &() #* $$ & '' $( $) * $ +"&,-&!" +$ )$ " ## +," )- )) ## &. ''

Διαβάστε περισσότερα

La naissance de la cohomologie des groupes

La naissance de la cohomologie des groupes La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.

Διαβάστε περισσότερα

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

!  # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ ! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+ &) + ) &) $, - &+ $ " % +$ ". # " " (% +/ ". 0 + 0 1 +! 1 $ 2 1 &3 # 2 45 &.6#4 2 7$ 2 2 2! $/, # 8 ! "#" $% & '( %! %! # '%! % " "#" $% % )% * #!!% '

Διαβάστε περισσότερα

Modeling floods in a dense urban area using 2D shallow water equations

Modeling floods in a dense urban area using 2D shallow water equations odeling floods in a dense urban area using 2D shallow water equations E. ignot, A. Paquier,. Haider To cite this version E. ignot, A. Paquier,. Haider. odeling floods in a dense urban area using 2D shallow

Διαβάστε περισσότερα

0 1 D5 # 01 &->(!* " #1(?B G 0 "507> 1 GH// 1 #3 9 1 " ## " 5CJ C " 50

0 1 D5 # 01 &->(!*  #1(?B G 0 507> 1 GH// 1 #3 9 1  ##  5CJ C  50 !$$ !! $ ' (( ) * ( + $ '!, - (())!*'! -!+ - / (())!* - ),!-* + ' 6 / 9 *, 78) ++)!*! φ( 9 $ * )) 8!' ) ;< 0 = ;

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Διαβάστε περισσότερα

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original)

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original) Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original) H Steve Ndinga-Koumba-Binza To cite this version: H Steve Ndinga-Koumba-Binza. Phonetic and Phonological

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

Measurement-driven mobile data traffic modeling in a large metropolitan area

Measurement-driven mobile data traffic modeling in a large metropolitan area Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo

Διαβάστε περισσότερα

Geometric Tomography With Topological Guarantees

Geometric Tomography With Topological Guarantees Geometric Tomography With Topological Guarantees Omid Amini, Jean-Daniel Boissonnat, Pooran Memari To cite this version: Omid Amini, Jean-Daniel Boissonnat, Pooran Memari. Geometric Tomography With Topological

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα